
CC/Vouk et al/FurhtBook/V4 20-Mar-10 1/23

Integration of High-Performance Computing into Cloud
Computing Services

Mladen A. VOUKa, 1, Eric SILLS a, Patrick DREHERb
aNorth Carolina State University, Raleigh, NC 27695, USA

bRenaissance Computing Institute, Chapel Hill, NC 27517, USA

Abstract. High-Performance Computing (HPC) services can range from time on
peta-flop supercomputers, to access to high-end tera-flop facilities running a
variety of operating systems and applications, to mid-range and smaller
computational clusters used for HPC application development, pilot runs and
staging. What they all have in common is relative isolation - that is traditionally
HPC facilities have tended to be isolated from the more general scientific
computing operations. Advent of the cloud computing concept has changed that.
Even the most avid supporters of HPC and Grid computing are beginning to
admit that almost all loosely coupled HPC computing, and a lot of tightly coupled
HPC computing, can be done in a cloud. In this article, we will discuss a very
successful production-level architecture and policy framework for supporting
HPC services within a more general cloud computing infrastructure. This
integrated environment has been operating at NC State since fall 2004. It
typically delivers over 7,200,000 HPC CPU hours per year to NC State faculty
and students. In addition, we present and discuss operational data that show that
integration of HPC and non-HPC services in a cloud can substantially reduce the
cost of delivering cloud services (down to cents per CPU hour).

1 - Introduction

Figure 1. shows a snapshot of a Google trends analysis for keywords: Cloud Computing,
High-Performance Computing and Grid Computing. Vertical axis shows the search
volume and news reference volume. We see that the popularity of “Grid Computing” has
been diminishing for the last six years, that of high-performance computing has been
steady (but low), and that cloud computing did not really have any significant visibility
until end of 2007. However, after about October 2007 when Google and IBM announced
“cloud computing” research directions [Loh07] and IBM announced its cloud computing
initiative [IBM07] the interest in the concept started rising and has not waned yet as
witnessed by numerous articles, a growing number of conferences, and an increasing use
of the term to describe old, existing and some new solutions and services.

 “The concept of cloud computing has become a popular term to describe a flexible
system that provides users with access to hardware, software, applications and services.
Because there is no one generic user and the hardware, software, and services may be

1 Corresponding Author: M. Vouk, Department of Computer Science, Box 8206, North Carolina State University, Raleihg, NC
27695, USA, vouk@ncsu.edu.

CC/Vouk et al/FurhtBook/V4 20-Mar-10 2/23

grouped in various combinations, this cloud computing concept quickly fractures into
many individualized descriptions and perspectives. As a result, it is very difficult to
agree on one common definition of cloud computing” [Dre09, see also McK09, Amr09,
Vou09].

In the context of this chapter, we consider “cloud computing” to refer to a seamless
component-based architecture that can deliver an integrated, orchestrated and rich suite of
both loosely and tightly coupled on-demand information technology functions and
services, significantly reduce overhead and total cost of ownership and services, and at
the same time empower the end-user in terms of control. Some more obvious advantages
of cloud computing are server consolidation, hardware abstraction via virtualization,
better resource management and utilization, service reliability and availability, improved
security and cost effectiveness, etc.

The concept of cloud
computing is changing
the way we think of
information technology
(IT) infrastructure in
businesses, education,
research and
government, and as a
result there has been a
rapid increase in the
number and types of
cloud computing systems
that are being deployed.

While for most part organizations are still debating [e.g., Arm09, Gol09] how this
technology might be applied, some organizations, such as NC State University, have been
providing cloud-based services to their students, faculty and staff with great success since
2004 [Vou09, Dreh09, Vouk08a,b, Ave07, Sea10].

In many instances cloud computing tends to be equated to delivery of a single category of
services, such as desktop services, or specific server functionalities, or specific
applications or application environments. Where NC State’s cloud computing
environment, called Virtual Computing Laboratory (VCL, http://vcl.ncsu.edu) differs
from other cloud computing implementations (and interpretations) is that it offers
capabilities that are very flexible and diverse ranging from Hardware-as-a-Service all the
way to highly complex Cloud-as-a-Service. These capabilities can be combined and
offered as individual and group IT services, including true High-Performance Computing
(HPC) services. Our VCL-HPC service very successfully integrates HPC into the cloud
computing paradigm by managing not only resource capabilities and capacity, but also
resource topology, i.e., appropriate level of network/communication coupling among the
resources.

Figure 1. The rise of Cloud Computing

CC/Vouk et al/FurhtBook/V4 20-Mar-10 3/23

In the remainder of the chapter we describe NC State University (NC State or NCSU)
cloud computing environment (Section 2), we describe its HPC environment and how it
integrates into our cloud solution (Section 3), and we discuss performance and economics
of the solution (Section 4). Summary is provided in Section 5.

2. NC State University Computing Cloud Computing

A cloud computing system should be designed around a service-oriented architecture
(SOA) that can allocate resources on-demand in a location and device independent way,
incorporate technical efficiency and scalability through appropriate level of centralization
and sharing of cloud resource and control functions, and through explicit or implicit self-
provisioning of resources and services by users to reduce administration overhead
[Vou09, Dre09]. The principal difference between “traditional” and cloud computing is
in the level of control delegated to the user. For example, in a traditional environment
control of resource use and management lies primarily with the service delivery site and
provider, in a cloud environment this control is for most part transferred to users in the
form of self-provisioning options and appropriate privileges. Similarly, other traditional
IT operations such as operating system and environment specification and mode of access
and prioritizations now become explicit user choices. While this can increase
management efficiency and reduce provisioning costs, the initial base-line set-up of the
cloud is much more complicated and requires much more sophisticated technological
expertise, management and security. In our experience, a flexible and versatile cloud
environment needs to provide a range of differential services from Hardware-as-a-Service
all the way to Cloud-as-a-Service and Security-as-a-Service.

