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Abstract.  High-Performance Computing (HPC) services can range from time on 
peta-flop supercomputers, to access to high-end tera-flop facilities running a 
variety of operating systems and applications, to mid-range and smaller 
computational clusters used for HPC application development, pilot runs and 
staging. What they all have in common is relative isolation - that is traditionally 
HPC facilities have tended to be isolated from the more general scientific 
computing operations. Advent of the cloud computing concept has changed that. 
Even the most avid supporters of HPC and Grid computing are beginning to 
admit that almost all loosely coupled HPC computing, and a lot of tightly coupled 
HPC computing, can be done in a cloud. In this article, we will discuss a very 
successful production-level architecture and policy framework for supporting 
HPC services within a more general cloud computing infrastructure. This 
integrated environment has been operating at NC State since fall 2004. It 
typically delivers over 7,200,000 HPC CPU hours per year to NC State faculty 
and students. In addition, we present and discuss operational data that show that 
integration of HPC and non-HPC services in a cloud can substantially reduce the 
cost of delivering cloud services (down to cents per CPU hour). 
 
 
1 - Introduction 
 
Figure 1. shows a snapshot of a Google trends analysis for keywords: Cloud Computing, 
High-Performance Computing and Grid Computing. Vertical axis shows the search 
volume and news reference volume. We see that the popularity of “Grid Computing” has 
been diminishing for the last six years, that of high-performance computing has been 
steady (but low), and that cloud computing did not really have any significant visibility 
until end of 2007. However, after about October 2007 when Google and IBM announced 
“cloud computing” research directions [Loh07] and IBM announced its cloud computing 
initiative [IBM07] the interest in the concept started rising and has not waned yet as 
witnessed by numerous articles, a growing number of conferences, and an increasing use 
of the term to describe old, existing and some new solutions and services. 
 
 “The concept of cloud computing has become a popular term to describe a flexible 
system that provides users with access to hardware, software, applications and services.  
Because there is no one generic user and the hardware, software, and services may be 
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grouped in various combinations, this cloud computing concept quickly fractures into 
many individualized descriptions and perspectives.  As a result, it is very difficult to 
agree on one common definition of cloud computing” [Dre09, see also McK09, Amr09, 
Vou09]. 
 
In the context of this chapter, we consider “cloud computing” to refer to a seamless 
component-based architecture that can deliver an integrated, orchestrated and rich suite of 
both loosely and tightly coupled on-demand information technology functions and 
services, significantly reduce overhead and total cost of ownership and services, and at 
the same time empower the end-user in terms of control. Some more obvious advantages 
of cloud computing are server consolidation, hardware abstraction via virtualization, 
better resource management and utilization, service reliability and availability, improved 
security and cost effectiveness, etc. 
 

The concept of cloud 
computing is changing 
the way we think of 
information technology 
(IT) infrastructure in 
businesses, education, 
research and 
government, and as a 
result there has been a 
rapid increase in the 
number and types of 
cloud computing systems 
that are being deployed.  

While for most part organizations are still debating [e.g., Arm09, Gol09] how this 
technology might be applied, some organizations, such as NC State University, have been 
providing cloud-based services to their students, faculty and staff with great success since 
2004 [Vou09, Dreh09,  Vouk08a,b, Ave07, Sea10].  
 
In many instances cloud computing tends to be equated to delivery of a single category of 
services, such as desktop services, or specific server functionalities, or specific 
applications or application environments. Where NC State’s cloud computing 
environment, called Virtual Computing Laboratory (VCL, http://vcl.ncsu.edu) differs 
from other cloud computing implementations (and interpretations) is that it offers 
capabilities that are very flexible and diverse ranging from Hardware-as-a-Service all the 
way to highly complex Cloud-as-a-Service. These capabilities can be combined and 
offered as individual and group IT services, including true High-Performance Computing 
(HPC) services. Our VCL-HPC service very successfully integrates HPC into the cloud 
computing paradigm by managing not only resource capabilities and capacity, but also 
resource topology, i.e., appropriate level of network/communication coupling among the 
resources.  
 

 
Figure 1. The rise of Cloud Computing 
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In the remainder of the chapter we describe NC State University (NC State or NCSU) 
cloud computing environment (Section 2), we describe its HPC environment and how it 
integrates into our cloud solution (Section 3), and we discuss performance and economics 
of the solution (Section 4). Summary is provided in Section 5. 
 
2. NC State University Computing Cloud Computing 
 
A cloud computing system should be designed around a service-oriented architecture 
(SOA) that can allocate resources on-demand in a location and device independent way, 
incorporate technical efficiency and scalability through appropriate level of centralization 
and sharing of cloud resource and control functions, and through explicit or implicit self-
provisioning of resources and services by users to reduce administration overhead 
[Vou09, Dre09]. The principal difference between “traditional” and cloud computing is 
in the level of control delegated to the user. For example, in a traditional environment 
control of resource use and management lies primarily with the service delivery site and 
provider, in a cloud environment this control is for most part transferred to users in the 
form of self-provisioning options and appropriate privileges. Similarly, other traditional 
IT operations such as operating system and environment specification and mode of access 
and prioritizations now become explicit user choices. While this can increase 
management efficiency and reduce provisioning costs, the initial base-line set-up of the 
cloud is much more complicated and requires much more sophisticated technological 
expertise, management and security.  In our experience, a flexible and versatile cloud 
environment needs to provide a range of differential services from Hardware-as-a-Service 
all the way to Cloud-as-a-Service and Security-as-a-Service. 
 
