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1. Introduction

Cloud Computing promises an easy way to use and access to a large pool of virtualized resources (such as hardware, development platforms and/or services) that can be dynamically provisioned to adjust to a variable workload, allowing also for optimum resource utilization. This pool of resources is typically exploited by a pay-per-use model in which guarantees are offered by means of customized SLAs [1]. Therefore, Cloud Computing automated provisioning mechanisms can help applications to scale up and down systems in the way that performance and economical sustainability are balanced. So, what does it mean to scale?

Basically, scalability
 can be defined as the ability of a particular system to fit a problem as the scope of that problem increases (number of elements or objects, growing volumes of work and/or being susceptible to enlargement). For example, increasing system’s throughput by adding more software or hardware resources to cope with an increased workload [2,3]. The ability to scale up a system may depend on its design, the types of data structures, algorithms or communication mechanisms used to implement the system components. A characterization of different types of scalability is reported by Bondi [3], here we summarize some relevant examples:

· Load Scalability: when a system has the ability to make good use of avail-able resources at different workload levels (i.e. avoiding excessive delay, unproductive consumption or contention). Factors that affect load scalability may be a bad use of parallelism, inappropriate shared resources scheduling or excessive overheads. For example, a web server maintains a good level of load scalability if the performance of the system is maintained in an acceptable level when the number of threads that executes HTTP requests is increased in a workload peak.
· Space Scalability: The system has the ability to keep the consumption of system’s resources (i.e. memory or bandwidth) between acceptable levels when the workload increases. For example, an operating system scales gracefully using a virtual memory mechanism that swaps unused virtual memory pages from physical memory to disk, avoiding physical memory exhaustion. Another example would be when the number of user accounts of a web 2.0 service like a social network grows from thousands to millions.
· Structural scalability: The implementation or standards of the system allow the increase of the number of managed objects or at least it will do so within a given time frame. For example, the size of a data type could affect the number of elements that can be represented (using a 16 bit integer as an entity identifier only allows representing 65,536 entities).

It would be desirable that the scaling capabilities of a system remained both, short and long term; having in the short term reactivity to respond to high and low rate of incoming works. As important as scaling up is scaling down, this impacts directly in the sustainability of business reducing exploitation cost of unused resources when the workload decreases avoiding over-provisioning
.

The factors that could improve or diminish scalability could be hard to identify and even specific for target system. Sometimes the actions taken to improve one of these capabilities could spoil others. For example, the introduction of compression algorithms to improve Space scalability (i.e. bandwidth reduction compressing messages) impacts in the Load scalability (i.e, increase of use of processor when compressing messages). The actions to scale may be classified in:

· Vertical scaling: by adding more horsepower (more processors, memory, bandwidth, etc.) to equipments used by the systems. This is the way applications are deployed on large shared-memory servers.
· Horizontal scaling: by adding more of the same software or hardware re-sources. For example, in a typical two-layer service, more front-end nodes are added (or released) when the number of users and workload increases (decreases). This is the way applications are deployed on distributed servers.
Scalability has to be kept in mind from the very beginning when designing the architecture of a system. Although appropriate time-to-market, fast prototyping or targeting small number of users could require quick developments, the architecture of the solution should have into account scalability implies when the system could increase the number of users from hundreds to thousands or even to millions or it could increase in complexity. By this doing, the risk of failure and system reimplementation would be minimized.
The Cloud is a computational paradigm which aims, among other major targets, to ease the way a service is provisioned helping service providers by delivering the illusion of infinite underlying resources and automatic scalability. This article describes how Cloud Computing may help to build scalable applications by automating the service provisioning process with IaaS (Infrastructure as a Service) Clouds (reducing the management costs and optimizing the use of resources) and providing PaaS (Platform as a Service) frameworks (with scalar execution environments, service building blocks and APIs) to build Cloud-aware applications in a Software as a Service (SaaS) model.

2. Foundations
Having made clearer what is currently understood by scalability and briefly outlined, the Cloud scalability is based in three basic pillars:

· Virtualization: it reduces systems complexity, standardizing the hardware platform and then reducing resource management costs.

