
Vertical Load Distribution for Cloud Computing
via Multiple Implemention Options

Thomas Phan and Wen-Syan Li

Abstract Cloud computing looks to deliver software as a provisioned service to
end users, but the underlying infrastructure must be sufficiently scalable and robust.
In our work, we focus on large-scale enterprise cloud systems and examine how
enterprises may use a service-oriented architecture (SOA)to provide a streamlined
interface to their business processes. To scale up the business processes, each SOA
tier usually deploys multiple servers for load distribution and fault tolerance, a sce-
nario which we term horizontal load distribution. One limitation of this approach is
that load cannot be distributed further when all servers in the same tier are loaded. In
complex multi-tiered SOA systems, a single business process may actually be im-
plemented by multiple different computation pathways among the tiers, each with
different components, in order to provide resilience and scalability. Such multiple
implementation options gives opportunities for vertical load distribution across tiers.
In this chapter, we look at a novel request routing frameworkfor SOA-based enter-
prise computing with multiple implementation options thattakes into account the
options of both horizontal and vertical load distribution.

1 Introduction

Cloud computing looks to have computation and data storage moved away from
the end user and onto servers located in data centers, thereby relieving users of the
burdens of application provisioning and management [7, 2].Software can then be
thought of as purely a service that is delivered and consumedover the Internet, of-
fering users the flexibility to choose applications on-demand and allowing providers
to scale out their capacity accordingly.

Thomas Phan
Microsoft Corporation, USA, e-mail:thomas.phan@acm.org

Wen-Syan Li
SAP Technology Lab, China, e-mail:wen-syan.li@sap.com

1

2 Thomas Phan and Wen-Syan Li

Fig. 1 Horizontal load distribution: load is distributed across aserver pool within the same tier.

As rosy as this picture seems, the underlying server-side infrastructure must be
sufficiently robust, feature-rich, and scalable to facilitate cloud computing. In this
chapter we focus on large-scale enterprise cloud systems and examine how issues
of scalable provisioning can be met using a novel load distribution system.

In enterprise cloud systems, a service-oriented architecture (SOA) can be used to
provide a streamlined interface to the underlying businessprocesses being offered
through the cloud. Such an SOA may act as a programmatic front-end to a variety of
building-block components distinguished as individual services and their supporting
servers (e.g. [8]). Incoming requests to the service provided by this composite SOA
must be routed to the correct components and their respective servers, and such
routing must be scalable to support a large number of requests.

In order to scale up the business processes, each tier in the system usually de-
ploys multiple servers for load distribution and fault tolerance. Such load distribu-
tion across multiple servers within the same tier can be viewed ashorizontal load
distribution, as shown in Figure 1. One limitation of horizontal load distribution is
that load cannot be further distributed when all servers in the given tier are loaded
as a result of mis-configured infrastructures – where too many servers are deployed
at one tier while too few servers are deployed at another tier.

Vertical Load Distribution for Cloud Computing via Multiple Implemention Options 3

Fig. 2 Vertical load distribution: load can be spread across multiple implementations of the same
composite service. This figure illustrates three differentimplementations of the same service that
was shown in Figure 1.

An important observation is that in complex multi-tiered SOA systems, a single
business process can actually be implemented by multiple different computation
pathways through the tiers (where each pathway may have different components) in
order to provide resiliency and scalability. Such SOA-based enterprise computing
with multiple implementation options gives opportunitiesfor vertical load distribu-
tion across tiers.

Although there exists a large body of research and industry work focused on
request provisioning by balancing load across the servers of one service [5, 17],
there has been little work on balancing load acrossmultiple implementations of a
composite service, where each service can be implemented via pathways through
different service types.

A composite service can be represented as multiple tiers of component invoca-
tions in an SOA-based IT infrastructure. In such a system, wedifferentiatehori-
zontal load distribution, where load can be spread across multipleservers for one
service component, fromvertical load distribution, where load can be spread across
multiple implementations of a given service. The example inFigure 2 illustrates
these terms. Here a composite online analytic task can be represented as a call to
a Web and Application Server (WAS) to perform certain pre-processing, followed
by a call from the WAS to a database server (DB) to fetch required data set, af-

4 Thomas Phan and Wen-Syan Li

ter which the WAS forwards the data set to a dedicated analytic server (AS) for
computationally-expensive data mining tasks.

This composite task can have multiple implementations in a modern IT data cen-
ter. An alternative implementation may invoke a stored procedure on the database
to perform data mining instead of having the dedicated analytic server perform this
task. This alternative implementation providesvertical load distribution by allow-
ing the job scheduler to select the WAS-and-DB implementation when the analytic
server is not available or heavily loaded. Multiple implementations are desirable for
the purpose of fault tolerance and high flexibility for load balancing. Furthermore,
it is also desirable for a server to be capable of carrying outmultiple instances of
the same task for the same reasons.

Reusability is one of the key goals of the SOA approach. Due tothe high reusabil-
ity of application components, it is possible to define a complex workflow in multi-
ple ways. However, it is hard to judge in advance which one is the best implementa-
tion, since in reality the results depend on the runtime environment (e.g. what other
service requests are being processed at the same time). We believe that having mul-
tiple implementations provides fault tolerance and scalability, in particular when
dealing with diverse runtime conditions and missed configured infrastructures. In
this respect, an SOA plays an important role in enabling the feasibility and applica-
bility of multiple implementations.

In this chapter we propose a framework for request-routing and load balancing
horizontally and verticallyin SOA-based enterprise cloud computing infrastruc-
tures. We show that a stochastic search algorithm is appropriate to explore a very
large solution space.

In our experiments, we show that our algorithm and methodology scale well up
to a large scale system configuration comprising up to 1000 workflow requests to a
complex composite web services with multiple implementations. We also show that
our approach that considers bothhorizontal and verticalload distribution is effective
in dealing with a misconfigured infrastructure (i.e. where there are too many servers
in one tier and too few servers in another tier).

The key contributions of this paper are the following:

• We identify the need for QoS-aware scheduling in workloads that consist of com-
posite web services. Our problem space lies in the relationship between con-
sumers, service types, implementation options, and service providers.

• We provide a framework for handling bothhorizontal and verticalload distribu-
tion.

• We provide a reference implementation of a search algorithmthat is able to pro-
duce optimal (or near-optimal) schedules based on a geneticsearch heuristic [12].