In the context of NC State’s VCL we distinguish

•• HHaarrddwwaarree aass aa SSeerrvviiccee ((HHaaaaSS)) –– OOnn--ddeemmaanndd aacccceessss ttoo aa ssppeecciiffiicc ccoommppuuttaattiioonnaall,,
ssttoorraaggee aanndd nneettwwoorrkkiinngg pprroodduucctt((ss)) aanndd//oorr eeqquuiippmmeenntt ccoonnffiigguurraattiioonn ppoossssiibbllyy aatt aa
ppaarrttiiccuullaarr ssiittee

•• IInnffrraassttrruuccttuurree aass aa sseerrvviiccee ((IIaaaaSS)) -- OOnn--ddeemmaanndd aacccceessss ttoo uusseerr ssppeecciiffiieedd hhaarrddwwaarree
ccaappaabbiilliittiieess,, ppeerrffoorrmmaannccee aanndd sseerrvviicceess wwhhiicchh mmaayy rruunn oonn aa vvaarriieettyy ooff hhaarrddwwaarree
pprroodduuccttss

•• PPllaattffoorrmm aass aa sseerrvviiccee ((PPaaaaSS)) -- OOnn--ddeemmaanndd aacccceessss ttoo uusseerr ssppeecciiffiieedd ccoommbbiinnaattiioonn
hhyyppeerrvviissoorrss ((vviirrttuuaalliizzaattiioonnss)),, ooppeerraattiinngg ssyysstteemm aanndd mmiiddddlleewwaarree tthhaatt eennaabblleess uusseerr
rreeqquuiirreedd aapppplliiccaattiioonnss aanndd sseerrvviicceess rruunnnniinngg oonn eeiitthheerr HHaaaaSS aanndd//oorr IIaaaaSS

•• AApppplliiccaattiioonn aass aa SSeerrvviiccee ((AAaaaaSS)) -- OOnn--ddeemmaanndd aacccceessss ttoo uusseerr ssppeecciiffiieedd
aapppplliiccaattiioonn((ss)) aanndd ccoonntteenntt.. Software as a Service (SaaS) may encompass anything
from PaaS through AaaS

•• HHiigghheerr lleevveell sseerrvviicceess -- AA rraannggee ooff ccaappaabbiilliittiieess ooff aa cclloouudd ttoo ooffffeerr aa ccoommppoossiittiioonn
ooff HHaaaaSS,, IIaaaaSS,, PPaaaaSS aanndd AAaaaaSS wwiitthhiinn aann eennvveellooppee ooff ppaarrttiiccuullaarr ppoolliicciieess,, ssuucchh aass
sseeccuurriittyy ppoolliicciieess –– ffoorr eexxaammppllee SSeeccuurriittyy--aass--aa--SSeerrvviiccee.. AAnnootthheerr eexxaammppllee aarree
ccoommppoossiitteess aanndd aaggggrreeggaatteess ooff lloowweerr--lleevveell sseerrvviiccee ssuucchh aass aa ““CClloouudd--aass--aa--SSeerrvviiccee””
–– aa sseerrvviiccee tthhaatt aalllloowwss aa uusseerr ttoo ddeeffiinnee ssuubb--cclloouuddss ((cclluusstteerrss ooff rreessoouurrcceess)) tthhaatt tthhee
uusseerr ccoonnttrroollss iinn ffuullll..

CC/Vouk et al/FurhtBook/V4 20-Mar-10 4/23

All of the above services are at some level available to NC State VCL users with different
privileges [Vou08, Vou09]. HaaS and IaaS are essential if one wishes to construct high-
performance computing (HPC) service with a particular topology, or to have the ability
to deliver specific end-to-end quality of service, including application performance. We
find that a carefully constructed cloud computing implementation that offers the basic
services listed above can result in good technical performance and increased productivity
regardless of whether the cloud is serving commercial or educational institutions.

Virtual Computing Laboratory (VCL, http://vcl.ncsu.edu) is a high performance open-
source award-winning2 cloud computing technology initially conceived and protyped in
2004 by NC State’s College of Engineering, Office of Information Technology, and
Department of Computer Science. Since then, VCL development has rapidly progressed
in collaboration with industry, higher education, and K-12 partners to the point that today
it is a large scale, production-proven system which is emerging as a dominant force in the
nascent and potentially huge open-source private-cloud market [Sae10, Sch10, Vou09].

0

500

1000

1500

2000

2500

3000

9/1/2004 9/1/2005 9/1/2006 9/1/2007 9/1/2008 9/1/2009

Number of VCL
Reservations per day
(excluding HPC reservations)

 Maximum Number of Concurrent VCL
Reservations (excluding HPC reservations)

0

100

200

300

400

500

600

9/
1/

20
04

1/
1/

20
05

5/
1/

20
05

9/
1/

20
05

1/
1/

20
06

5/
1/

20
06

9/
1/

20
06

1/
1/

20
07

5/
1/

20
07

9/
1/

20
07

1/
1/

20
08

5/
1/

20
08

9/
1/

20
08

1/
1/

20
09

5/
1/

20
09

9/
1/

20
09

1/
1/

20
10

Figure 2. VCL usage

Campus use of VCL has expanded exponentially over the last five years (Figure 2). We
now have over 30,000+ users and deliver over 100,000 reservations per semester through
over 200 service environments, as well as over 7,200,000 HPC CPU hours annually. In-
state initiatives include individual UNC-System universities (e.g., ECU, NCCU, UNC-
CH, UNCG, WCU - technically all UNC System campuses which implement Shibboleth

2 2007 Computerworld Honors Program Laureate Medal (CHPLM) for Virtual Computing Laboratory
(VCL), 2009 CHPLM for NC State University Cloud Computing Services

CC/Vouk et al/FurhtBook/V4 20-Mar-10 5/23

authentication have access to VCL), the NC Community College System (production and
pilots in 15 colleges: Beaufort County, Brunswick, Cape Fear, Catawba Valley, Central
Piedmont, Cleveland, Edgecombe, Fayetteville Tech, Forsyth Tech, Guilford Tech, Nash,
Sandhills, Surry, Wake Tech), and several K-12 pilots and STEM initiatives.