· Resource sharing: sharing computing resources among different applications and/or organizations will allow optimizing their use avoiding sparse or idle occupation times. In this sense, virtualization helps to consolidate server in the same physical machine.
· Dynamic provisioning: resources should be provided in an on-demand way, they should be also automatically refigured on the fly. Dynamic provisioning implies the need of monitoring the service performance and automating the decisions and actions to respond to an in/de-creasing workload.
Through this section, we will analyze the evolution of Information Technology (IT) services from mainframes to clouds, which explains how scalability has been tackled, and some dynamic resource allocation techniques that could help to implement automatic scalability.

2.1 A Little History on Enterprise IT Services
Since the 60’s decade, mainframes [5] have been present at businesses back-office in finance, health care, insurance, government and other public and private enterprises. Starting processing batch tasks, introduced with punch cards, paper tape or magnetic tapes, during last decades it has evolved adding interactive terminals, and supporting multiple Operating System (OS) instances supported by virtual machines.

Mainframes [5] are centralized computers designed for handling and processing very large amounts of data quickly with high reliability, availability and serviceability. Mainframes scale vertically by adding more computing, storage or connectivity resources. Thanks to continuing compatibility of hardware and Operating Systems, upgrades in the OS, architecture family or model allow to scale systems without having to change the applications that run on top of it.

Decentralized applications, and more particularly client/server architectures [6], were implemented in the late 80’s as an alternative to mainframes. An application is composed by autonomous computational entities with their own memory and communicated by a network using message-passing protocols (such as the Remote Procedure Call Protocol, RPC, which is “itself is a message-passing protocol”)
. A server provides a set of functions to one of many clients which invoke requests for such functions. Distributed systems present some advantages over mainframes:

· Cost reduction: A mainframe price was by $2-3M (now it cost from $1M). Mid-size applications could be deployed with only a few thousands of dollars.

· Flexibility: Server nodes, typically hosted in dedicated computers (mostly UNIX) can be developed, configured and tested separately from the rest of the system and plugged when ready.

· Latency reduction: Server nodes can be distributed among different datacenters to be as close of end-users as possible.

· Interactive services: Initially mainframes were batch processing-oriented but client/server is mainly interactive.
· Unlimited resource addition. Mainframes present platform-dependent limits when adding more resources (CPU, disk, memory…). Distributed systems allow the addition of more servers to increase the whole system capacity. 
Client/server architectures are the base model for the network computing such Internet Services (web, mail, ftp, streaming, etc), telecommunication systems (IMS, VoIP, IPtv, etc.) and enterprise applications (information services, databases, etc.). Figure 1 shows how client/server architectures [6] have evolved from two-tier (the client and the server hosted in different machines) to three-tier (client, application logic and data layer) and multi-tier (client, presentation logic layer, business logic layer, and data layer). As the applications grow in complexity and most of the business processes have been automated, datacenters have taken up more and more physical space. Distributed Systems can scale vertically (adding more resources to a host node), horizontally (adding new nodes of the same type) or both (from hosting all the service nodes in the same server to distribute them in dedicated servers taking advantage of transparency of location that communication protocols typically grant). Horizontal scale could require redesigning the application to introduce parallelization, load-balancing, etc. But, during the 90’s, distributed systems presented some disadvantages as compared to mainframes:

· Low use of server nodes: Typically server nodes are dedicated to a single application node, as it requires specific OS, libraries, isolation from other software components, etc.

· More operation costs: Distributed systems are more complex, they require more management task performed by human operators.

· Less energy efficiency: Wasted power on dedicated servers may increase the energy consumed by the hosts and the cooling systems.

· More physical space required: Even grouped in racks or blades servers, they need more space that integrated mainframes.

· Potentially less performance with I/O: Data storage is centralized in mainframes, but distributed systems that access through the network to a centralized storage present latency on accessing them.

· Potentially more difficult to be fault tolerant: as network and the number of service nodes introduce more failure points. Unless hardware components in mainframes are vulnerable too, they implement redundancy mechanism to minimize the impact of failures. 