The rest of this chapter is organized as follows. In Section 2, we describe the
system architecture and terminology used in this paper. In Section 3, we describe
how we model the problem and our algorithms for scheduling load distribution for
composite web services. In Section 4 we show experimental results, and in Section
5 we discuss related work. We conclude the paper in Section 6.

Vertical Load Distribution for Cloud Computing via Multiple Implemention Options 5

SLA for S1, S3, S5 by M1

Composite Service (CS)

S1

S7

S2

S4 S3

S5 S6 S7

WAS service type provider DB service type provider
Analytic Server service

type provider

S5

S1

S5

S3

S1

S5

S3

S1

S6

S4

S6

S4

S2

M1 M2 M3

Scheduler

M5M4 M6

Implementations for CS

Option 2

Option 1

Option 3

SLA for S1, S5 by M2

SLA for S7 by M6

SLA for S1, S3, S5 by M3

SLA for S4, S6 by M4

SLA for S2, S4, S6 by M5

SLA published by providers

M3

S5

M4

S6

M6

S7

SLA for CS by Scheduler

WAS service instances DB service instances

Analytic Server
service instances

Request Routing Logic

Fig. 3 Request routing for SOA-based enterprise computing with multiple implementation op-
tions.

2 Overview

In this section we give a system architecture overview and discuss the terms that will
be used in this paper. Consider a simplified cloud computing example (shown in Fig-
ure 3) in which an analytic process runs on a Web and Application Server (WAS),
a Database Server (DB), and a specialized Analytic Server (AS). The analytic pro-
cess can be implemented by one of three options (as shown in the upper-right of the
figure):

• Executing some lightweight pre-processing at WAS (S1) and then having the DB
to complete most of expensive analytic calculation (S2); or

• Fetching data from the DB (S4) to the WAS and then completing most of the
expensive analytic calculation at the WAS (S3); or

• Executing some lightweight pre-processing at the WAS (S5), then having the
DB fetch necessary data (S6), and finally having the AS perform the remaining
expensive analytic calculation (S7).

The analytic process requires three differentservice types; namely, the WAS ser-
vice type, the DB service type, and the AS service type.S1, S3, andS5 areinstances
of the WAS service type since they are the services provided by the WAS. Similarly,
S2, S4, andS6 are instances of the DB service type, andS7 is an instance of the AS
service type.

Furthermore, there are three kinds of servers: WAS servers (M1, M2, andM3);
DB servers (M4 and M5); and AS servers (M6). Although a server can typically

6 Thomas Phan and Wen-Syan Li

support any instance of its assigned service type, in general this is not always the
case. Our example reflects this notion: each server is able tosupport all instances
of its service type, exceptM2 andM4 are less powerful servers so that they cannot
support computationally expensive service instances,S3 andS2.

Each server has a service level agreement (SLA) for each service instance it
supports, and these SLAs are published and available for thescheduler. The SLA
includes information such as a profile of the load versus response time and an upper
bound on the request load size for which a server can provide aguarantee of its
response time.

The scheduler is responsible for routing and coordinating execution of composite
services comprising one or more implementations. A derivedSLA can only be de-
ployed with its corresponding routing logic. Note that the scheduler can derive SLA
and routing logic as well as handle the task of routing the requests. Alternatively,
the scheduler can be used solely for the purpose of deriving SLA and routing logic
while configuring a content aware routers, such as [13], for high performance and
hardware-based routing.

The scheduler can also be enhanced to perform the task of monitoring actual
QoS achieved by workflow execution and by individual serviceproviders. If the
scheduler observes failure of certain service providers totheir QoS published, it
can re-compute feasible SLA and routing logic on demand to adapt to the runtime
environment.

In this paper, we focus on the problem of automatically deriving the routing
logic of a composite service with consideration of bothhorizontalandvertical load
distribution options. The scheduler is required to find an optimal combination of
a set of variables illustrated in Figure 3 for a number of concurrent requests. We
discuss our scheduling approach next.

3 Scheduling Composite Services

3.1 Solution Space

In this section, we formally define the problem and describe how we model its com-
plexity. We assume the following scenario elements:

• Requestsfor a workflow execution are submitted to a scheduling agent.
• The workflow can be embodied by one of severalimplementations, so each re-

quest is assigned to one of these implementations by the scheduling agent.
• Each implementation invokes severalservice types, such as a web application

server, a DBMS, or a computational analytics server.
• Each service type can be embodied by one of severalinstancesof the service

type, where each instance can have different computing requirements. For exam-
ple, one implementation may require heavy DBMS computation(such as through
a stored procedure) and light computational analytics, whereas another imple-

Vertical Load Distribution for Cloud Computing via Multiple Implemention Options 7

mentation may require light DBMS querying and heavy computational analytics.
We assume that these implementations are set up by administrators or engineers.

• Each service type is executed on aserverwithin a pool of servers dedicated to
that service type.

Each service type can be served by a pool of servers. We assumethat the servers
make agreements to guarantee a level of performance defined by the completion
time for completing a web service invocation. Although these SLAs can be com-
plex, in this paper we assume for simplicity that the guarantees can take the form of
a linear performance degradation under load, an approach similar to other published
work on service SLAs (e.g. [8]). This guarantee is defined by several parameters:
α is the expected completion time (for example, on the order ofseconds) if the as-
signed workload of web service requests is less than or equalto β , the maximum
concurrency, and if the workload is higher thanβ , the expected completion for a
workload of sizeω is α + γ(ω −β) whereγ is a fractional coefficient. In our exper-
iments we varyα, β , andγ with different distributions.

We would like to ideally perform optimal scheduling to simultaneously distribute
the load both vertically (across different implementationoptions) and horizontally
(across different servers supporting a particular servicetype). There are thus two
stages of scheduling, as shown in Figure 4.

In the first stage, the requests are assigned to the implementations. In the second
stage each implementation has a known set of instances of a service type, and each
instance is assigned to servers within the pool of servers for the instance’s service
type. The solution space of possible scheduling assignments can be found by look-
ing at the possible combinations of these assignments. Suppose there areR requests
andM possible implementations. There are thenMR possible assignments in the
first stage. Suppose further there are on averageT service type invocations per im-
plementation, and each of these service types can be handledby one ofSon average
possible servers. Across all the implementations, there are thenST combinations of
assignments in the second stage. It total, there areMR ·ST combinations.