In the context of NC State’s VCL we distinguish 

••  HHaarrddwwaarree  aass  aa  SSeerrvviiccee  ((HHaaaaSS))  ––  OOnn--ddeemmaanndd  aacccceessss  ttoo  aa  ssppeecciiffiicc  ccoommppuuttaattiioonnaall,,  
ssttoorraaggee  aanndd  nneettwwoorrkkiinngg  pprroodduucctt((ss))  aanndd//oorr  eeqquuiippmmeenntt  ccoonnffiigguurraattiioonn  ppoossssiibbllyy  aatt  aa  
ppaarrttiiccuullaarr  ssiittee  

••  IInnffrraassttrruuccttuurree  aass  aa  sseerrvviiccee  ((IIaaaaSS))  --  OOnn--ddeemmaanndd  aacccceessss  ttoo  uusseerr  ssppeecciiffiieedd  hhaarrddwwaarree  
ccaappaabbiilliittiieess,,  ppeerrffoorrmmaannccee  aanndd  sseerrvviicceess  wwhhiicchh  mmaayy  rruunn  oonn  aa  vvaarriieettyy  ooff  hhaarrddwwaarree  
pprroodduuccttss    

••  PPllaattffoorrmm  aass  aa  sseerrvviiccee  ((PPaaaaSS))  --  OOnn--ddeemmaanndd  aacccceessss  ttoo  uusseerr  ssppeecciiffiieedd  ccoommbbiinnaattiioonn  
hhyyppeerrvviissoorrss  ((vviirrttuuaalliizzaattiioonnss)),,  ooppeerraattiinngg  ssyysstteemm  aanndd  mmiiddddlleewwaarree  tthhaatt  eennaabblleess  uusseerr  
rreeqquuiirreedd  aapppplliiccaattiioonnss  aanndd  sseerrvviicceess  rruunnnniinngg  oonn  eeiitthheerr  HHaaaaSS  aanndd//oorr  IIaaaaSS    

••  AApppplliiccaattiioonn  aass  aa  SSeerrvviiccee  ((AAaaaaSS))  --  OOnn--ddeemmaanndd  aacccceessss  ttoo  uusseerr  ssppeecciiffiieedd    
aapppplliiccaattiioonn((ss))  aanndd  ccoonntteenntt..  Software as a Service (SaaS) may encompass anything 
from PaaS through AaaS  

••  HHiigghheerr  lleevveell  sseerrvviicceess  --    AA  rraannggee  ooff  ccaappaabbiilliittiieess  ooff  aa  cclloouudd  ttoo  ooffffeerr  aa  ccoommppoossiittiioonn  
ooff    HHaaaaSS,,  IIaaaaSS,,  PPaaaaSS  aanndd  AAaaaaSS  wwiitthhiinn  aann  eennvveellooppee  ooff  ppaarrttiiccuullaarr  ppoolliicciieess,,  ssuucchh  aass  
sseeccuurriittyy  ppoolliicciieess  ––  ffoorr  eexxaammppllee  SSeeccuurriittyy--aass--aa--SSeerrvviiccee..  AAnnootthheerr  eexxaammppllee  aarree  
ccoommppoossiitteess  aanndd  aaggggrreeggaatteess  ooff  lloowweerr--lleevveell  sseerrvviiccee  ssuucchh  aass  aa  ““CClloouudd--aass--aa--SSeerrvviiccee””  
––  aa  sseerrvviiccee  tthhaatt  aalllloowwss  aa  uusseerr  ttoo  ddeeffiinnee  ssuubb--cclloouuddss  ((cclluusstteerrss  ooff  rreessoouurrcceess))  tthhaatt  tthhee  
uusseerr  ccoonnttrroollss  iinn  ffuullll..  
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All of the above services are at some level available to NC State VCL users with different 
privileges [Vou08, Vou09]. HaaS and IaaS are essential if one wishes to construct high-
performance  computing (HPC) service  with a particular topology, or to have the ability 
to deliver specific end-to-end quality of service, including application performance. We 
find that a carefully constructed cloud computing implementation that offers the basic 
services listed above can result in good technical performance and increased productivity 
regardless of whether the cloud is serving commercial or educational institutions.  
 
Virtual Computing Laboratory (VCL, http://vcl.ncsu.edu) is a high performance open-
source award-winning2 cloud computing technology initially conceived and protyped in 
2004 by NC State’s College of Engineering, Office of Information Technology, and 
Department of Computer Science. Since then, VCL development has rapidly progressed 
in collaboration with industry, higher education, and K-12 partners to the point that today 
it is a large scale, production-proven system which is emerging as a dominant force in the 
nascent and potentially huge open-source private-cloud market [Sae10, Sch10, Vou09]. 