Regional, national and international interest in VCL has also increased over the past year
since VCL has been available through the Apache Software Foundation [VCL10]. Pilots
are in progress all over the world. George Mason University (GMU) has become a VCL
leader and innovator for the Virginia VCL Consortium, recently winning the 2009
Virginia Governor’s award for technology innovation. There are VCL initiatives in a
number of other states. For example Southern University Baton Rouge, and California
State University East Bay are in the process of implementing VCL-based clouds.

Figure 3. NC State HPC usage over years.

VCL’s typical base infrastructure (preferred but not required) is an HPC blade system.
The reason for that will become apparent shortly. System’s capability can be delivered as
a whole or “sliced and diced” dynamically into smaller units/clusters of capability
appropriately “packaged” to meet a set of highly individualized requirements – services
range from single desktops, to groups of “seats” in classrooms, to servers and server
farms, to research clusters and sub-clouds, to true high-performance computing – from
hardware, infrastructure and platforms as a service, to different levels of software and
application as a service.

Figure 2 shows the number of VCL reservations made per day by users over last five
years. This includes reservations made by individual students for Linux or Windows XP
desktops along with some specific applications, but also reservations that researchers may

CC/Vouk et al/FurhtBook/V4 20-Mar-10 6/23

make to construct their own computational sub-clouds, or specialized resource
aggregations – including high-performing ones. Figure 2 inset is the number of such
concurrent reservations per day. What is not included in the counts shown in these figures
are the reservations that deliver standard queue-based VCL HPC services. We therefore
call these service non-HPC services (although self-constructed high-performance sub-
clouds are still in this category of services). NC State’s VCL currently has about 2000
blades distributed over three production data centers and two research and evaluation data
centers. About one third of the VCL blades are in this service delivery mode (the one we
call non-HPC mode), some of the remaining blades are in our experimental test-beds and
in maintenance mode, and the rest (about 600 to 800) operate as part of the VCL-HPC
(http://hpc.ncsu.edu) and are controlled through a number of LSF3 queues.

There three things to note with reference to Figure 2. One is that the usage of VCL, and
by implication of the NC State Cloud Computing environment, has been growing
steadily. The second is that the resource capacity (virtual or bare-machine loaded) kept on
the non-HPC side at any one time is proportional to the needed concurrency. The third
thing to note is that non-HPC usage has clear gaps. VCL reservations tend to go down
during the night, and during student vacations and holidays. On the other hand, if one
looks at the NC State demand for HPC cycles we see that it has been growing (Figure 3),
but we also see that demand is much less subject to seasonal variations (Figure 4).

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

Mar-
08

Apr-
08

May-
08

Jun-
08

Jul-08 Aug-
08

Sep-
08

Oct-
08

Nov-
08

Dec-
08

Jan-
09

Feb-
09

Month

C
PU

 H
ou

rs

Figure 4. NC State HPC usage over March 2008 – February 2009.

An in depth analysis of the economics of cloud computing [Dre09] shows one of the key
factors is average utilization level of the resources. Any of our resources that are in VCL-
HPC mode are fully utilized (with job backlog queues as long as two to three times the

3 http://www.platform.com/Products

CC/Vouk et al/FurhtBook/V4 20-Mar-10 7/23

number of jobs running on the clusters). In 2009, even with maintenance down time,
VCL-HPC recorded over 7.2 million HPC CPU-hours – in the 95+% utilization range.
On the other hand, while in the same period desktop augmentation and similar non-HPC
usage recorded over 180,000 reservations, it also recorded only about 490,000 CPU-
hours – about 10 to 15% utilization.

To satisfy high demand for HPC, allow for peak non-HPC use, and generally balance the
workloads, VCL was designed so that during the times when augmentation (non-HPC)
use is lower, such as during summer holidays, VCL can automatically move the resources
into its HPC mode where they are readily used. When there is again need for non-HPC
use these resources are, again automatically, moved back in that use pool. As a result, the
combined HPC/non-HPC resource usage runs at about 70% level. Obviously a cost-
effective and desirable strategy, but also one that requires an active collaboration of the
underlying (cloud) components. VCL offers that capability.

3. Integrating High-Performance Computing

So how do we do that? The first level architecture of VCL is shown in Figure 5. A user
accesses VCL through a web interface to select from a menu a combination of
applications, operating systems and services she needs. If a specific combination is not
already available as an “image” – either a bare-metal or a virtual machine service
environment consisting of the operating system (with possibly a hypervisor), middleware,
application stack along with security management, and access and storage tools and
agents -, authorized user can construct one’s own from the VCL library components. This
customization capability is very much in the spirit of what services engineering and
management is all about. VCL manager software then maps that request onto available
software application images and available hardware resources and schedules it for either
immediate use (on demand) or for later use. VCL manager software was developed by
NCSU using a combination of off-the-shelf products (such as IBM xCAT4) and in-house
developed open-source “glue” software (about 50,000+ lines of code – now available
through Apache [VCL10]).

All components of the VCL can be (and are) distributed. A site installation will typically
have one resource management node (Node Manager in the figure) for about 100
physical blades. This ensures adequate image load times as well as resource fail-over
redundancy. In the context of our architecture we distinguish undifferentiated resources –
resources that are completely malleable and can be loaded with any service environment
designed for that platform, and differentiated resources – resources which can be used “as
is” only without any modifications beyond what the user access permissions allow. For
example, during the night VCL users are allowed to use NC State computing lab Linux
machines remotely, but they are not allowed to modify their images since lab machines
are considered a differentiated resource. In contrast, when they make a “standard” VCL
Linux or Windows reservation, students get full root/administrator privileges and can
modify the image as much as they wish. However, once they are finished (typically our

4 http://xcat.sourceforge.net/

CC/Vouk et al/FurhtBook/V4 20-Mar-10 8/23

student reservations last 1 to 2 hours) that resource is “wiped” clean and a fresh image is
reloaded. Students save their data either onto our network-attached corporate storage or
on their own laptops.