Clearly, an exhaustive search through this solution space is prohibitively costly
for all but the smallest configurations. In the next subsection we describe how we
use a genetic search algorithm to look for the optimal scheduling assignments.

3.2 Genetic algorithm

Given the solution space ofMR ·ST , the goal is to find the best assignments of re-
quests to implementations and service type instances to servers in order to minimize
the running time of the workload, thereby providing our desired vertical and hori-
zontal balancing. To search through the solution space, we use a genetic algorithm
(GA) global search heuristic that allows us to explore portions of the space in a
guided manner that converges towards the optimal solutions[12] [9]. We note that
a GA is only one of many possible approaches for a search heuristic; others include

8 Thomas Phan and Wen-Syan Li

Fig. 4 The scheduling and assignment spans two stages. In the first stage, requests are assigned to
implementations, and in the second stage, service type instances are assigned to servers.

tabu search, simulated annealing, and steepest-ascent hill climbing. We use a GA
only as a tool.

A GA is a computer simulation of Darwinian natural selectionthat iterates
through various generations to converge toward the best solution in the problem
space. A potential solution to the problem exists as a chromosome, and in our case,
a chromosome is a specific mapping of requests-to-implementations and instances-
to-servers along with its associated workload execution time. Genetic algorithms
are commonly used to find optimal exact solutions or near-optimal approximations
in combinatorial search problems such as the one we address.It is known that a
GA provides a very good tradeoff between exploration of the solution space and ex-
ploitation of discovered maxima [9]. Furthermore, a genetic algorithm does have an
advantage of progressive optimization such that a solutionis available at any time,
and the result continues to improve as more time is given for optimization.

Vertical Load Distribution for Cloud Computing via Multiple Implemention Options 9

Algorithm 1 Genetic Search Algorithm
1: FUNCTION Genetic algorithm
2: BEGIN
3: Timet
4: PopulationP(t) := new random Population
5:
6: while ! donedo
7: recombine and/or mutate P(t)
8: evaluate(P(t))
9: select the bestP(t +1) from P(t)

10: t := t + 1
11: end while
12: END

Note that the GA is not guaranteed to find the optimal solutionsince the recom-
bination and mutation steps are stochastic.

Our choice of a genetic algorithm stemmed from our belief that other search
heuristics (for example, simulated annealing) are alreadyalong the same lines as
a GA. These are randomized global search heuristics, and genetic algorithms are a
good representative of these approaches. Prior research has shown there is no clear
winner among these heuristics, with each heuristic providing better performance
and more accurate results under different scenarios [21, 16, 22]. Furthermore, from
our own prior work, we are familiar with its operations and the factors that affect its
performance and optimality convergence. Additionally, the mappings in our prob-
lem context are ideally suited to array and matrix representations, allowing us to use
prior GA research that aid in chromosome recombination [6].There are other algo-
rithms that we could have considered, but scheduling and assignment algorithms are
a research topic unto themselves, and there is a very wide of range of approaches
that we would have been forced to omit.

Pseudo-code for a genetic algorithm is shown in Algorithm 1.The GA executes
as follows. The GA produces an initial random population of chromosomes. The
chromosomes then recombine (simulating sexual reproduction) to produce children
using portions of both parents. Mutations in the children are produced with small
probability to introduce traits that were not in either parent. The children with the
best scores (in our case, the lowest workload execution times) are chosen for the
next generation. The steps repeat for a fixed number of iterations, allowing the GA
to converge toward the best chromosome. In the end it is hopedthat the GA explores
a large portion of the solution space. With each recombination, the most beneficial
portion of a parent chromosome is ideally retained and passed from parent to child,
so the best child in the last generation has the best mappings. To improve the GA’s
convergence, we implemented elitism, where the best chromosome found so far is
guaranteed to exist in each generation.

10 Thomas Phan and Wen-Syan Li

3.2.1 Chromosome representation of a solution

We used two data structures in a chromosome to represent eachof the two schedul-
ing stages. In the first stage,R requests are assigned toM implementations, so its
representative structure is simply an array of sizeR, where each element of the array
is in the range of[1,M], as shown in Figure 5.

Fig. 5 An example chromosome representing the assignment ofR requests toM implementations.

The second stage where instances are assigned to servers is more complex. In
Figure 6 we show an example chromosome that encodes one scheduling assignment.
The representation is a 2-dimensional matrix that maps{implementation, service
type instance} to a service provider. For an implementationi utilizing service type
instancej, the(i, j)th entry in the table is the identifier for the server to which the
business process is assigned.

Fig. 6 An example chromosome representing a scheduling assignment of (implementation,service
type instance)→ service provider. Each row represents an implementation, and each column rep-
resents a service type instance. Here there areM workflows andT service types instances. In
workflow 1, any request for service type 3 goes to server 9.

3.2.2 Chromosome recombination

Two parent chromosomes recombine to produce a new child chromosome. The hope
is that the child contains the best contiguous chromosome regions from its parents.

Vertical Load Distribution for Cloud Computing via Multiple Implemention Options 11

Fig. 7 An example recombination between two parents to produce a child for the first stage assign-
ments. This recombination uses a 2-point crossover recombination of two one-dimensional arrays.
Contiguous subsections of both parents are used to create the new child.

Fig. 8 An example recombination between two parents to produce a child for the second stage
assignments. Elements from quadrants II and IV from the firstparent and elements from quadrants
I and III from the second parent are used to create the new child.

Recombining the chromosome from the first scheduling stage is simple since the
chromsomes are simple 1-dimensional arrays. Two cut pointsare chosen randomly
and applied to both the parents. The array elements between the cut points in the
first parent are given to the child, and the array elements outside the cut points from
the second parent are appended to the array elements in the child. This is known as
a 2-point crossover and is shown in Figure 7.

12 Thomas Phan and Wen-Syan Li

For the 2-dimensional matrix, chromosome recombination was implemented by
performing a one-point crossover scheme twice (once along each dimension). The
crossover is best explained by analogy to Cartesian space asfollows. A random
location is chosen in the matrix to be coordinate (0, 0). Matrix elements from quad-
rants II and IV from the first parent and elements from quadrants I and III from the
second parent are used to create the new child. This approachfollows GA best prac-
tices by keeping contiguous chromosome segments together as they are transmitted
from parent to child, as shown in Figure 8.