· Inability to share resources in distributed nodes: spare CPU capacity in one node may not be used by others nodes. Here, the ability to consolidate the number of CPUs in a single mainframe also had a relevant economic impact in terms of middleware software licenses costs savings (since most middleware license prices scale up based on the number of CPUs.)
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Figure 1. Basic Client/Server Architectures [6]

At the beginning of the 2000’s these disadvantages made some IT managers reconsider coming back to renewed mainframes architectures which enabled to consolidate hardware resources while being able to run multiple OS instances. These architectures introduced virtualization technologies (such as IBM’s z/Virtual Machine and z/Virtual Storage Extended) and logical partitions which can host UNIX (mostly Linux) or native mainframe OS (VMS, z/OS, etc.). Modern mainframes can also dynamically reconfigure the resources assigned to a virtual machine or logical partition (processors, memory, device connections, etc.).

In the world of distributed systems, clustering technologies, virtualization (VMware
 or Xen
) and datacenter automation tools (IBM’s Tivoli
 or HP’s OPSware
) make datacenters much easier to manage, minimizing complexity and operational costs of distributed systems provisioning (allocation of network and computing resources, OS and software components installation, etc.) and management (OS patches, software updates, monitoring, power, etc.). Modern datacenters are organized in clusters. A cluster is a group of commodity computers, working together closely so that in many respects they form a single computer. The components of a cluster are commonly, but not always, connected through fast local area networks. Clusters are usually deployed to improve performance (by scaling the available computing power) and/or availability over that of a single computer, while typically being much more cost-effective than single computers of comparable speed or availability
. However, putting commodity (often computational) resources together in a cluster often resulted not to be enough for the high computational demand required by some applications and experiments [8]. Further scaling was needed to absorb increasing demand. The need to aggregate sparse and separately managed computational resources gave rise to the concept of Virtual Organizations. These are separate administrative domains that set the means for using unused resourced belonging to other collaborating organizations as if they were locally located. Indeed, virtualization allows consolidating different Virtual Machines in the same physical host reducing waste of computing power and energy.
Indeed, from the computer architecture point of view, the evolution of computers makes not very clear the difference between dedicated servers and mainframes, as mainframes could be consider the topmost model of a computer family. Then, the key issue in an IT Service strategy can be either to scale horizontally with low-cost servers (in the way of clusters or small servers) or vertically with “big” shared-memory servers. As usual, there is no silver bullet and the decision may depend on the application. Anyway, by introducing virtualization the underlying physical hardware layer is transparent for service nodes that potentially may scale vertically to the maximum capacity of the physical machines and horizontally to the maximum capacity of the datacenter. Some studies, see [4, 7] for example, conclude that horizontal scaling offers better price/performance, although at an increase in management complexity, for Web-centric applications. In addition, horizontal scaling is deemed by some authors as the only solution for supercomputers
.

2.2 Warehouse-scale Computers

Internet companies, such as Google, Amazon, Yahoo and Microsoft’s online services division, have transformed their datacenters using Warehouse-scale Computers (WSCs) [7] which differ from traditional datacenters on:

· Datacenters belong to a single company.
· Use of relatively homogeneous hardware and software platforms.

· Large cluster considered as a single computing unit, not only a set of wired individual servers.

· Often much of the software platform (applications, middleware and system software) is build in-house and adapted to the services they provide (search engines, media warehouses, e-commerce, etc.) instead of using third-party software (standard application servers, middleware, OS, etc.).

· They run a smaller number of very large applications.

· Use of a common management layer that flexibly controls the deployment of applications among shared resources.

· High availability achieved assuming large number of component faults with little or no impact on service level performance.
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Figure 2. Warehouse-scale system architecture [7]

Figure 2 shows the typical warehouse-scale systems architecture [7] which basic elements are low-cost 1U or blade enclosure servers mounted within a rack. Servers are interconnected by a rack-level 1-10 Gbps Ethernet switches with uplink connections to one or more cluster or datacenter level Ethernet switches. Disk drives can be managed by a Network Attached Storage (NAS) connected directly to the cluster switches, or be connected to each individual server and managed by a global distributed file system such as Google’s File System (GFS)
.

As shown above, resource management tools are key to control the dynamic resource provisioning and application deployment, and hence, to scale in a graceful manner. Again, specific distributed application architectures and technologies are used as well to scale the systems: distributed file systems, parallelization algorithms, message passing, etc. Datacenters can be replicated among different geographies to reduce user latency and improve the service performance.

Table 1 summarizes scaling solutions used in modern datacenters.