0

500

1000

1500

2000

2500

3000

9/1/2004 9/1/2005 9/1/2006 9/1/2007 9/1/2008 9/1/2009

Number of VCL 
Reservations per day 
(excluding HPC reservations)

 Maximum Number of Concurrent VCL 
Reservations (excluding HPC reservations)

0

100

200

300

400

500

600

9/
1/

20
04

1/
1/

20
05

5/
1/

20
05

9/
1/

20
05

1/
1/

20
06

5/
1/

20
06

9/
1/

20
06

1/
1/

20
07

5/
1/

20
07

9/
1/

20
07

1/
1/

20
08

5/
1/

20
08

9/
1/

20
08

1/
1/

20
09

5/
1/

20
09

9/
1/

20
09

1/
1/

20
10

 
Figure 2.  VCL usage 

 
Campus use of VCL has expanded exponentially over the last five years (Figure 2). We 
now have over 30,000+ users and deliver over 100,000 reservations per semester through 
over 200 service environments, as well as over 7,200,000 HPC CPU hours annually. In-
state initiatives include individual UNC-System universities (e.g., ECU, NCCU, UNC-
CH, UNCG, WCU - technically all UNC System campuses which implement Shibboleth 
                                                 

2 2007 Computerworld Honors Program Laureate Medal (CHPLM) for Virtual Computing Laboratory 
(VCL), 2009 CHPLM for NC State University Cloud Computing Services 
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authentication have access to VCL), the NC Community College System (production and 
pilots in 15 colleges: Beaufort County, Brunswick, Cape Fear, Catawba Valley, Central 
Piedmont, Cleveland, Edgecombe, Fayetteville Tech, Forsyth Tech, Guilford Tech, Nash, 
Sandhills, Surry, Wake Tech), and several K-12 pilots and STEM initiatives.  

 

Regional, national and international interest in VCL has also increased over the past year 
since VCL has been available through the Apache Software Foundation [VCL10]. Pilots 
are in progress all over the world. George Mason University (GMU) has become a VCL 
leader and innovator for the Virginia VCL Consortium, recently winning the 2009 
Virginia Governor’s award for technology innovation. There are VCL initiatives in a 
number of other states. For example Southern University Baton Rouge, and California 
State University East Bay are in the process of implementing VCL-based clouds. 

 

 
Figure 3. NC State HPC usage over years. 

 

VCL’s typical base infrastructure (preferred but not required) is an HPC blade system. 
The reason for that will become apparent shortly. System’s capability can be delivered as 
a whole or “sliced and diced” dynamically into smaller units/clusters of capability 
appropriately “packaged” to meet a set of highly individualized requirements – services 
range from single desktops, to groups of “seats” in classrooms, to servers and server 
farms, to research clusters and sub-clouds, to true high-performance computing – from 
hardware, infrastructure and platforms as a service, to different levels of software and 
application as a service.  

 
Figure 2 shows the number of VCL reservations made per day by users over last five 
years. This includes reservations made by individual students for Linux or Windows XP 
desktops along with some specific applications, but also reservations that researchers may 
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make to construct their own computational sub-clouds, or specialized resource 
aggregations – including high-performing ones. Figure 2 inset is the number of such 
concurrent reservations per day. What is not included in the counts shown in these figures 
are the reservations that deliver standard queue-based VCL HPC services. We therefore 
call these service non-HPC services (although self-constructed high-performance sub-
clouds are still in this category of services). NC State’s VCL currently has about 2000 
blades distributed over three production data centers and two research and evaluation data 
centers. About one third of the VCL blades are in this service delivery mode (the one we 
call non-HPC mode), some of the remaining blades are in our experimental test-beds and 
in maintenance mode, and the rest (about 600 to 800) operate as part of the VCL-HPC 
(http://hpc.ncsu.edu) and are controlled through a number of LSF3 queues.  
 
There three things to note with reference to Figure 2. One is that the usage of VCL, and 
by implication of the NC State Cloud Computing environment, has been growing 
steadily. The second is that the resource capacity (virtual or bare-machine loaded) kept on 
the non-HPC side at any one time is proportional to the needed concurrency. The third 
thing to note is that non-HPC usage has clear gaps. VCL reservations tend to go down 
during the night, and during student vacations and holidays. On the other hand, if one 
looks at the NC State demand for HPC cycles we see that it has been growing (Figure 3), 
but we also see that demand is much less subject to seasonal variations (Figure 4).  
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Figure 4. NC State HPC usage over March 2008 – February 2009. 

 
An in depth analysis of the economics of cloud computing [Dre09] shows one of the key 
factors is average utilization level of the resources. Any of our resources that are in VCL-
HPC mode are fully utilized (with job backlog queues as long as two to three times the 
                                                 

3 http://www.platform.com/Products 



CC/Vouk et al/FurhtBook/V4 20-Mar-10 7/23 

number of jobs running on the clusters). In 2009, even with maintenance down time, 
VCL-HPC recorded over 7.2 million HPC CPU-hours – in the 95+% utilization range. 
On the other hand, while in the same period desktop augmentation and similar non-HPC 
usage recorded over 180,000 reservations, it also recorded only about 490,000 CPU-
hours – about 10 to 15% utilization.  
 
To satisfy high demand for HPC, allow for peak non-HPC use, and generally balance the 
workloads, VCL was designed so that during the times when augmentation (non-HPC) 
use is lower, such as during summer holidays, VCL can automatically move the resources 
into its HPC mode where they are readily used. When there is again need for non-HPC 
use these resources are, again automatically, moved back in that use pool. As a result, the 
combined HPC/non-HPC resource usage runs at about 70% level. Obviously a cost-
effective and desirable strategy, but also one that requires an active collaboration of the 
underlying (cloud) components. VCL offers that capability. 
 