The uni-chromosome mutation scheme randomly changes one ofthe service
provider assignments to another provider within the available range. Other recom-
bination and mutation schemes are an area of research in the GA community, and
we look to explore new operators in future work.

3.2.3 GA evaluation function

The evaluation function returns the resulting workload execution time given a chro-
mosome. Note the function can be implemented to evaluate theworkload in any way
so long as it is consistently applied to all chromosomes across all generations.

Our evaluation function is shown in Algorithm 2. In lines 6 to8, it initialises
the execution times for all the servers in the chromosome. Inlines 11-17, it assigns
requests to implementations and service type instances to servers using the two map-
pings in the chromosome. The end result of this phase is that the instances are ac-
cordingly enqueued the servers. In lines 19-21 the running times of the servers are
calculated. In lines 24-26, the results of the servers are used to compute the results
of the implementations. The function returns the maximum execution time among
the implementations.

3.3 Handling online arriving requests

As mentioned earlier, the problem domain we consider is thatof batch-arrival re-
quest routing. We take full advantage of such a scenario through the use of the GA,
which has knowledge of the request population. We can further extend this approach
to online arriving requests, a lengthy discussion which we omit here due to space
limits. A typical approach is to aggregate the incoming requests into a queue, and
when a designated timer expires, all requests in the queue atthat time are sched-
uled. There may still be uncompleted requests from the previous execution, so the
requests may be mingled together to produce a larger schedule. An alternative ap-
proach is to use online stochastic optimization techniquescommonly found in online
decision-making systems [11].

First, we can continue to use the GA, but instead of having thecomplete col-
lection of requests available to us, we can allow requests toaggregate into a queue
first. When a periodic timer expires, we can run the GA on thoserequests while ag-

Vertical Load Distribution for Cloud Computing via Multiple Implemention Options 13

Algorithm 2 GA evaluation function
1: FUNCTION evaluate
2: IN: CHROMOSOME, a representation of the assignments of requests to implementation and

service type instances to servers
3: OUT: runningtime, the running time of this workload
4: BEGIN
5:
6: for (eachserver∈CHROMOSOME) do
7: setserver’s running time to 0
8: end for
9:

10: {Loop over each request and its implementations}
11: for (eachrequest∈CHROMOSOME) do
12: implementation:= requests’s implementation
13: for (eachinstance∈ implementation) do
14: server:= implementation’s server
15: Enqueue this job atserver
16: end for
17: end for
18:
19: for (eachserver) do
20: Compute the running time ofserver
21: end for
22:
23: {Now compute the running time of the implementations}
24: for (eachimplementation∈CHROMOSOME) do
25: Aggregate the running time of thisimplementationacross its instances
26: end for
27:
28: runningtime:= maximum running time of each implementation
29: return runningtime
30: END

gregating any more incoming requests into another queue. Once the GA is finished
with the first queue, it will process the next queue when the periodic timer expires
again. If the request arrival rate is faster than the GA’s processing rate, we can take
advantage of the fact that the GA can be run as an incomplete, near-optimal search
heuristic: we can go ahead and let the timer interrupt the GA,and the GA will have
some solutions that, although sub-optimal, is probabilistically better than a greedy
solution. This typical methodology is also shown in [20], where requests for broad-
cast messages are queued, and the messages are optimally distributed through the
use of an evolutionary strategies algorithm (a close cousinof a genetic algorithm).

Second (and unrelated to genetic algorithms), we can use online stochastic opti-
mization techniques to serve online arrivals. This approach approximates the offline
problem by sampling historical arrival data in order to makethe best online deci-
sion. A good overview is provided in [19]. In this technique,the online optimizer
receives an incoming sequence of requests, gets historicaldata over some period of
time from a sampling function that creates a statistical distribution model, and then

14 Thomas Phan and Wen-Syan Li

calculates and returns an optimized allocation of requeststo available resources.
This optimization can be done on a periodic or continuous basis.

4 Experiments and Results

We ran experiments to show how our system compared to other well-known algo-
rithms with respect to our goal of providing request routingwith horizontal and
vertical distribution. Since one of our intentions was to demonstrate how our system
scales well up to 1000 requests, we used a synthetic workloadthat allowed us to
precisely control experimental parameters, including thenumber of available im-
plementations, the number of published service types, the number of service type
instances per implementation, and the number of servers perservice type instance.
The scheduling and execution of this workload was simulatedusing a program we
implemented in standard C++. The simulation ran on an off-the-shelf Red Hat Linux
desktop with a 3.0 GHz Pentinum IV and 2GB of RAM.

In these experiments we compared our algorithm against the following alterna-
tives:

• A round-robinalgorithm that assigns requests to an implementation and service
type instances to a server in circular fashion. This well-known approach provides
a fast and simple scheme for load-balancing.

• A random-proportionalalgorithm that proportionally assigns instances to the
servers. For a given service type, the servers are ranked by their guaranteed com-
pletion time, and instances are assigned proportionally tothe servers based on the
servers’ completion time. (We also tried a proportionalityscheme based on both
the completion times and maximum concurrency but attained the same results,
so only the former scheme’s results are shown here.) To isolate the behavior of
this proportionality scheme in the second phase of the scheduling, we always as-
signed the requests to the implementations in the first phaseusing a round-robin
scheme.

• A purely randomalgorithm that randomly assigns requests to an implementation
and service type instances to a server in random fashion. Each choice was made
with a uniform random distribution.

• A greedyalgorithm that always assigns business processes to the service provider
that has the fastest guaranteed completion time. This algorithm represents a naive
approach based on greedy, local observations of each workflow without taking
into consideration all workflows.

In the experiments that follow, all results were averaged across 20 trials, and to
help normalize the effects of any randomization used duringany of the algorithms,
each trial started by reading in pre-initialized data from disk. In Table 1 we list our
experimental parameters for our baseline experiments. We vary these parameters in
other experiments, as we discuss later.

Vertical Load Distribution for Cloud Computing via Multiple Implemention Options 15

Experimental parameter Comment

Requests 1 to 1000
Implementations 5, 10, 20
Service types used per implementationuniform random: 1 - 10
Instances per service type uniform random: 1 - 10
Servers per service type uniform random: 1 - 10
Server completion time (α) uniform random: 1 - 12 seconds
Server maximum concurrency (β) uniform random: 1 - 12
Server degradation coefficient (γ) uniform random: 0.1 - 0.9
GA: population size 100
GA: number of generations 200

Table 1 Experiment parameters.