	Scale Type
	Mainframes
	Clusters

	Vertical
	· Add more CPUs, Memory or Disk

· Upgrade to a bigger model

· Add/improve software concurrency, compression, etc.
	· Add more CPUs, Memory or Disk to servers

· Add more bandwidth to network 

· Upgrade to a bigger server model

· Redistribute Application components

· Add/improve software concurrency, compression, etc.



	Horizontal
	None
	· Add more server nodes

· Add/improve parallelization algorithms


Table.1 Mainframe vs Datacenters scaling points.

2.3 Grids & Clouds
In contrast to warehouse-scale systems, Grid and Cloud technologies have emerged to allow resource sharing between organizations. Also called Service-Oriented Infrastructures, their aim is more “general-purpose” as they have to host a number of different applications from different domains and types of organizations (research, governance or enterprise).  Anyway, most of functions they should provide are in common, and “public” functions could be adopted by “private” infrastructures and vice-versa.

The Grid is one of such technologies extending the scale of computing systems by aggregating commodity resources belonging to different administrative domains into one or more virtual organizations. More formally, the Grid is defined as a “system that coordinates resources which are not subject to centralized control, using standard, open, general-purpose protocols and interfaces to deliver nontrivial qualities of service” [9]. More recent definitions emphasize the ability to combine resources from different organizations for a common goal [8]). In [10,11] the concern is about coordination of resources from different domains and how those resources must be managed.

Apart from aggregating more organizations into a single virtual organization, a given service was hard to scale and the Grid, as it is traditionally conceived, offered no mechanisms for helping Grid Service developers to scale their systems in accordance with changes in demand. In this regard, the Grid was no different to previous information technology (IT) systems: an administrator should detect service overloads and manually scale the system relying on performance metrics relevant for the service in question. Also, the number of nodes a Virtual Organization comprises may be well below the number needed to accomplish the intended task.

Recently, another paradigm, the Cloud, came into the scene to help increase the scalability provided to the end user. However, the distinctions are not clear maybe because Clouds and Grids share similar visions: reducing computing costs and in-crease flexibility and reliability by using third-party operated hardware [1]. For example, Grids enhance fair share of resources across organizations, whereas Clouds provide the required resources on demand, making the impression of a single dedicated resource. Hence, there is no actual sharing of resources due to the isolation provided through virtualization. Nevertheless, virtualization technologies are also being used to help Grids scale at the vertical level (e.g. adding more re-sources to a virtual machine). Other important difference between traditional grids and the Cloud has to do with the employed programming model.  For example, a Cloud user can deploy Enterprise Java Beans-based applications just as he can deploy a set of Grid services instead. The Cloud will treat them both equally. However, by definition, Grids accept only “gridified” applications [1,11], thus imposing hard requirements to developers. Although virtual organizations share the hardware (and its management) costs, they are still higher than “renting” the required capacity right when it is needed. This is indicating that the provisioning model is a very important element when it comes to determine the potential scalability of our IT system.

In the Grid, left hand side of the Figure 3 below, a job request (1) was matchmaker by a broker to some available resources found in an information service (2), resources are reserved to guarantee appropriate execution (3) and arranged in a workflow system (4) controlling the coordinated action of the allocated resources (5). On an infrastructure as a service Cloud, the user is in charge of providing the packaged software stack (1), and the cloud manager finds available resources (2,3) to host the virtual machines containing the software stack (4). These represent two completely different provision and management philosophies.
Cloud computing paradigm shifts the location of computing resources to the net-work to reduce the costs associated with the management of hardware and soft-ware resources. On-demand provision of resources and scalability are some essential features of the Cloud. The Cloud offers many of the typical scaling points that an application may need including servers, storage and networking service underlying resource resizing (in an Infrastructure as a Service, IaaS, Cloud), or advanced development and maintenance platforms for reduced service time to market (in Platform and Software as a Service, PaaS/SaaS, Clouds). Thus, the Cloud could arguably be defined not as a technological advance, but as a model for dynamic service provision, where a service is anything that can be offered as a networked service (XaaS) [1].
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Figure 3.  Grid vs Cloud Provisioning Models.
The on-demand nature of Cloud computing combined with the aforementioned pay-per-actual-use model means that as application demand grows, so can the re-sources you use to service that demand. In this situation, the system eventually reaches a balance and allocated capacity equals demand as long as your application was designed properly and its architecture is amenable to appropriate scaling. Ideally applications in IaaS Cloud deployments should operate in terms of high-level goals and not present specific implementation details to administrators [14]. Existing strategies require developers to rewrite their applications to leverage the on-demand resource utilization, thus lock applications to specific Cloud infrastructure. Some approaches structure servers into a hierarchical tree to achieve scalability without significantly restructuring the code base [15]. Also, profiles are used to capture experts’ knowledge of scaling different types of applications.  The profile-based approach automates the deployment and scaling of applications in Cloud without binding to specific Cloud infrastructure [13,17]. Similar methods can be employed that analyze communication patterns among service operations and the assignment of the involved services to the available servers, thus optimizing the allocation strategy to improve the scalability of composite services [18].