In this fashion VCL provides the ability to deliver scheduled and on-demand, virtualized
and “bare-metal” infrastructures, and differentiated and undifferentiated services
consistent with established NCSU policy and security requirements which may vary by
user and/or application. VCL dynamically constructs and deconstructs computing
environments thereby enabling near continuous use of resources. These environments,
consisting of intelligent software-stack image(s) and metadata specifications for building
the environment, can be created, modified, and transferred as policy and authorization
permit. VCL security capabilities enable wide latitude in the assignment of these
permissions to faculty, staff, and students.

VCL code version 2.x has been available for about a year as part of the Apache offering
[VCL10]. Version 2.x of VCL represents a major rewrite of the base code and moves
VCL to a modular software framework in which functional elements can be modified,
replaced or optioned without attendant code changes elsewhere. It greatly empowers both
community contribution and non disruptive customization. In addition, its already
excellent security profile is being constantly enhanced through a federally funded Secure
Open Source Initiative (http://sosi.ncsu.edu).

VCL Database

Authentication
Service

Virtual or Real Differentiated
Resources

Virtual or Real
Undifferentiated Resources

InternetInternet

VCL
Manager
& Scheduler

Node Manager #1

Image Repository

Node Manager #2

Image Repository

Node Manager #n

Image Repository

z-SeriesTera-Grid

University
Labs

Storage

Storage

Figure 5. Top level VCL architecture [Vou09].

CC/Vouk et al/FurhtBook/V4 20-Mar-10 9/23

VCL environments are stored in on-line repositories, providing a low-cost high-volume
retention capability that not only supports extreme scaling of access and reuse but also
enables the breath of scale and scope required for intelligent real-time sequencing of
multi-stage workflows. The benefit of this advance varies depending on the limitations of
use imposed by software licensing agreements. Absent these limitations VCL empowers
a new paradigm of build once well and pervasively reuse. In fact, one of the special
characteristics of VCL is that its provenance and meta-data collection is sufficiently fine-
grained and thorough that it allow very detailed metering of the software usage – by user,
by department, by duration, by location, etc. That in itself offers an opportunity to
implement a metering-based license management model that, given appropriate vendor
agreements, allows porting and exchange of service environments across/among clouds.

Figure 6. VCL architecture – internal details (http://cwiki.apache.org/VCL/vcl-architecture.html)

3.1 Internal Structure

Figure 6 shows more of the internals of the VCL architecture. At the heart of the solution
are a) a user interface (including a GUI and a remote service API), b) an authorization,

CC/Vouk et al/FurhtBook/V4 20-Mar-10 10/23

provenance and service tracking data-base, c) a service environment “image” library, and
d) a service environment management and provisioning engine.

Provisioning engine deploys service environments on demand either at the physical layer
(bare-machine loads are typically done using xCAT, but other loaders can be used,
including IBM Director), or at a virtual layer (e.g., VMWare, Xen, KVM “images”), or
through a specially defined mechanism, e.g., a new service interface, a remote service, a
service API to another cloud. Deployed service environments can consist of a single bare-
metal image or a virtual software stack “image,” such as a Windows or Linux desktop
loaded onto undifferentiated resources, or it can consist of a collection of images
(including their interconnection topology) loaded onto a set of (possibly) hybrid
resources, or it can consist of set of HPC images loaded onto VCL resources being
moved into differentiated HPC mode, and so on. In the NC State implementation,
physical server manager loads images to local disk via kick-start (only Linux
environments), copies images to local disk (Linux and Windows), or loads images to
local memory (stateless). For loading of virtual machine images, VCL leverages
command-line management tools that come with hypervisors.

0 50 100 150

Scratch

Permanent

TB

HPC
Partners

Figure 7. NC State (baseline VCL-HPC services) and Partner storage.

Storage. Where information is stored in the cloud is very important. Secure image
storage is part of the core VCL architecture, however end-user storage is more flexible. It
can range from storage on the physical VCL resource, to secure NAS or SAN accessed
via the storage access utilities on the image itself, to storage on the end-user access
station (e.g., laptop storage or memory key storage), etc. At NC State most of our images
are equipped with agents that can connect in a secure way to our corporate storage (AFS
based) and thus access backed-up storage space that students and faculty are assigned,
and tools (such as visual sftp) that can access other on-line storage. Our HPC images are

CC/Vouk et al/FurhtBook/V4 20-Mar-10 11/23

constructed so that they all have access to HPC scratch and permanent storage via NFS.
Figure 7 illustrates the current extent of that storage. It is interesting to comment on the
part of the storage marked as “Partners”.

0 1000 2000 3000

Campus

MCNC

Processors

HPC
Partners
Intel/IBM

Figure 8. NC State VCL-HPC distributed memory computing resources (HPC), Partner

computational resources and resources acquired through gifts and joint projects with IBM
and Intel.

Partner’s Program. NC State researchers have the option of purchasing VCL-HPC
compatible hardware and any specialized or discipline-specific software licenses. NC
State Office of Information Technology (OIT) provides space in an appropriate and
secure operating environment, all necessary infrastructure (rack, chassis, power, cooling,
networking, etc.), and the system administration and server support.
In return for infrastructure and services provided by OIT, when partner compute
resources are not being used by the partnerm they are available to the general NC State
HPC user community. This program has been working very well for us as well as for our
researchers. As can be seen from Figure 7 and Figure 8, a large fraction of our HPC
resources are partner resources.

3.2 Access

As part of our cloud HPC services we have both distributed memory (typically IBM
BladeCenter clusters) and shared memory computing resources (typically 4-socket quad
core Opteron servers with at least 2 GB of memory per core). We also provide items such
as resource manager/scheduler, compilers, debuggers, application software, user training
and support, consulting, code porting and optimization help, algorithm development
support, and general collaboration. There are two ways of reaching those resources –
through VCL-based reservation of one’s own login node, or through the use of a
communal login node. Personal login nodes make sense if end-users wish to monitor their

CC/Vouk et al/FurhtBook/V4 20-Mar-10 12/23

runs in real time. One submits jobs in the usual fashion using job queues, in our case
controlled via LSF. Queue priority depends on the resources requested and partnership
privileges. Partners get absolute and immediate priority on the resources they own (or an
equivalent set of resources), and they get additional priority towards adding common
resources beyond what they own.