4.1 Baseline configuration results

In Figures 9, 10, and 11 we show the behavior of the algorithmsas they schedule
requests against 5, 10, and 20 implementations, respectively. In each graph, the x-
axis shows the number of requests (up to 1000), and the y-axisis average response
time upon completing the workload. This response time is themakespan, the metric
commonly used in the scheduling community and calculated asthe maximum com-
pletion time across all requests in the workload. As the total number of implementa-
tions increases across the three graphs, the total number ofservice types, instances,
and servers scaled as well in accordance to the distributions of these variables from
Table 1. In each of the figures, it can be see that the GA is able to produce a better
assignment of requests to implementations and service typeinstances to servers than
the other algorithms. The GA shows a 45% improvement over itsnearest competitor
(typically the round-robin algorithm) with a configurationof 5 implementations and
1000 requests and a 36% improvement in the largest configuration with 20 imple-
mentations and 1000 requests.

The relative behavior of the other algorithms was consistent. The greedy algo-
rithm performed the worst while the random-proportional and random algorithms
were close together. The round-robin came the closest to theGA.

To better understand these results, we looked at the individual behavior of the
servers after the instance requests were assigned to them. In Figure 12 we show
the percentage of servers that were saturated among the servers that were actually
assigned instance requests. These results were from the same 10-implementation
experiment from Figure 10. For clarity, we focus on a region with up to 300 requests.

We consider a server to be saturated if it was given more requests than its max-
imum concurrency parameter. From this graph we see the key behavior that the
GA is able to find assignments well enough to delay the onset ofsaturation un-
til 300 requests. The greedy algorithm, as can be expected, always targets the best
server from the pool available for a given service type and quickly causes these cho-
sen servers to saturate. The round robin is known to be a quickand easy way to
spread load and indeed provides the lowest saturation up through 60 requests. The

16 Thomas Phan and Wen-Syan Li

random-proportional and random algorithms reach saturation points between that of
the greedy and GA algorithms.

4.2 Effect of service types

We then varied the number of service types per implementation, modeling a scenario
where there is a heavily skewed number of different web services available to each
of the alternative implementations. Intuitively, in a deployment where there is a large
number of services types to be invoked, the running time of the overall workload will
increase.

In Figure 13 we show the results where we chose the numbers of service types
per implementation from a Gaussian distribution with a meanof 2.0 service types;
this distribution is in contrast to the previous experiments where the number was
selected from a uniform distribution in the inclusive rangeof 1 to 10. As can be
seen, the algorithms show the same relative performance from prior results in that
the GA is able to find the scheduling assignments resulting inthe lowest response
times. The worst performer in this case is the random algorithm. In Figure 14 we
skew the number of service types in the other direction with aGaussian distribution
with a mean of 8.0. In this case the overall response time increases for all algorithms,
as can be expected. The GA still provides the best response time.

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 5 implementations

Greedy
Proportional

Random
Round-robin

GA

Fig. 9 Response time with 5 implementations.

Vertical Load Distribution for Cloud Computing via Multiple Implemention Options 17

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 10 implementations

Greedy
Proportional

Random
Round-robin

GA

Fig. 10 Response time with 10 implementations.

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 20 implementations

Greedy
Proportional

Random
Round-robin

GA

Fig. 11 Response time with 20 implementations.

4.3 Effect of service type instances

In these experiments we varied the number of instances per service type. We im-
plemented a scheme where each instance incurs a different running time on each
server; that is, a unique combination of instance and serverprovides a different
response time, which we put into effect by a Gaussian random number generator.
This approach models our target scenario where a given implementation may run
an instances that performs more or less of the work associated with the instance’s
service type. For example, although two implementations may require the use of a
DBMS, one implementation’s instance of this DBMS task may require less compu-

18 Thomas Phan and Wen-Syan Li

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300

P
er

ce
nt

ag
e

of
 s

er
ve

rs

Number of requests

Servers saturated

Greedy
Proportional

Random
Round-robin

GA

Fig. 12 Percentage of servers that were saturated. A saturated server is one whose workload is
greater than its maximum concurrency.

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of service types per implementation

Greedy
Proportional

Random
Round-robin

GA

Fig. 13 Average response time with a skewed distribution of servicetypes per implementation.
The distribution was Gaussian (λ = 2.0,σ = 2.0 service types).

tation than the other implementation due to the offload of a stored procedure in the
DBMS to a separate analytics server. Our expectation is thathaving more instances
per service type allows a greater variability in performance per service type.

Figure 15 shows the algorithm results when we skewed the number of instances
per service type with a Gaussian distribution with a mean of 2.0 instances. Again, the
relative ordering shows that the GA is able to provide the lowest workload response
among the algorithms throughout. When we weight the number of instances with a
mean of 8.0 instances per service type, as shown in Figure 16,we can see that the
the GA again provides the lowest response time results. In this larger configuration,

Vertical Load Distribution for Cloud Computing via Multiple Implemention Options 19

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of service types per implementation

Greedy
Proportional

Random
Round-robin

GA

Fig. 14 Average response time with a skewed distribution of servicetypes per implementation.
The distribution was Gaussian (λ = 8.0,σ = 2.0 service types).

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of instances per service type

Greedy
Proportional

Random
Round-robin

GA

Fig. 15 Average response time with a skewed distribution of instances per service type. The dis-
tribution was Gaussian (λ = 2.0,σ = 2.0 instances).

the separation between all the algorithms is more evident with the greedy algorithm
typically performing the worst; its behavior is again due the fact that it assigns jobs
only to the best server among the pool of servers for a servicetype.

20 Thomas Phan and Wen-Syan Li

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of instances per service type

Greedy
Proportional

Random
Round-robin

GA

Fig. 16 Average response time with a skewed distribution of instances per service type. The dis-
tribution was Gaussian (λ = 8.0,σ = 2.0 instances).