The need for the above strategies and code rewriting clearly indicates the difficult-ties in scaling an application in the Cloud. Although some remarkable attempts have been made that try to add automatic scaling capabilities to service-based systems (see [12] for example), these are often hard to develop, too dependent on the specific application, and hardly generalizable to be offered as a general-purposed service. Thus, current commercial Grid and Cloud systems rely also on user know-how on the ‘maximum’ capacity and build out to that capacity. This implies that the system is usually in one of two modes: either under-buying or overbuying (see Figure 4). Unlike the Grid and previous provisioning methods for IT systems, the Cloud allows service providers to simply add capacity as needed, typically with lead times of minutes. The pay-per-actual-use model lets one pay only for what is actually provisioned.
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Figure 4. Cloud computing techniques to reduce over- and under-provisioning

In spite of the flexible provision and billing models, the degree of automation and integration with underlying monitoring systems offered by most existent Cloud systems are to be further developed. The key to effective on-demand scaling is accurate utilization metrics. At the forefront, Amazon’s Cloud Watch and Auto-scale
 features allow some integration of the underlying monitoring system (providing infrastructure metrics, such as CPU usage) and a service for reacting on some user-defined conditions. Also, RightScale
 allows automating some trigger actions based on infrastructure metrics or on user-defined scripts put in the deployed servers. However, user customization degree of the rules scaling is based on and application–level metrics are hard to be included, resulting in low automation for high level rules or metrics (e.g. service requests over a time period), which are closer to the Cloud user mindset. 

Besides adding more machines on demand, the underlying virtualization technologies inherent to the Cloud, allow one to include vertical scaling (more resources can be added on the fly to a virtual machine).  Unfortunately, this very desirable feature is no yet supported by most operating systems (they need a fixed CPU and memory size at boot time).

Summing up, although IaaS Clouds have taken system scalability a step further (see Table 2), defining automatic scalability actions based on custom service metrics is not supported as of today. In fact, today no Cloud platform supports the configuration of certain business rules, as for example limits on the maximum expenses the SP is willing to pay so she does not go bankrupt due for example to Economic Denial of Sustainability (EDoS) attacks.
	Grid
	Cloud

	· Adding new organizations (and their shared resources) to the virtual organization.

· Manual service scaling.


	· “Renting” resources on-demand. 

· Preliminary automation means to enforce scaling rules. 

· Horizontal scaling thanks to hypervisor technology.


Table 2. Scaling Potential of Current Grid and IaaS Clouds.

While IaaS Clouds and Grids can be different with regard to their scalability potential (see Table 2), PaaS/SaaS
 Clouds still need to make huge progress towards helping to increase the required levels of automation and abstraction.

Just-in-time scalability is not achieved by simply deploying applications in the Cloud. SaaS scaling is not just about having a scalable underlying (virtual) hardware, but also about writing scalable applications. Valuable rules of thumb have been provided by PaaS platforms such as Google’s App Engine
. These include minimizing work, paging through large datasets, avoiding datastore contention, sharding counters, and effective memory cache. These techniques indicate that, as of today, traditional techniques for helping applications scale need to arise from programmers crafting the scaling points.

More sophisticated means are being called upon for avoiding customers to have to become experts in thread management or garbage-collection schemes. The Cloud, itself, should provide such facilities for programmers as a service (PaaS). One of the big advantages of the Cloud is that it could be used to split up a program so that different instructions can be processed at the same time. But it is hard to write the code needed to do that with most programming languages. For instance, C and other programming languages offered MPI APIs for performing the parallelization of instructions within a computational cluster. However, traditional programming environments provide inadequate tools, because they place the burden to developers who should operate at a too low level of abstraction. 