Standard. All VCL-HPC resources run the same HPC service environment (typically
RedHat-based), and have access to a common library of applications and middleware.
However, users can add their own applications to the computational resources they are
given access to. All our standard VCL-HPC nodes are bare-metal loaded for sole use on
VCL blades. They are managed as differentiated resources, i.e., users have full control
over them, but they cannot re-load them or change them (except for the software in the
user’s home directories), and they must be used with the NC State maintained scheduler
and file system. Most of our HPC nodes operate in this mode and as such they are very
similar to any other HPC cluster. Nodes are tightly coupled with 1Gbps or better
interconnects. A user with sufficient privileges can select appropriate run queues that
then map the jobs onto the same BladeCenter chassis or same rack if that is desired, or
onto low latency interconnects (e.g., Infiniband interconnected nodes).

Special needs. If a user does not wish to conform to the “standard” NC State HPC
environment, a user has the option of requesting the VCL cloud to give him/her access to
a customized cluster. In order to do that, the user needs to have “image creation”
privileges [Vou08, Vouk09], and the user needs to take ownership of that sub-cluster or
sub-cloud service environment. First the user creates a “child image” – a data node or
computational node image - running operating system of their choice as well as tools that
allow communications with the cluster controller and access to the data exchange bus of
their choice, e.g., NFS-based delivery of directories and files. The user saves that image.

Then the user creates a “parent image” in the VCL-cloud aggregation mode. Again the
user picks the base-line operating system, and adds to it a cluster controller, such as an
HPC scheduler of choice, e.g., PBS, or a cloud controller such as Hadoop’s controller, or
similar. Now the user attaches to this any number of “child images”. Typically child
images are of the same type, e.g., a computational HPC Linux image, if the user wishes
to operate a homogenous cluster. But, the user can also attach different child images, say
20 computational Linux images, one Linux-based data-base image, one Windows web-
services image, and so on. Then the user saves the “parent image”. From now on, when
the user loads the “parent or control image” all the children are also loaded into virtual or
bare-machine resource slots, depending on how the child-images were defined. All
Linux-based child images that are part of such a VCL aggregate know about each others
IP numbers through a VCL placed /etc file. “Parent image” control software needs to
know how to access that information and communicate with the children.

Default custom topology is random and loosely coupled, i.e., VCL maps the “parent” or
anchor image, and its children onto resources on which the images can run, but it does
not pay attention to inter-node latency or topology. If tight, low latency, inter-image
communication coupling is desired, and the image owner has appropriate privileges,

CC/Vouk et al/FurhtBook/V4 20-Mar-10 13/23

mapping of the images onto nodes that conform to a particular topology or interconnect
latency is possible.

3.3 Computational/Data Node Network
There are some important differences between the “standard” queue-based batch-mode
VCL-HPC offering and a user-constructed user-owned cloud or HPC cluster. Following
[Vou09]:

“One of the key features of the undifferentiated VCL resources is their networking set-up.
It allows for secure dynamic reconfiguration, loading of images, and for isolation of
individual images and groups of images. Every undifferentiated resource is required to
have at least two networking interfaces. One on a private network, and the other one on
either public or private network depending on the mode in which the resource operates.
Also, for full functionality, undifferentiated resources need to have a way of managing
the hardware state through an external channel –for example through the BladeCenterTM
chassis Management Module.”

“Figure 9 illustrates the configuration where seats/services are assigned individually or in
synchronized groups, or when we want to assign/construct an end-user image aggregate
or environment where every node in the environment can be accessed from a public
network (e.g., an image of a web server, plus an image of a data-base, plus an image of
an application, or a cluster of relatively independent nodes). Typically eth0 interface of a
blade is connected to a private network (10.1 subnet in the example) which is used to

Figure 9. Undifferentiated resource node network configuration.

CC/Vouk et al/FurhtBook/V4 20-Mar-10 14/23

load images. Out-of-band management of the blades (e.g., power recycling) is effected
through the management network (172.30.1 in the example) connected to the MM
interface. The public network is typically connected to eth1 interface. The VCL node
manager (which could be one of the blades in the cluster, or an external computer) at the
VCL site has access to all three links, that is it needs to have three network interfaces. If
it is a stand-alone server, this means three network interface cards. If management node
is a blade, the third interface is virtual and possibly on a separate VLAN.”

“It is worth noting that the external (public) interface is on a VLAN to provide isolation
(e.g., VLAN 3 for the public interface in Figure 9). This isolation can take several levels.
One is just to separate resources, another one is to individually isolate each end-user
within the group by giving each individual resource or group of resources a separate
VLAN – and in fact end-to-end isolation through addition of VPN channels. This
isolation can be effected for both real and virtual hardware resources, but the isolation of
physical hardware may require extra external switching and routing equipment. In highly
secure installations it is also recommended that both the private network (eth0) and the
MM link be on separate VLANs. Currently, one node manager can effectively manage
about 100 blades operating in the non-HPC mode.”

 Figure 10. Network set-up for a “standard” VCL-HPC node.

CC/Vouk et al/FurhtBook/V4 20-Mar-10 15/23

“The second configuration (Figure 10) is used when the blades are assigned to a tightly
coupled VCL-HPC cluster environment, or to a large overlay (virtual) “cloud” that has
relatively centralized public access and computational management. In this case the node
manager is still connected to all three networks – public, management and image-loading
and preparation private network, but now eth1 is connected (through VLAN
manipulation, VLAN 5 in Figure 10) to what has now become an Message Passing
Interface (MPI) network switch. This network now carries intra-cluster communications
needed to effect tightly couple computing tasks usually given to an HPC cloud. Switching
between non-HPC mode and this HPC mode takes place electronically, through VLAN
manipulation and table entries; the actual physical set-up does not change. We use two
different VLANs to eth1 to separate Public Network (external) access to individual
blades when those are in the Individual-Seat mode (VLAN 3 in Figure 9), from the MPI
communications network to the same blade when it is in the HPC mode (VLAN 5 in
Figure 10).”