4.4 Effect of servers (horizontal balancing)

Here we explored the impact of having more servers availablein the pool of servers
for the service types. This experiment isolates the effect of horizontal balancing.
Increasing the size of this pool will allow assigned requests to be spread out and
thus reduce the number of requests per server, resulting in lower response times for
the workload. In Figures 17 and 18 we show the results with Gaussian distributions
with means of 2.0 and 8.0, respectively. In both graphs the GAappears to provide
the lowest response times. Furthermore, it is interesting to note that in the random,
random-proportional, and round-robin algorithms, the results did not change sub-
stantially between the two experiments even though the latter experiment contains
four times the average number of servers. We believe this result may be due to the
fact that the first-stage scheduling of requests to implementations is not taking suf-
ficient advantage of the second-stage scheduling of servicetype instances to the
increased number of servers. Since the GA is able to better explore all combina-
tions across both scheduling stages, it is able to produces its better results. We will
explore this aspect in more detail in the future.

4.5 Effect of server performance

In this subsection we look at the impact on the servers’ individual performance
on the overall workload running time. In previous sections we described how we
modeled each server with variables for the response time (α) and the concurrency

Vertical Load Distribution for Cloud Computing via Multiple Implemention Options 21

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers per service type

Greedy
Proportional

Random
Round-robin

GA

Fig. 17 Average response time with a skewed distribution of serversper service type. The distri-
bution was Gaussian (λ = 2.0,σ = 2.0 instances).

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers per service type

Greedy
Proportional

Random
Round-robin

GA

Fig. 18 Average response time with a skewed distribution of serversper service type. The distri-
bution was Gaussian (λ = 8.0,σ = 2.0 instances).

(β . Here we skewed these variables to show how the algorithms performed as a
result.

In Figures 19 and 20 we skewed the completion times with Gaussian distributions
with means of 2.0 and 9.0, respectively. It can be seen that the relative orderings of
the algorithms are roughly the same in each, with the GA providing best perfor-
mance, the greedy algorithm giving the worst, and the other algorithms running in
between. Surprisingly, the difference in response time between the two experiments
was much less than we expected, although there is a slight increase in all the al-
gorithms except for the GA. We believe that the lack of a dramatic rise in overall

22 Thomas Phan and Wen-Syan Li

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ completion time

Greedy
Proportional

Random
Round-robin

GA

Fig. 19 Average response time with a skewed distribution of servers’ completion time. The distri-
bution was Gaussian (λ = 2.0,σ = 2.0 seconds).

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ completion time

Greedy
Proportional

Random
Round-robin

GA

Fig. 20 Average response time with a skewed distribution of servers’ completion time. The distri-
bution was Gaussian (λ = 9.0,σ = 2.0 seconds).

response time is due to whatever load balancing is being performed by the algo-
rithms (except the greedy algorithm).

We then varied the maximum concurrency variable for the servers using Gaussian
distributions with means of 2.0 and 9.0, as shown in Figures 21 and 22. From these
results it can be observed that the algorithms react well with an increasing degree
of maximum concurrency. As more requests are being assignedto the servers, the
servers respond with faster response times when they are given more headroom to
run with these higher concurrency limits.

Vertical Load Distribution for Cloud Computing via Multiple Implemention Options 23

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ maximum concurrency

Greedy
Proportional

Random
Round-robin

GA

Fig. 21 Average response time with a skewed distribution of servers’ maximum concurrency. The
distribution was Gaussian (λ = 4.0,σ = 2.0 jobs).

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ maximum concurrency

Greedy
Proportional

Random
Round-robin

GA

Fig. 22 Average response time with a skewed distribution of servers’ maximum concurrency. The
distribution was Gaussian (λ = 11.0,σ = 2.0 jobs).

4.6 Effect of response variation control

We additonally evaluated the effect of having the GA minimize the variation in the
requests’ completion time. As mentioned earlier, we have been been calculating the
workload completion as the maximum completion time of the requests in that work-
load. While this approach has been effective, it produces wide variation between
the requests’ completion times due to the stochastic packing of requests by the GA.
This variation in response time, known asjitter in the computer networking commu-
nity, may not be desirable, so we further provided an alternative objective function

24 Thomas Phan and Wen-Syan Li

that minimizes the jitter (rather than minimizing the workload completion time).
In Figure 23 we show the average standard deviations resulting from these different
objective functions (using the same parameters as in Figure10). With variation min-
imization on, the average standard deviation is always close to 0, and with variation
minimization off, we observe an increasing degree of variation. The results in Figure
24 show that the reduced variation comes at the cost of longerresponse times.

 0

 5

 10

 15

 20

 25

 100 200 300 400 500 600 700 800 900 1000

S
ta

nd
ar

d
de

vi
at

io
n

of
 r

eq
ue

st
 r

es
po

ns
e

tim
e

Number of requests

Request response time standard deviation, with/without variation minimization

GA, variation minimization on
GA, variation minimization off

Fig. 23 Average standard deviation from the mean response for two different objective functions.

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time of GA with/without variation minimization

GA, variation minimization on
GA, variation minimization off

Fig. 24 Average response time for two different objective functions.

Vertical Load Distribution for Cloud Computing via Multiple Implemention Options 25

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 10 implementations, with and without SLA-based routing

Greedy
GA

Fig. 25 Response time with 10 implementations with configurations for SLA and without SLA.

4.7 Effect of routing against conservative SLA

We looked at the GA behavior when its input parameters were not the servers’ ac-
tual parameters but rather the parameters provided by a conservative SLA. In some
systems, SLAs may be defined with a safety margin in mind so that clients of the
service do not approach the actual physical limits of the underlying service. In that
vein, we ran an experiment similar to that shown in Figure 10,but in this configura-
tion we used parameters for the underlying servers with twice the expected response
time and half the available parallelism, mirroring a possible conservative SLA. As
can be seen in Figure 25, the GA converges towards a scheduling where the extra
slack given by the conservative SLA results in a slower response time.

4.8 Summary of experiments

In this section we evaluated our GA reference implementation of a scheduler that
performs request-routing for horizontal and vertical loaddistribution. We showed
that the GA consistently produces lower workload response time than its competi-
tors. Furthermore, as can be expected, the scheduler is sensitive to a number of pa-
rameters, including the number of service types in each implementation, the number
of service type instances, the number of servers, the per-server performance, the de-
sired degree of variation, and the tightness of the SLA parameters.

26 Thomas Phan and Wen-Syan Li

5 Related Work

[23] described a distributed quality of service (QoS) management architecture and
middleware that accommodates and manages different dimensions and measures
of QoS. The middleware supports the specification, maintenance and adaptation
of end-to-end QoS (including temporal requirements) provided by the individual
components in complex real time application systems. UsingQoS negotiation, the
middleware determines the quality levels and resource allocations of the application
components. This work focused on analysis tradeoff betweenQoS and cost instead
of ensuring QoS requirements in our paper.