One such effort is the BOOM (Berkeley Orders Of Magnitude) project, which aims to build easily scalable distributed with less code including GFS, Map/Reduce and Chubby, and then allow these components to be reconfigured and recomposed to enable new distributed systems to be easily constructed at low cost [19].

Lacking such mechanisms results in particular solutions that can hardly be generalized and offered as a service. More general approaches tackle application domain knowledge to increase application scalability by minimizing the changes need to be done to the application’s code. This has been applied, for example, to online social networks by getting advantage of the graph structure. Groups are separated in different servers and the nodes belonging to several groups are replicated in all the group servers [20]. 
2.4 Application Scalability
The example above ([20]) clearly indicates that not all the applications are well suited to scale in the Cloud. While this is an ideal environment for Web applications, transactional applications, cannot be “cloudified” in such an easy manner. 

Web applications can be scaled horizontally and vertically and spread over several datacenters without firewalls (or any other network related) problems. Web applications are usually stateless, which implies that migrating services from a location to another does not imply any shortcoming for application performance. Also, as new replicas are added (horizontal scaling), load balancers can evenly reroute requests to any available replica. 

Databases cannot be ported to the Cloud so easily, though. They do not rely on Internet-ready protocols (such as HTTP), so problems are to be found in a highly distributed and multi-tenant environment such as the Cloud. Also, they are inherently stateful and rollbacks and commits are needed features for an appropriate service behavior. This latter premise implies that services cannot be migrated or located anywhere. Legal restrictions also restrict the migration and actual location of some very sensitive data (although these not technical implications fall beyond this Chapter’s scope). Database replication is usually done by expert administrators and is very often dependent on the specific data model. The replication strategy affects load balancing, which further complicates providing transactional applications with automated scalability.

New transactional-like SaaS applications should rely on some basic programming concepts that web applications have been using to achieve high performance or high availability in large-scale deployments [7], not trying to emulate traditional transactional architectures:

· Data Replication (this makes updates more complex)

· Sharding (partitioning) data set into smaller fragments and distributing them among a large number of servers.

· Dynamic Load Balancing by biasing the sharding policy to equalize the workload per node.

· Health checking and watchdog timers: it is critical to know if a server is too slow or unreachable to take actions as soon as possible. Timeouts to remote requests and heartbeat techniques should be used.

· Integrity checks to avoid data corruption

· Application-specific compression
· Eventual Consistency: large-scale systems relax data consistency during limited periods that will return eventually to a stable consistent state.
2.5 Automating Scalability

Automatic scalability at the application level can be implemented in several manners. The two most significant ones are:

1. Users provide a set of rules in a well-defined language (e.g. see [25]) that feeds an “application controller” acting on behalf of the user and in charge of enforcing the specified scalability rules. 
2. Design and implement application-specific algorithms or statistical methods for the controller to know when the application should scale without having to resort to users direct actions in an expert system.
As for the first approach above, a very relevant example will be given below (see Section 3.2). Suffice to say here that rule-based systems provide meaningful descriptions on the appropriate conditions to scale and datamining techniques can be employed to extract relevant rules and help users (service providers) to gain runtime knowledge on their application performance and optimization techniques. On the other hand, algorithmic techniques (by this, we also mean statistical tools, neural networks, or traditional control theory techniques) provide a degree of control for real-time response that cannot be attained by rule-based systems yet. This section is focused on some of these systems’ features.

Figure 5 describes a QoS (Quality-of-Service) management solution for a Web application based in Control-Theory [27]. Extending these concepts to an application in an IaaS Cloud, the control loop that tries to avoid system overloads and meet the individual response time and throughput guarantees would be:

· Service Application: the service application to be executed in one or more virtual machines in the Cloud. 

· Monitor: it provides feedback about resources utilization based on available measures such as CPU, disk memory and network bandwidth.

· Controller: given the difference between the desirable QoS and resources utilization (as measured by the monitor component), the controller has to decide on the corrective actions to meet the QoS target. Thus, control theory offers analytic techniques for closing the loop such us modelling the system as a gain function that maximizes the resource utilization between acceptable margins.