3.4 Build Your Own
VCL code is available from apache.org [VCL10]. While the current version of VCL can
operate on any X86 hardware, we have been using primarily IBM’s BladeCenters
because of their reliability, power savings, ease of maintenance, and compact footprint.

When building a “starter” non-HPC version of VCL one could limit the installation to
virtual environments only, i.e., all resources operate as VMWare servers, and VCL
controls and provisions only virtual images using the virtual version of the VCL non-
HPC configuration in Figure 9. This is quick and works well, but is probably less
appealing for those who wish to have the HPC option. One reason is performance. HPC
community is still wary of having true HPC computations run on virtualized resources.
Furthermore, some of the large memory and CPU footprint engineering applications also
may not behave best in a virtualized environment. In those cases, installation of VCL’s
bare-machine load capabilities (via XCat) is recommended.

A small starter blade-based configuration is illustrated in Figure 11. Hardware can be
housed in a single BladeCenter chassis. Two Ethernet switch modules are required to
accommodate the public and private networks. If more than 7 blades are used, it is
necessary to also have additional internal power supplies. Chassis network module is
needed to connect the management node to storage – for example via fiber channel
(optical pass through) or via iSCSI (copper pass through). A single chassis will house
from 2 to 14 blades. At least one blade needs to be configured to attach to external
storage for service environment image library function. That same blade could be
designated to house the VCL scheduler, database and management daemon, while the rest
of the blades would then be delivering VCL services. Storage is typically external.
Several terabytes of storage are needed for the image repository, and additional storage
needs to be network-accessible for support of HPC activities. Figures 12 and 13 illustrate
how the installation can be scaled and what is needed to allow it to operate in both the
HPC mode and in non-HPC cloud mode.

CC/Vouk et al/FurhtBook/V4 20-Mar-10 16/23

ESM

ESM

OPM

MM

ESM

ESM

OPM

MM

Figure 11. A small “starter” VCL cloud installation.

GigE Switch

GigE Switch

Public Network

GigE Switch

Private Management Network Private Network

GigE Switch

GigE Switch

Public Network

GigE Switch

Private Management Network Private Network
Figure 12. Scaling VCL Cloud.

CC/Vouk et al/FurhtBook/V4 20-Mar-10 17/23

How do we scale? Figures 12 and 13 show a rack of BladeCenter chasses. Additional
racks are interconnected in a similar way. The differences between the two images are
logical, i.e., switching from one mode to another is done electronically – in software – by
VCL depending on the image characteristics. One can mix non-HPC and HPC
configurations at the granularity of chasses. An important thing to note is that in order to
maintain good performance characteristics, we do not want to daisy-chain internal chassis
switches. Instead, we provide an external switch, such as Cisco 6509e (or equivalent from
any vendor) that is used to interconnect different chasses on three separate networks and
VLANs. In non-HPC mode, one network provides public access, one network is used for
managing image loads and for accessing back-end image storage, and the third one is for
direct management of the hardware (e.g., power on/off, reboot …). In HPC mode, the
public network becomes MPI network, and special login nodes are used to access the
cluster from outside. While we can use one VCL web-server and data-base for thousands
of blades, with references to Figures 5 and 6, in a scalable environment we need one
resource management node for every 100 or so computational blades to insure good
image reservation response times – especially when image clusters are being loaded. We
also need physical connection(s) to a storage array – we typically run a shared file system
(such as GFS5 or GPFS6) for multiple management nodes at one site.

GigE Switch

GigE Switch

Public Network

GigE Switch

Private Management Network Private Network

HPC
Storage
Servers

GigE Switch

Message Passing Network

GigE Switch

GigE Switch

Public Network

GigE Switch

Private Management Network Private Network

HPC
Storage
Servers

GigE Switch

Message Passing Network

Figure 13. Scalable HPC Configuration

When VCL provides distributed and shared memory compute service for HPC, this is
done through tightly coupled aggregation of computational resources with appropriate

5 http://sources.redhat.com/cluster/gfs/
6 http://www-03.ibm.com/systems/software/gpfs/index.html

CC/Vouk et al/FurhtBook/V4 20-Mar-10 18/23

CPU, memory and interconnect capacity. In our case, distributed memory compute
services take the form of a logical Linux cluster of different sizes with Gigabit or 10
Gigabit Ethernet interconnects. A subset of our nodes have additional Myrinet or
InfiniBand low-latency interconnects. Nodes which can be allocated for shared memory
computations have large number of cores and plenty of memory.

To operate VCL in HPC mode, we dedicate one private network to message passing
(Figure 10) – for that we use the blade network interface that would have been used for
public user access in VCL standard mode (Figure 9). Also on a HPC BladeCenter chassis
we configure two VLANs in one switch module, one for public Internent and for message
passing interface. VCL management node makes those changes automatically based on
image metadata. An HPC service environment image “knows” through its meta-data that
it requires VCL-HPC network configuration (Figure 10) and those actions are initiated
before it is loaded. VCL-HPC environment consists of one or more login nodes, and any
number of compute nodes. LSF7 resource manager is part of a login node.

Both login nodes and compute nodes are given permanent reservations (until canceled) –
as opposed to time-limited resource reservations that typically occur on the non-HPC
side. An HPC compute node image consists of a minimal Linux with LSF client that,
when it becomes available, automatically registers with the LSF manager. All HPC
compute images also automatically connect to user home directory and to shared scratch
storage for use during computations. An HPC login node image contains full Linux and
LSF server. There are usually two to three login nodes through which all users access
HPC facility to launch their jobs. However it is also possible to reserve, using VCL web
page, a “personal” login node on a temporary basis. On these “personal” nodes users can
run heavy duty visualization and analytics without impacting other users. All login nodes
have access to both HPC scratch storage and user HPC home directories (with
appropriate permissions), as well as long-term HPC data storage. While compute nodes
conform to configuration in Figure 10 – two private networks, one for MPI traffic, the
other for image load and management, login nodes conform to Figure 9 topology, and
have a public interface to allow access from the outside, and a private side to access and
control compute nodes.