[30] presented two algorithms for finding replacement services in autonomic dis-
tributed business processes when web service providers fail to response or meet
the QoS requirement: following alternative predefined routes or finding alternative
routes on demand. The algorithms give the QoS brokerage service fault tolerance
capability and is complementary to our work.

In [31, 32, 33], Yu et. al developed a set of algorithms for Webservices se-
lection with end-to-end QoS constraints. A key difference between our work and
theirs is that they simplify and reduce the complexity spaceconsiderably, some-
thing which we do not do. They take all incoming workflows, aggregate them into
one singe workflow, and then schedule that one workflow onto the underlying ser-
vice providers. We do not do this aggregation, and thereforeour approach provides
a higher degree of scheduling flexibility.

Workflow 1

Workflow 2

S0

S1 S3

S2 S3

S4 S1

S0 S2 S3 S4aggregation

Fig. 26 Aggregation of Service Workflows

Consider the two workflows shown on the left of Figure 26 whereeach task in
the workflow invokes a particular service type. In their work, they aggregate the
workflows into a single function graph, resulting in a simplified form shown on the
right of Figure 26.

Each service type is then mapped onto a service provider chosen from the pool
of service providers for that type. It is important to note that each service type is
assigned to the same chosen provider, even though the instances of that service type
are different. For example, because bothworkflow 1andworkflow 2useS3, both
instances are mapped to the same provider.

In our work, we do not do this aggregation to reduce the complexity space. We
consider unique combinations of{workflow, service type} and map these to a ser-
vice provider. Thus, in our work,S3 in workflow 1may map to a different provider
thanS3 in workflow 2. This distinction allows for more flexible scheduling and po-
tentially better turnaround time than their work.

Vertical Load Distribution for Cloud Computing via Multiple Implemention Options 27

In the work [27], the GA algorithm was used for load distribution for database
cluster. In this work, the analytic workloads are distributed across a database clus-
ter. The load distribution algorithm needs to consider collocation of MQTs (i.e.
materialized views) with queries which can utilize them to improve performance,
collocation of MQTs and the base tables which are needed to construct the MQTs,
and minimizing the execution time of the whole workload on the database cluster.
This work is a kind ofhorizontalload distribution. Similarly, the GA algorithm is
also used in [26] to schedule query execution and view materialization sequence for
minimal overall execution time.

Our work is related to prior efforts in web service composition, web service
scheduling, and job scheduling. A web service’s interface is expressed in WSDL,
and given a set of web services, a workflow can be specified in a flow language such
as BPEL4WS [1] or WSCI [15]. Several research projects have looked to provide au-
tomated web services composition using high-level rules (e.g. eFlow [4], SWORD
[18]). Our work is complementary to this area, as we schedulebusiness processes
within multiple, already-defined workflows to the underlying service providers.

In the context of service assignment and scheduling, [34] maps web service calls
to potential servers but their work is concerned with mapping only single workflows;
our principal focus is on scalably scheduling multiple workflows (up to one thou-
sand). [28] presents a dynamic provisioning approach that uses both predictive and
reactive techniques for multi-tiered Internet application delivery. However, the pro-
visioning techniques do not consider the challenges faced when there are alternative
query execution plans and replicated data sources. [24] presents a feedback-based
scheduling mechanism for multi-tiered systems with back-end databases, but unlike
our work, it assumes a tighter coupling between the system components.

The work in [14] creates end-to-end paths for services (suchas transcoding) and
assigns servers on a hop-by-hop basis by minimising networklatency between hops.
Our work is complementary in that service assignment is based on business value
metrics defined by agreed-upon service level agreements.

An SLA can be complex, requiring IT staff to translate from the legal document
level description to system-specific requirement for deployment and enforcement.
[29] proposed a framework for configuring extensible SLA management systems. In
this work, an SLA is represented in XML format. In [3], an SLA execution manager
(SAM) is proposed to manage cross-SLA execution that may involve an SLA with
different terms. The work provides metadata management functionality for SLA
aware scheduling presented in this paper. Thus, it is complementary to our work.

[25, 10] applied peer-to-peer technology for support real time services, such as
data dissemination across internet with QoS assurance. In their context, they create
an application-layer network route across multiple service nodes in order to provide
some end-to-end service. This routing occurs in two steps: the user’s high-level re-
quest is mapped to a service template, and then the template is mapped to a route of
servers. This approach is similar to ours in that our business processes request ser-
vice from the service types, and the service types must instantiated by assigning the
business processes to an underlying server. The key differences are that: (1) their
work is constrained by the topology of the application-layer network. Their work

28 Thomas Phan and Wen-Syan Li

looks at pipelines of service nodes in a line. The problem is finding routes through
a network by adapting Dijkstra’s algorithm for finding shortest path whereas our
problem is assigning business processes to servers; Their work looks at pipelines
of service nodes in a line; whereas our work looks at a more flexible workflow
condition that may involve branches, including AND and OR; (3) their primary
metrics are availability and latency, whereas we use a more flexible and general-
izable business value to evaluate assignments. Furthermore, our work supports an
infrastructure where a server can support multiple servicetypes (c.f. our scenario
is that business processes within a workflow must be scheduled onto web service
providers). The salient differences are that the machines can process only one job at
a time (we assume servers can multi-task but with degraded performance and a max-
imum concurrency level), tasks within a job cannot simultaneously run on different
machines (we assume business processes can be assigned to any available server),
and the principal metric of performance is themakespan, which is the time for the
last task among all the jobs to complete. As we showed, optimizing on the makespan
is insufficient for scheduling the business processes, necessitating different metrics.

6 Conclusion

Cloud computing aims to do the dirty work for the user: by moving issues of mange-
ment and provisioning away from the end consumer and into theserver-side data
centers, users are given more freedom to pick and choose the applications that suit
their needs. However, computing in the clouds depends heavily on the scalablity and
robustness of the underlying cloud architecture.

We discussed enterprise cloud computing where enterprisesmay use a service-
oriented architecture to publish a streamlined interface to their business processes.
In order to scale up the number of business processes, each tier in the provider’s ar-
chitecture usually deploys multiple servers for load distribution and fault tolerance.
Such load distribution across multiple servers within the same tier can be viewed
ashorizontalload distribution. One limitation of this approach is that load cannot
be distributed further when all servers in the same tier are fully loaded. Another
approach for providing resiliency and scalabilty is to havemultiple implementation
optionsthat give opportunities forvertical load distribution across tiers.