· Actuator: it translates abstract controller outputs into concrete actions taken by the Cloud middleware to scale up/down the service components to change its load. 
Here we highlight an open challenge for dynamic scalability in the cloud: finding a controller that could model a service deployed in a Cloud and make the system to scale as expected.
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Figure 5. Control Loop for a Web Server Process [27].

In [26] the authors proposed the use of Adaptative Resource Allocation (ARA) in real-time for embedded system platforms. ARA mechanisms promptly adjust resource allocation (vertical scalability) to changes in runtime variations of the application needs whenever there is a risk of not meeting its timing constrains avoiding “over-sizing” real-time systems to meet the worst-case scenario. ARA models an application as a set of interconnected software components which execution is driven by event streams:

· Resource Usage Model: describes an application’s expected computational and communication needs and the runtime variations of them.
· Adaption Model: acceptable configurations in terms of expected resource needs and application-specific configuration overheads.
This model could be generated by static and dynamic profiling tools that analyze the source code and the application runtime under different workloads, respectively. The ARA controller, then, detects a risk of not meeting performance targets, so that it calculates an acceptable configuration and a more appropriate resource allocation. Resource needs estimations are done based on node characteristics (processor speed factor, communication links speed, communications overhead) and the application static (parallelism level, execution time, number of interchanged messages and processor speed factor) and dynamic (execution factor, intra-component message exchange factors) resource usage models.

Similar real-time techniques based on mathematical application profiling and negative feedback loops, such us ARA, could be adapted to the Cloud scalability automation problem and represent future research challenges. Indeed, time series prediction is a very complex process and very specific for certain application domains (or even very specific applications).
3. Scalable Architectures

3.1 General Cloud Architectures for Scaling
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Figure 6. General Architecture of the Cloud.

Several architectures have been proposed to structure the Cloud and its applications. Buyya et al. proposed a QoS-enabling architecture for the Cloud, which presented accounting, pricing, admission control and monitoring as key enablers for its realization [21]. Based on this one, a more complete architectural model has recently been proposed by Brandic et al. [22]. Although these architectures were too QoS oriented (a crucial element for Clouds to become a real option for big enterprises), some essential shared elements have been identified [23]. Based on these common elements, an integrated Cloud computing stack architecture to serve as a reference point has been proposed. Based on this one, we further generalize it (see Figure 6) to give a clear overview.
In spite of its widespread acceptance, this architecture is too general for illustrating the major points raised so far. Throughout this section we have been dealing with the problems of scalability at the different layers of the Cloud. Here we summarize the major mechanisms for Cloud-enabled scalability as of today (see Table 3 below). 

While scalability and basic automation low level mechanisms have already been implemented for IaaS clouds (and many more are to be developed towards full automation and appropriate abstraction level). At the PaaS level, a “Cambrian” period is still to happen in order to increase the number of techniques to help scale the applications in the Cloud in a seamless backwards-compatible manner. These techniques are expected to be implemented by the developer herself, rather than helping to build really advanced scaling services by relying on platform-offered services. This change will shift current SaaS scaling efforts from programmers to the underlying platform.
	
	Scalability Today
	Scalability Evolution

	IaaS
	Infrastructure level metrics

Limited automation

Virtual machine rules
	Service level metrics

Full automation

Whole service rules

	PaaS
	Few available techniques
	Great expansion potential by providing advanced development environments helping to develop Cloud applications.

Help to exploit inherent parallelism in the developed code that can benefit from distributed architectures.

	SaaS
	Traditional development techniques. Huge burden for programmers
	Services built on top of the PaaS-offered scaling techniques


Table 3. Architectural Comparison of the Cloud Scaling Status

3.2 A Paradigmatic Example: RESERVOIR Scalability
Resources and Services Virtualization without Barriers is a European Union FP7 co-funded project enabling massive scale deployment and management of complex services across administrative domains [24]. RESERVOIR
 is structured in a layered architecture that can essentially be comprised in the IaaS layer above (managing virtualized and physical resources and cluster of these resources). One of the essential innovations of this effort with regard to scalability is the definition of techniques and technology for federation several independently-operated RESERVOIR sites. Federation allows a given Cloud provider to outsource some services and “rent” external resources in a seamless manner.