3. Integrating High-Performance Computing 
 
So how do we do that? The first level architecture of VCL is shown in Figure 5. A user 
accesses VCL through a web interface to select from a menu a combination of 
applications, operating systems and services she needs. If a specific combination is not 
already available as an “image” – either a bare-metal or a virtual machine service 
environment consisting of the operating system (with possibly a hypervisor), middleware, 
application stack along with security management, and access and storage tools and 
agents -, authorized user can construct one’s own from the VCL library components. This 
customization capability is very much in the spirit of what services engineering and 
management is all about. VCL manager software then maps that request onto available 
software application images and available hardware resources and schedules it for either 
immediate use (on demand) or for later use.  VCL manager software was developed by 
NCSU using a combination of off-the-shelf products (such as IBM xCAT4) and in-house 
developed open-source “glue” software (about 50,000+ lines of code – now available 
through Apache [VCL10]).  
 
All components of the VCL can be (and are) distributed. A site installation will typically 
have one resource management node (Node Manager in the figure) for about 100 
physical blades. This ensures adequate image load times as well as resource fail-over 
redundancy. In the context of our architecture we distinguish undifferentiated resources – 
resources that are completely malleable  and can be loaded with any service environment 
designed for that platform, and differentiated resources – resources which can be used “as 
is” only without any modifications beyond what the user access permissions allow. For 
example, during the night VCL users are allowed to use NC State computing lab Linux 
machines remotely, but they are not allowed to modify their images since lab machines 
are considered a differentiated resource. In contrast, when they make a “standard” VCL 
Linux or Windows reservation, students get full root/administrator privileges and can 
modify the image as much as they wish. However, once they are finished (typically our 

                                                 
4 http://xcat.sourceforge.net/ 
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student reservations last 1 to 2 hours) that resource is “wiped” clean and a fresh image is 
reloaded. Students save their data either onto our network-attached corporate storage or 
on their own laptops. 
 
In this fashion VCL provides the ability to deliver scheduled and on-demand, virtualized 
and “bare-metal” infrastructures, and differentiated and undifferentiated services 
consistent with established NCSU policy and security requirements which may vary by 
user and/or application.  VCL dynamically constructs and deconstructs computing 
environments thereby enabling near continuous use of resources. These environments, 
consisting of intelligent software-stack image(s) and metadata specifications for building 
the environment, can be created, modified, and transferred as policy and authorization 
permit. VCL security capabilities enable wide latitude in the assignment of these 
permissions to faculty, staff, and students.  

 

VCL code version 2.x has been available for about a year as part of the Apache offering 
[VCL10].  Version 2.x of VCL represents a major rewrite of the base code and moves 
VCL to a modular software framework in which functional elements can be modified, 
replaced or optioned without attendant code changes elsewhere. It greatly empowers both 
community contribution and non disruptive customization. In addition, its already 
excellent security profile is being constantly enhanced through a federally funded Secure 
Open Source Initiative (http://sosi.ncsu.edu). 
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Figure 5. Top level VCL architecture [Vou09]. 
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VCL environments are stored in on-line repositories, providing a low-cost high-volume 
retention capability that not only supports extreme scaling of access and reuse but also 
enables the breath of scale and scope required for intelligent real-time sequencing of 
multi-stage workflows. The benefit of this advance varies depending on the limitations of 
use imposed by software licensing agreements. Absent these limitations VCL empowers 
a new paradigm of build once well and pervasively reuse. In fact, one of the special 
characteristics of VCL is that its provenance and meta-data collection is sufficiently fine-
grained and thorough that it allow very detailed metering of the software usage – by user, 
by department, by duration, by location, etc. That in itself offers an opportunity to 
implement a metering-based license management model that, given appropriate vendor 
agreements, allows porting and exchange of service environments across/among clouds. 

 

 
Figure 6. VCL architecture – internal details (http://cwiki.apache.org/VCL/vcl-architecture.html) 

 

3.1 Internal Structure 

Figure 6 shows more of the internals of the VCL architecture. At the heart of the solution 
are a) a user interface (including a GUI and a remote service API), b) an authorization, 
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provenance and service tracking data-base, c) a service environment “image” library, and 
d) a service environment management and provisioning engine.  

Provisioning engine deploys service environments on demand either at the physical layer 
(bare-machine loads are typically done using xCAT, but other loaders can be used, 
including IBM Director), or at a virtual layer (e.g., VMWare, Xen, KVM “images”), or 
through a specially defined mechanism, e.g., a new service interface, a remote service, a 
service API to another cloud. Deployed service environments can consist of a single bare-
metal image or a virtual software stack “image,” such as a Windows or Linux desktop 
loaded onto undifferentiated resources, or it can consist of a collection of images 
(including their interconnection topology) loaded onto a set of (possibly) hybrid 
resources, or it can consist of set of HPC images loaded onto VCL resources being 
moved into differentiated HPC mode, and so on. In the NC State implementation, 
physical server manager loads images to local disk via kick-start (only Linux 
environments), copies images to local disk (Linux and Windows), or loads images to 
local memory (stateless). For loading of virtual machine images, VCL leverages 
command-line management tools that come with hypervisors. 