If we wish to add low latency interconnects for HPC workloads, we need to make
additional changes in chasses and servers that will be used for that. Chassis network
modules for low-latency interconnects (Myrinet, InfiniBand) need an optical pass-
through and an appropriate external switch is needed (e.g., InfiniBand). Blade servers
need to be equipped with a low-latency interconnect daughtercards.

4. Performance and Cost

VCL delivers both classroom, lab and research IT services for faculty and students. On
the one hand, if users are to rely on VCL, then the VCL system must have sufficient
available resources to satisfy the peak demand loads. On the other hand, if VCL is to

7 http://www.platform.com/Products

CC/Vouk et al/FurhtBook/V4 20-Mar-10 19/23

operate cost effectively it is essential that it is not over provisioned to the point where the
system is totally uneconomical to deploy. In order to provide VCL capabilities to users
across widely varying demand loads, NC State decided to make a capital investment to
assure that its “on-demand” level of service is available when needed. The user demand
for these computing services is governed by the academic calendar of the university, and
user expectations are that the availability of the services exceeds 99%. VCL meets that.

One way of assuring this high level of user availability, i.e., servicing of peak loads – see
Figure 2 – is for the university to maintain a pool of equipment in standby or idle mode,
for long periods of time. The consequence of this policy however would be an overall
low average utilization of the resources. This is an expensive and uneconomical total
cost of ownership option for the university. Therefore, one of the key VCL design
considerations was sharing of HPC and non-HPC resources. In a research university, such
as NC State, HPC is a very useful and needed workload. Because HPC jobs are primarily
batch jobs, HPC can act as an excellent “filler” load for idle computational cycles thereby
providing an option to markedly decrease the total cost of ownership for both systems.

An analysis of the NC State HPC usage pattern shows that researchers who actively use
HPC computational systems, do so year round and do not have their computational
workloads strongly fluctuating with the academic calendar. Because HPC jobs usually
have large requirements for computational cycles, they are an excellent resource
utilization backfill, provided that the cloud can dynamically transfer resources between
single-“seat” and HPC use modes. Furthermore, it turns out that the demand for HPC
cycles increases during holidays, and when classes are not in session, since then both
faculty and graduate students seem have more time to pursue computational work. In NC
State’s case, co-location of complementary computational workloads – on-demand
desktop augmentation and HCP computations - results in a higher and more consistent
utilization and in overall savings.

In this context, one has to understand that although for most part HPC operates in “batch”
mode, HPC requests are demanding as those of “on-demand” users, and rightly so. They
expect their clusters to have very low interconnect latency, sufficient memory, and the
latest computational equipment. Therefore, running HPC on virtualized resources is not
really an option yet. Ability to bare-machine load HPC images is essential, as is the
ability to map onto an appropriate interconnect topology. This need has recently been
confirmed through a detailed comparison of NAS Parallel Benchmarks run on Amazon’s
EC2 cloud and NCSA clusters. Results showed wide variations in performance [Wal08].
While the specific results depended on the particular application and the cloud computing
option used, the general lesson learned was that one needs to have not only control over
what one is running on (virtual or real machines), but also over the interconnect latency
among the cluster nodes. VCL was designed to allow sharing of resources while
retaining full performance capability for the mode it operates in.

The VCL operational statistics over the past several years strongly support this design
choice and suggest that by building a coherent integrated campus IT layer for faculty and
student academic and research computational needs allows the institution flexibility in

CC/Vouk et al/FurhtBook/V4 20-Mar-10 20/23

servicing both of these university functions. It also allows the educational institution
itself to maximize the return on their capital investment in the IT equipment and facilities
and decrease the total cost of ownership.

IT staff supporting VCL see advantages as well because the systems is scalable and
serviceable with fewer customization requests and less personnel (NC State uses 2 FTEs
to maintain 2000 blade system). Because the VCL hardware may be remotely located
outside the classroom or laboratory, there is also better physical security of the hardware
and a more organized program for computer security of the systems.

Commercial? Commercial cloud computing firms are beginning to venture into the
educational and research space using the pay-per-use model. Examples are Amazon EC2
services, and more recently Microsoft’s Azure8, but none of them, in our opinion,
currently offer a viable integration of high-end HPC services into their clouds [Dre10].

For example, “Amazon Web Services has positioned their EC29 cloud offering in a way
that is strongly focused on marketing rental of physical hardware, storage and network
components. Although Amazon’s EC2 enables users to acquire on-demand compute
resources, usually in the form of virtual machines, the user must configure this hardware
into a working cluster at deployment time, including loading and linking the appropriate
applications. Using the Amazon web service users can create and store an image
containing their applications, libraries, data and associated configuration settings or load
pre-configured template images from an image library. Amazon implements "availability
zones" to allow users some degree of control over instance placement in the cloud.
Specifically, EC2 users can choose to host images in different availability zones if they
wish to try and ensure independent execution of codes and protection from a global
failure in case of difficulties with their loaded image. They also have choices when to
run their images, the quantity of servers to select and how to store their data. Amazon
bills customers on a pay-as-you-go basis for the time rented on each component of their
cloud infrastructure.”

Open-Source? There are a number of possible open-source solutions. Very few, if any,
except for VCL offer the full HaaS to CaaS set of service. One example is Eucalyptus10.
Eucalyptus has an interface that is compatible with Amazon Web Services cloud
computing but treats availability zones somewhat differently. With Eucalyptus, each
availability zone corresponds to a separate cluster within the Eucalyptus cloud. Under
Eucalyptus, each availability zone is restricted to a single "machine" (e.g., cluster) where
at Amazon, the zones are much broader.