We described in detail a request routing framework for SOA-based enterprise
cloud computing that takes into account both these options for horizontalandverti-
cal load distribution. Experiments showed that our algorithm and methodology can
scale well up to a large-scale system configuration comprising up to 1000 workflow
requests directed to a complex composite service with multiple implementation op-
tions available. The experimental results also demonstrate that our framework is
more agile in the sense that it is effective in dealing with mis-configured infrastruc-
tures in which there are too many or too few servers in one tier. As a result, our
framework can effectively utilize available multiple implementations to distribute
loads across tiers.

Vertical Load Distribution for Cloud Computing via Multiple Implemention Options 29

References

1. Business process execution language for web services, v 1.1, 2005. www-
128.ibm.com/developerworks/library/ws-bpel/.

2. Cloud computing: Clash of the clouds.The Economist, 2009.
3. Melissa J. Buco, Rong N. Chang, Laura Z. Luan, ChristopherWard, Joel L. Wolf, Philip S.

Yu, Tevfik Kosar, and Syed Umair Ahmed Shah. Managing ebusiness on demand sla contracts
in business terms using the cross-sla execution manager sam. In ISADS, pages 157–, 2003.

4. F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C. Shan. Adaptive and Dynamic
Service Composition in eFlow. InProceedings of CAISE, 2000.

5. Cisco. Ace application-level load balancer.
6. L. Davis. Job Shop Scheduling with Genetic Algorithms,. In Proceedings of the International

Conference on Genetic Algorithms, 1985.
7. M. Dikaiakos, G. Pallis, D. Katsaros, P. Mehra, and A. Vakali. Cloud computing: Distributed

internet computing for it and scientific research.IEEE Internet Computing, 13(5):10–13, 2009.
8. G. DeCandia et al. Dynamo: Amazon’s highly available key-value store. InSOSP, 2007.
9. D. Goldberg.Genetic Algorithms in Searth, Optimization, and Machine Learning. Kluwer

Academic, 1989.
10. Xiaohui Gu, Klara Nahrstedt, Rong N. Chang, and Christopher Ward. Qos-assured service

composition in managed service overlay networks. InICDCS, pages 194–, 2003.
11. Pascal Van Hentenryck and Russell Bent.Online Stochastic Combinatorial Optimization.

MIT Press, 2006.
12. J. Holland.Adaptation in Natural and Artificial Systems. MIT Press, 1992.
13. Cisco System Inc. Scalable content switch.
14. J. Jin and K. Nahrstedt. On Exploring Performance Optimisations in Web Service Composi-

tion. In Proceedings of Middleware, 2004.
15. J. Josephraj. Web Services Choreography in Practice. Inwww-

128.ibm.com/developerworks/library/ws-choreography, 2007.
16. L. Costa and P. Oliveira. Evolutionary algorithms approach to the solution of mixed integer

nonlinear programming problems. InComput. Chem. Eng. 25, 2001.
17. F5 Networks. Big-ip application-level load balancer.
18. S. Ponnekanti and A. Fox. Interoperability among Independently Evolving Web Services. In

Proceedings of Middleware, 2004.
19. R. Bent and P. Van Hentenryck. Regrets Only! Online Stochastic Optimization Under Time

Constraints. InNineteenth National Conference on Artificial Intelligence, 2004.
20. R. Dewri and I. Ray and I. Ray and D. Whitley. Optimizing On-Demand Data Broadcast

Scheduling in Pervasive Environments. 2008.
21. R. Lima and G. Francois and B. Srinivasan and R. Salcedo. Dynamic optimization of batch

emulsion polymerization using MSIMPSA, a simulated-annealing-based algorithm.Ind. Eng.
Chem. Res., 43(24), 2004.

22. R. Oliveira and R. Salcedo. Benchmark testing of simulated annealing, adaptive random
search and genetic algorithms for the global optimization of bioprocesses. InInternational
Conference on Adaptive and Natural Computing Algorithms, 2005.

23. Mallikarjun Shankar, Miguel De Miguel, and Jane W.-S. Liu. An end-to-end qos manage-
ment architecture. InProceedings of the Fifth IEEE Real Time Technology and Applications
Symposium.

24. G. Soundararajan, K. Manassiev, J. Chen, A. Goel, and C. Amza. Back-end Databases in
Shared Dynamic Content Server Clusters. InProceedings of ICAC, 2005.

25. Chunqiang Tang, Rong N. Chang, and Edward So. A distributed service management infras-
tructure for enterprise data centers based on peer-to-peertechnology. InIEEE SCC, pages
52–59, 2006.

26. Thomas Phan and Wen-Syan Li. Dynamic Materialization ofQuery Views for Data Warehouse
Workloads. InProceedings of the International Conference on Data Engineering, 2008.

30 Thomas Phan and Wen-Syan Li

27. Thomas Phan and Wen-Syan Li. Load distribution of analytical query workloads for database
cluster architectures. 2008.

28. B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic Provisioning of Multi-Tier
Internet Applications. InProceedings of ICAC, 2005.

29. Christopher Ward, Melissa J. Buco, Rong N. Chang, Laura Z. Luan, Edward So, and Chun-
qiang Tang. Fresco: A web services based framework for configuring extensible sla manage-
ment systems. InICWS, pages 237–245, 2005.

30. Tao Yu and Kwei-Jay Lin. Adaptive algorithms for finding replacement services in autonomic
distributed business processes. InProc. of the 7th International Symposium on Autonomous
Decentralized Systems, Chengdu, China, 2005.

31. Tao Yu and Kwei-Jay Lin. Service selection algorithms for web services with end-to-end qos
constraints.Inf. Syst. E-Business Management, 3(2):103–126, 2005.

32. Tao Yu and Kwei-Jay Lin. Qcws: An implementation of qos-capable multimedia web services.
Multimedia Tools and Applications, 30(2):165–187, 2006.

33. Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithmsfor web services selection with
end-to-end qos constraints.ACM Transactions on the Web (TWEB), 1(1), 2007.

34. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Sheng. Quality Driven Web Ser-
vices Composition. InProceedings of WWW, 2003.