0 50 100 150
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Permanent

TB

HPC
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Figure 7. NC State (baseline VCL-HPC services) and Partner storage. 

 
Storage. Where information is stored in the cloud is very important. Secure image 
storage is part of the core VCL architecture, however end-user storage is more flexible. It 
can range from storage on the physical VCL resource, to secure NAS or SAN accessed 
via the storage access utilities on the image itself, to storage on the end-user access 
station (e.g., laptop storage or memory key storage), etc. At NC State most of our images 
are equipped with agents that can connect in a secure way to our corporate storage (AFS 
based) and thus access backed-up storage space that students and faculty are assigned, 
and tools (such as visual sftp) that can access other on-line storage. Our HPC images are 
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constructed so that they all have access to HPC scratch and permanent storage via NFS. 
Figure 7 illustrates the current extent of that storage. It is interesting to comment on the 
part of the storage marked as “Partners”. 
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Figure 8. NC State VCL-HPC distributed memory computing resources (HPC), Partner 

computational resources and resources acquired through gifts and joint projects with IBM 
and Intel. 

Partner’s Program. NC State researchers have the option of purchasing VCL-HPC 
compatible hardware and any specialized or discipline-specific software licenses. NC 
State Office of Information Technology (OIT) provides space in an appropriate and 
secure operating environment, all necessary infrastructure (rack, chassis, power, cooling, 
networking, etc.), and the system administration and server support.  
In return for infrastructure and services provided by OIT, when partner compute 
resources are not being used by the partnerm they are available to the general NC State 
HPC user community. This program has been working very well for us as well as for our 
researchers. As can be seen from Figure 7 and Figure 8, a large fraction of our HPC 
resources are partner resources.  

 

3.2 Access 

As part of our cloud HPC services we have both distributed memory (typically IBM 
BladeCenter clusters) and shared memory computing resources (typically 4-socket quad 
core Opteron servers with at least 2 GB of memory per core). We also provide items such 
as resource manager/scheduler, compilers, debuggers, application software, user training 
and support, consulting, code porting and optimization help, algorithm development 
support, and general collaboration. There are two ways of reaching those resources – 
through VCL-based reservation of one’s own login node, or through the use of a 
communal login node. Personal login nodes make sense if end-users wish to monitor their 
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runs in real time. One submits jobs in the usual fashion using job queues, in our case 
controlled via LSF. Queue priority depends on the resources requested and partnership 
privileges. Partners get absolute and immediate priority on the resources they own (or an 
equivalent set of resources), and they get additional priority towards adding common 
resources beyond what they own. 

Standard. All VCL-HPC resources run the same HPC service environment (typically 
RedHat-based), and have access to a common library of applications and middleware. 
However, users can add their own applications to the computational resources they are 
given access to. All our standard VCL-HPC nodes are bare-metal loaded for sole use on 
VCL blades. They are managed as differentiated resources, i.e., users have full control 
over them, but they cannot re-load them or change them (except for the software in the 
user’s home directories), and they must be used with the NC State maintained scheduler 
and file system. Most of our HPC nodes operate in this mode and as such they are very 
similar to any other HPC cluster. Nodes are tightly coupled with 1Gbps or better 
interconnects. A user with sufficient privileges can select appropriate run queues that 
then map the jobs onto the same BladeCenter chassis or same rack if that is desired, or 
onto low latency interconnects (e.g., Infiniband interconnected nodes). 

Special needs. If a user does not wish to conform to the “standard” NC State HPC 
environment, a user has the option of requesting the VCL cloud to give him/her access to 
a customized cluster. In order to do that, the user needs to have “image creation” 
privileges [Vou08, Vouk09], and the user needs to take ownership of that sub-cluster or 
sub-cloud service environment. First the user creates a “child image” – a data node or 
computational node image - running operating system of their choice as well as tools that 
allow communications with the cluster controller and access to the data exchange bus of 
their choice, e.g., NFS-based delivery of directories and files. The user saves that image.  

 

Then the user creates a “parent image” in the VCL-cloud aggregation mode. Again the 
user picks the base-line operating system, and adds to it a cluster controller, such as an 
HPC scheduler of choice, e.g., PBS, or a cloud controller such as Hadoop’s controller, or 
similar. Now the user attaches to this any number of “child images”. Typically child 
images are of the same type, e.g., a computational HPC Linux image, if the user wishes 
to operate a homogenous cluster. But, the user can also attach different child images, say 
20 computational Linux images, one Linux-based data-base image, one Windows web-
services image, and so on. Then the user saves the “parent image”.  From now on, when 
the user loads the “parent or control image” all the children are also loaded into virtual or 
bare-machine resource slots, depending on how the child-images were defined.  All 
Linux-based child images that are part of such a VCL aggregate know about each others 
IP numbers through a VCL placed /etc file. “Parent image” control software needs to 
know how to access that information and communicate with the children.  

 

Default custom topology is random and loosely coupled, i.e., VCL maps the “parent” or 
anchor image, and its children onto resources on which the images can run, but it does 
not pay attention to inter-node latency or topology. If tight, low latency, inter-image 
communication coupling is desired, and the image owner has appropriate privileges, 
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mapping of the images onto nodes that conform to a particular topology or interconnect 
latency is possible.  