8 http://www.microsoft.com/azure/windowsazure.mspx
9 http://aws.amazon.com/ec2/
10 http://www.eucalyptus.com/

CC/Vouk et al/FurhtBook/V4 20-Mar-10 21/23

5. Summary

High-Performance Computing (HPC) services can range from time on peta-flop
supercomputers, to access to high-end tera-flop facilities running a variety of operating
systems and applications, to mid-range and smaller computational clusters used for HPC
application development, pilot runs and staging. What they all have in common is relative
isolation - that is traditionally HPC facilities have tended to be isolated from the more
general scientific computing operations. Advent of the cloud computing concept has
changed that. Even the most avid supporters of HPC and Grid computing are beginning
to admit that almost all loosely coupled HPC computing, and a lot of tightly coupled HPC
computing, can be done in a cloud. In this article, we have discussed a very successful
production-level architecture and policy framework for supporting HPC services within a
more general cloud computing infrastructure. This integrated environment, called VCL,
has been operating at NC State since fall 2004. It typically delivers over 7,200,000 HPC
CPU hours per year to NC State faculty and students, and about 100,000 non-HPC
desktop-type reservations per semester. We have presented and discussed operational
data that show that integration of HPC and non-HPC services in a cloud can substantially
reduce the cost of delivering cloud services.

Acknowledgments

VCL development was supported in part by IBM Corp., Intel Corp., SAS Institute,
NetApp, EMC, NC State University, State of North Carolina, and UNC General
Administration. The authors would like thank the NC State VCL team for their advice,
support and input.

CC/Vouk et al/FurhtBook/V4 20-Mar-10 22/23

References

[Arm09] Armbrust, Michael, et al., Above the Clouds: A Berkeley View of Cloud

Computing, Technical Report No. UCB/EECS-2009028, February 10, 2009 at
www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009.html.

[Ave07] Sam Averitt, Michael Bugaev, Aaron Peeler, Henry Schaffer, Eric Sills, Sarah
Stein, Josh Thompson, Mladen Vouk, “The Virtual Computing Laboratory,"
Proceedings of the International Conference on Virtual Computing Initiative,
May 7-8, 2007, IBM Corp., Research Triangle Park, NC, pp. 1-16
(http://vcl.ncsu.edu/news/papers-publications/virtual-computing-laboratory-
vcl-whitepaper).

[CAS09] Developing a Coherent Cyberinfrastructure from Local Campus to National
Facilities: Challenges and Strategies: A Workshop Report and
Recommendations, EDUCAUSE Campus Cyberinfrastructure Working Group
and Coalition for Academic Scientific Computation February 2009

[Dre09] Patrick Dreher, Mladen A. Vouk, Eric Sills, Sam Averitt, “Evidence for a
Cost Effective Cloud Computing Implementation Based Upon the NC State
Virtual Computing Laboratory Model,” in Advances in Parallel Computing,
High Speed and Large Scale Scientific Computing, Edited by Wolfgang
Gentzsch, Lucio Grandinetti, Gerhard Joubert, ISBN 978-1-60750-073-5,
Volume 18, 2009, pp. 236 – 250

[Dre10] P. Dreher, M. Vouk, S. Averitt, E. Sills, “An Open Source Option for Cloud
Computing in Education and Research,” 2010, to appear.

[Gol09] B. Golden, The Case Against Cloud Computing, CIO Magazine, January 2009
[IBM07] IBM, “IBM Introduces Ready-to-Use Cloud Computing,” Nov 15, 2007,

http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
[Loh07] Steve Lohr, Google and I.B.M. Join in ‘Cloud Computing’ Research, The

New York Times, 8-October-2007,
[San09] Santos, Jack, et al., The Dark Side of Virtualization, Burton Group Advisory

Program, April 6, 2009.
[Sch09] Henry E. Schaffer, Samuel F. Averitt, Marc I. Hoit, Aaron Peeler, Eric D.

Sills, and Mladen A. Vouk, NCSUs Virtual Computing Lab: A Cloud
Computing Solution," IEEE Computer, pp. 94-97, July 2009.

[Sea10] Cameron Seay, Gary Tucker, Virtual Computing Initiative at a Small Public
University, Communications of the ACM, Vol 53 (3), March 2010, pp. 75-83

[VCL10] Apache VCL, http://cwiki.apache.org/VCL/, last accessed March 2010.
[Vou08a] Mladen Vouk, Sam Averitt, Michael Bugaev, Andy Kurth, Aaron Peeler,

Andy Rindos*, Henry Shaffer, Eric Sills, Sarah Stein, Josh Thompson
“’Powered by VCL’ – Using Virtual Computing Laboratory (VCL)
Technology to Power Cloud Computing .” Proceedings of the 2nd
International Conference on Virtual Computing (ICVCI), 15-16 May, 2008,
RTP, NC, pp 1-10 (http://vcl.ncsu.edu/news/papers-publications/powered-vcl-
using-virtual-computing-laboratory-vcl)

[Vou08b] Mladen Vouk, “Cloud Computing – Issues, Research and Implementations,”
Journal of Computing and Information Technology, 16 (4), 2008, pp 235-246

CC/Vouk et al/FurhtBook/V4 20-Mar-10 23/23

[Vou09] Mladen Vouk, Andy Rindos, Sam Averitt, John Bass, Michael Bugaev, Aaron
Peeler, Henry Schaffer, Eric Sills, Sarah Stein, Josh Thompson, Matthew P.
Valenzisi, “Using VCL Technology to Implement Distributed Reconfigurable
Data Centers and Computational Services for Educational Institutions,” IBM
Journal of Research and Development, Vol. 53, No. 4, pp. 2:1-18, 2009

[Wal08] Walker, Edward. 2008. Benchmarking Amazon EC2 for high-performance
scientific computing. Usenix Magazine 33 no. 5
(http://www.usenix.org/publications/login/2008-10/openpdfs/walker.pdf).