However, this scalability strategy is somewhat similar to that employed by Clouds as compared to Grids.  Additional means are required to enable an appropriate architecture for networked services scalability. In order to overcome current IaaS scalability limitations (see Table 2 above), RESERVOIR proposes a new abstraction layer closer to the lifecycle of services that allows for their automatic deployment and escalation depending on the service status (not only on the infra-structure status).  These features exceed pure IaaS capabilities, but remain essential for actual scalability across layers.

RESERVOIR Service Management (SM) layer automatically handles the service lifecycle and automatically scales services depending on service-level scaling “rules” and metrics. This is done with an abstraction closer to that managed by the service programmer. In the example below, a rule consists of a condition (number of tasks per executor node greater than 50, and there are less than 3 executors running) and an associated action if the rule is meet (create a new replica). This is specified in a candidate standard manner [25]:

<rsrvr:Rule>

  <rsrvr:RuleName>rule2</rsrvr:RuleName>

  <rsrvr:RuleType>AgentMeasureEvent</rsrvr:RuleType>

  <rsrvr:Trigger checkingPeriod="5000ms"    

 condition="(@{kpis.QueueLength}/(@{components.VEEBigExecutor.replicas.amount}*3 + @{components.VEEExecutor.replicas.amount} +1)&gt; 50) &amp;&amp; (@{components.VEEExecutor.replicas.amount} &lt; 3)"/>
  <rsrvr:Action run="createReplica(components.VEEExecutor)"/>

</rsrvr:Rule>
In spite of these significant advances for IaaS Clouds, RESERVOIR does not deal with PaaS nor SaaS scalability, letting an important part of the problem to be solved by future research efforts.
3. Conclusions and Future Directions
Scalability has followed a twisted line being applied to mainframes, distributed systems, back to mainframes and back to a “centralized” Cloud which is distributed and heterogeneous, but seen as a single entity by edge devices accessing the Cloud through standardized interfaces in order to execute services. Scaling capabilities have, thus, meandered between horizontal and vertical scalability, following the preponderant trend to systems design and implementation. This Chapter has very briefly reviewed the major features with regard to scalability as offered by some of the most salient centralized and distributed systems appeared as of today. 

Here we have shown some of the most prominent examples of Cloud-enabled scalability at the different Cloud layers. It is important to note that this scalability is offered in a transparent manner for the end user (either a service provider or a service consumer). 

Virtual Machines (VMs) in IaaS Clouds can scale horizontally (by adding more service replicas to a given service) or vertically (by assigning more resources to a single VM). IaaS Clouds themselves can be scaled vertically (by adding more clusters or network resources) or by attaining federation features with other externally managed datacenters (Cloud federation). Users are kept totally unaware of these scaling features and delivered with the illusion of infinite resources.

However, IaaS scalability is still too service-level oriented, meaning that scaling decisions are made on the basis of pure infrastructural metrics. Thus, user’s involvement in service management is still required (not quite so with regard to VM management in which a relevant degree of automation has been reached). Full automation and application of scalability rules (or load profile–based models) to control services in a holistic manner are granted for future developments on top of IaaS Clouds. These advanced high-level management automation capabilities lay close to the aforementioned PaaS features. However, they deal with deployment and runtime service lifecycle stages only. More elements helping to reduce services’ time to market and provide further support for application design, development, debugging, versioning, updating, etc. are still very much needed. For example, some benchmarks specific for Cloud environments are already under way [17]. Specific benchmarks for the scaling potential of applications on the Cloud are also to be developed. Generally speaking, the scaling applications in the Cloud will face some “old-fashioned challenges”, detecting code parallelism (which could be offered as a PaaS Cloud service), distributing application components in clusters and service operations in cores (for multi-core architectures) will remain subject to massive research in future Clouds supporting actually scalable applications on the Cloud.

These whole service lifecycle facilities, including service scalability, will help to deliver advanced services in a shorter time and minimizing management burdens. 
Some other issues remain to be solved, though. In order to scale cloud services reliably to millions of service developers and billions of end users the next generation cloud computing and datacenter infrastructure will have to follow an evolution similar to the one that led to the creation of scalable telecommunication networks [16].
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