 

3.3 Computational/Data Node Network 
There are some important differences between the “standard” queue-based batch-mode 
VCL-HPC offering and a user-constructed user-owned cloud or HPC cluster. Following 
[Vou09]:  

 

 

“One of the key features of the undifferentiated VCL resources is their networking set-up. 
It allows for secure dynamic reconfiguration, loading of images, and for isolation of 
individual images and groups of images. Every undifferentiated resource is required to 
have at least two networking interfaces. One on a private network, and the other one on 
either public or private network depending on the mode in which the resource operates. 
Also, for full functionality, undifferentiated resources need to have a way of managing 
the hardware state through an external channel –for example through the BladeCenterTM 
chassis Management Module.” 

“Figure 9 illustrates the configuration where seats/services are assigned individually or in 
synchronized groups, or when we want to assign/construct an end-user image aggregate 
or environment where every node in the environment can be accessed from a public 
network (e.g., an image of a web server, plus an image of a data-base, plus an image of 
an application, or a cluster of relatively independent nodes).  Typically eth0 interface of a 
blade is connected to a private network (10.1 subnet in the example) which is used to 

 
Figure 9. Undifferentiated resource node network configuration. 
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load images. Out-of-band management of the blades (e.g., power recycling) is effected 
through the management network (172.30.1 in the example) connected to the MM 
interface. The public network is typically connected to eth1 interface.  The VCL node 
manager (which could be one of the blades in the cluster, or an external computer) at the 
VCL site has access to all three links, that is it needs to have three network interfaces. If 
it is a stand-alone server, this means three network interface cards.  If management node 
is a blade, the third interface is virtual and possibly on a separate VLAN.” 

“It is worth noting that the external (public) interface is on a VLAN to provide isolation 
(e.g., VLAN 3 for the public interface in Figure 9). This isolation can take several levels. 
One is just to separate resources, another one is to individually isolate each end-user 
within the group by giving each individual resource or group of resources a separate 
VLAN – and in fact end-to-end isolation through addition of VPN channels.  This 
isolation can be effected for both real and virtual hardware resources, but the isolation of 
physical hardware may require extra external switching and routing equipment. In highly 
secure installations it is also recommended that both the private network (eth0) and the 
MM link be on separate VLANs. Currently, one node manager can effectively manage 
about 100 blades operating in the non-HPC mode.” 

 

 Figure 10. Network set-up for a “standard” VCL-HPC node. 
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“The second configuration (Figure 10) is used when the blades are assigned to a tightly 
coupled VCL-HPC cluster environment, or to a large overlay (virtual) “cloud” that has 
relatively centralized public access and computational management. In this case the node 
manager is still connected to all three networks – public, management and image-loading 
and preparation private network,  but now eth1 is connected (through VLAN 
manipulation, VLAN 5 in Figure 10) to what has now become an Message Passing 
Interface (MPI) network switch. This network now carries intra-cluster communications 
needed to effect tightly couple computing tasks usually given to an HPC cloud. Switching 
between non-HPC mode and this HPC mode takes place electronically, through VLAN 
manipulation and table entries; the actual physical set-up does not change. We use two 
different VLANs to eth1 to separate Public Network (external) access to individual 
blades when those are in the Individual-Seat mode (VLAN 3 in Figure 9), from the MPI 
communications network to the same blade when it is in the HPC mode (VLAN 5 in 
Figure 10).” 

3.4 Build Your Own 
VCL code is available from apache.org [VCL10]. While the current version of VCL can 
operate on any X86 hardware, we have been using primarily IBM’s BladeCenters 
because of their reliability, power savings, ease of maintenance, and compact footprint.  
 
When building a “starter” non-HPC version of VCL one could limit the installation to 
virtual environments only, i.e., all resources operate as VMWare servers, and VCL 
controls and provisions only virtual images using the virtual version of the VCL non-
HPC configuration in Figure 9. This is quick and works well, but is probably less 
appealing for those who wish to have the HPC option. One reason is performance. HPC 
community is still wary of having true HPC computations run on virtualized resources. 
Furthermore, some of the large memory and CPU footprint engineering applications also 
may not behave best in a virtualized environment. In those cases, installation of VCL’s 
bare-machine load capabilities (via XCat) is recommended. 
 
A small starter blade-based configuration is illustrated in Figure 11. Hardware can be 
housed in a single BladeCenter chassis. Two Ethernet switch modules are required to 
accommodate the public and private networks. If more than 7 blades are used, it is 
necessary to also have additional internal power supplies. Chassis network module is 
needed to connect the management node to storage – for example via fiber channel 
(optical pass through) or via iSCSI (copper pass through).  A single chassis will house 
from 2 to 14 blades. At least one blade needs to be configured to attach to external 
storage for service environment image library function. That same blade could be 
designated to house the VCL scheduler, database and management daemon, while the rest 
of the blades would then be delivering VCL services. Storage is typically external. 
Several terabytes of storage are needed for the image repository, and additional storage 
needs to be network-accessible for support of HPC activities. Figures 12 and 13 illustrate 
how the installation can be scaled and what is needed to allow it to operate in both the 
HPC mode and in non-HPC cloud mode. 
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Figure 11. A small “starter” VCL cloud installation. 
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Figure 12. Scaling VCL Cloud. 



CC/Vouk et al/FurhtBook/V4 20-Mar-10 17/23 

 
How do we scale? Figures 12 and 13 show a rack of BladeCenter chasses. Additional 
racks are interconnected in a similar way. The differences between the two images are 
logical, i.e., switching from one mode to another is done electronically – in software – by 
VCL depending on the image characteristics. One can mix non-HPC and HPC 
configurations at the granularity of chasses. An important thing to note is that in order to 
maintain good performance characteristics, we do not want to daisy-chain internal chassis 
switches. Instead, we provide an external switch, such as Cisco 6509e (or equivalent from 
any vendor) that is used to interconnect different chasses on three separate networks and 
VLANs. In non-HPC mode, one network provides public access, one network is used for 
managing image loads and for accessing back-end image storage, and the third one is for 
direct management of the hardware (e.g., power on/off, reboot …). In HPC mode, the 
public network becomes MPI network, and special login nodes are used to access the 
cluster from outside. While we can use one VCL web-server and data-base for thousands 
of blades, with references to Figures 5 and 6, in a scalable environment we need one 
resource management node for every 100 or so computational blades to insure good 
image reservation response times – especially when image clusters are being loaded. We 
also need physical connection(s) to a storage array – we typically run a shared file system 
(such as GFS5 or GPFS6) for multiple management nodes at one site. 
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Figure 13. Scalable HPC Configuration 
 
When VCL provides distributed and shared memory compute service for HPC, this is 
done through tightly coupled aggregation of computational resources with appropriate 
                                                 

5 http://sources.redhat.com/cluster/gfs/ 
6 http://www-03.ibm.com/systems/software/gpfs/index.html 
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CPU, memory and interconnect capacity. In our case, distributed memory compute 
services take the form of a logical Linux cluster of different sizes with Gigabit or 10 
Gigabit Ethernet interconnects. A subset of our nodes have additional Myrinet or 
InfiniBand low-latency interconnects. Nodes which can be allocated for shared memory 
computations have large number of cores and plenty of memory.  
 
To operate VCL in HPC mode, we dedicate one private network to message passing 
(Figure 10) – for that we use the blade network interface that would have been used for 
public user access in VCL standard mode (Figure 9). Also on a HPC BladeCenter chassis 
we configure two VLANs in one switch module, one for public Internent and for message 
passing interface. VCL management node makes those changes automatically based on 
image metadata. An HPC service environment image “knows” through its meta-data that 
it requires VCL-HPC network configuration (Figure 10) and those actions are initiated 
before it is loaded. VCL-HPC environment consists of one or more login nodes, and any 
number of compute nodes. LSF7 resource manager is part of a login node.  
 
Both login nodes and compute nodes are given permanent reservations (until canceled) – 
as opposed to time-limited resource reservations that typically occur on the non-HPC 
side. An HPC compute node image consists of a minimal Linux with LSF client that, 
when it becomes available, automatically registers with the LSF manager. All HPC 
compute images also automatically connect to user home directory and to shared scratch 
storage for use during computations. An HPC login node image contains full Linux and 
LSF server. There are usually two to three login nodes through which all users access 
HPC facility to launch their jobs. However it is also possible to reserve, using VCL web 
page, a “personal” login node on a temporary basis. On these “personal” nodes users can 
run heavy duty visualization and analytics without impacting other users. All login nodes 
have access to both HPC scratch storage and user HPC home directories (with 
appropriate permissions), as well as long-term HPC data storage. While compute nodes 
conform to configuration in Figure 10 – two private networks, one for MPI traffic, the 
other for image load and management, login nodes conform to Figure 9 topology, and 
have a public interface to allow access from the outside, and a private side to access and 
control compute nodes. 
 
If we wish to add low latency interconnects for HPC workloads, we need to make 
additional changes in chasses and servers that will be used for that. Chassis network 
modules for low-latency interconnects (Myrinet, InfiniBand) need an optical pass-
through and an appropriate external switch is needed (e.g., InfiniBand). Blade servers 
need to be equipped with a low-latency interconnect daughtercards. 
 
4. Performance and Cost 
 
VCL delivers both classroom, lab and research IT services for faculty and students.  On 
the one hand, if users are to rely on VCL, then the VCL system must have sufficient 
available resources to satisfy the peak demand loads.  On the other hand, if VCL is to 
                                                 

7 http://www.platform.com/Products 
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operate cost effectively it is essential that it is not over provisioned to the point where the 
system is totally uneconomical to deploy.  In order to provide VCL capabilities to users 
across widely varying demand loads, NC State decided to make a capital investment to 
assure that its “on-demand” level of service is available when needed.  The user demand 
for these computing services is governed by the academic calendar of the university, and 
user expectations are that the availability of the services exceeds 99%. VCL meets that.  
 
One way of assuring this high level of user availability, i.e., servicing of peak loads – see 
Figure 2  – is for the university to maintain a pool of equipment in standby or idle mode, 
for long periods of time.  The consequence of this policy however would be an overall 
low average utilization of the resources.  This is an expensive and uneconomical total 
cost of ownership option for the university. Therefore, one of the key VCL design 
considerations was sharing of HPC and non-HPC resources. In a research university, such 
as NC State, HPC is a very useful and needed workload. Because HPC jobs are primarily 
batch jobs, HPC can act as an excellent “filler” load for idle computational cycles thereby 
providing an option to markedly decrease the total cost of ownership for both systems.   
 
An analysis of the NC State HPC usage pattern shows that researchers who actively use 
HPC computational systems, do so year round and do not have their computational 
workloads strongly fluctuating with the academic calendar.  Because HPC jobs usually 
have large requirements for computational cycles, they are an excellent resource 
utilization backfill, provided that the cloud can dynamically transfer resources between 
single-“seat” and HPC use modes. Furthermore, it turns out that the demand for HPC 
cycles increases during holidays, and when classes are not in session, since then both 
faculty and graduate students seem have more time to pursue computational work. In NC 
State’s case, co-location of complementary computational workloads – on-demand 
desktop augmentation and HCP computations - results in a higher and more consistent 
utilization and in overall savings.  
 
In this context, one has to understand that although for most part HPC operates in “batch” 
mode, HPC requests are demanding as those of “on-demand” users, and rightly so. They 
expect their clusters to have very low interconnect latency, sufficient memory, and the 
latest computational equipment. Therefore, running HPC on virtualized resources is not 
really an option yet. Ability to bare-machine load HPC images is essential, as is the 
ability to map onto an appropriate interconnect topology. This need has recently been 
confirmed through a detailed comparison of NAS Parallel Benchmarks run on Amazon’s 
EC2 cloud and NCSA clusters. Results showed wide variations in performance [Wal08].  
While the specific results depended on the particular application and the cloud computing 
option used, the general lesson learned was that one needs to have not only control over 
what one is running on (virtual or real machines), but also over the interconnect latency 
among the cluster nodes.  VCL was designed to allow sharing of resources while 
retaining full performance capability for the mode it operates in. 
 
The VCL operational statistics over the past several years strongly support this design 
choice and suggest that by building a coherent integrated campus IT layer for faculty and 
student academic and research computational needs allows the institution flexibility in 
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servicing both of these university functions.  It also allows the educational institution 
itself to maximize the return on their capital investment in the IT equipment and facilities 
and decrease the total cost of ownership. 
 
IT staff supporting VCL see advantages as well because the systems is scalable and 
serviceable with fewer customization requests and less personnel (NC State uses 2 FTEs 
to maintain 2000 blade system).  Because the VCL hardware may be remotely located 
outside the classroom or laboratory, there is also better physical security of the hardware 
and a more organized program for computer security of the systems. 
 
Commercial? Commercial cloud computing firms are beginning to venture into the 
educational and research space using the pay-per-use model. Examples are Amazon EC2 
services, and more recently Microsoft’s Azure8, but none of them, in our opinion, 
currently offer a viable integration of high-end HPC services into their clouds [Dre10].  
 
For example, “Amazon Web Services has positioned their EC29 cloud offering in a way 
that is strongly focused on marketing rental of physical hardware, storage and network 
components.  Although Amazon’s EC2 enables users to acquire on-demand compute 
resources, usually in the form of virtual machines, the user must configure this hardware 
into a working cluster at deployment time, including loading and linking the appropriate 
applications.  Using the Amazon web service users can create and store an image 
containing their applications, libraries, data and associated configuration settings or load 
pre-configured template images from an image library.  Amazon implements "availability 
zones" to allow users some degree of control over instance placement in the cloud. 
Specifically, EC2 users can choose to host images in different availability zones if they 
wish to try and ensure independent execution of codes and protection from a global 
failure in case of difficulties with their loaded image.  They also have choices when to 
run their images, the quantity of servers to select and how to store their data.  Amazon 
bills customers on a pay-as-you-go basis for the time rented on each component of their 
cloud infrastructure.”  
 
Open-Source? There are a number of possible open-source solutions. Very few, if any, 
except for VCL offer the full HaaS to CaaS set of service. One example is Eucalyptus10. 
Eucalyptus has an interface that is compatible with Amazon Web Services cloud 
computing but treats availability zones somewhat differently. With Eucalyptus, each 
availability zone corresponds to a separate cluster within the Eucalyptus cloud.  Under 
Eucalyptus, each availability zone is restricted to a single "machine" (e.g., cluster) where 
at Amazon, the zones are much broader. 
 

                                                 
8 http://www.microsoft.com/azure/windowsazure.mspx 
9 http://aws.amazon.com/ec2/ 
10 http://www.eucalyptus.com/ 
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5. Summary 
 
High-Performance Computing (HPC) services can range from time on peta-flop 
supercomputers, to access to high-end tera-flop facilities running a variety of operating 
systems and applications, to mid-range and smaller computational clusters used for HPC 
application development, pilot runs and staging. What they all have in common is relative 
isolation - that is traditionally HPC facilities have tended to be isolated from the more 
general scientific computing operations. Advent of the cloud computing concept has 
changed that. Even the most avid supporters of HPC and Grid computing are beginning 
to admit that almost all loosely coupled HPC computing, and a lot of tightly coupled HPC 
computing, can be done in a cloud. In this article, we have discussed a very successful 
production-level architecture and policy framework for supporting HPC services within a 
more general cloud computing infrastructure. This integrated environment, called VCL, 
has been operating at NC State since fall 2004. It typically delivers over 7,200,000 HPC 
CPU hours per year to NC State faculty and students, and about 100,000 non-HPC 
desktop-type reservations per semester. We have presented and discussed operational 
data that show that integration of HPC and non-HPC services in a cloud can substantially 
reduce the cost of delivering cloud services. 
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