
Scheduling Service Oriented Workflows Inside
Clouds Using an Adaptive Agent Based
Approach

Marc Eduard Frı̂ncu

1 Introduction

In recent years Cloud Computing (CC) emerged as a leading solution in the field of
Distributed Computing (DC). In contrast, Grid Computing lacked the open-world
vision of overcoming some fundamental problems including transparent and easy
access to resources, licensing or political issues, lack ofvirtualization support or to
complicated to use architectures and end-user tools.

Clouds have emerged as a main choice for service vendors mostly due to
their support for virtualization and service oriented approach. Inside clouds al-
most everything can be offered as a service. This has led to the appearance of sev-
eral paradigms including Software as a Service (SaaS), Infrastructure-as-a-Service
(IaaS) or Platform-as-a-Service (PaaS).

As more users begin to use clouds for storing or executing their applications these
systems become susceptible to workload related issues. Theproblem is even harder
when considering complex tasks which require accessing services provided by dif-
ferent cloud vendors (see Fig. 1) each with their own internal policies. Selecting the
optimal /fastest service for a specific task becomes in this case an important problem
as sometimes users are paying for their time spent using the underlying services.

Consequently scheduling tasks on services becomes even more difficult as inside
cloud environments each member uses its own policies and is not obligated to adhere
to outside rules. We end up with a bundle of services from various providers that
need to be orchestrated together in order to produce the desired outcome inside a
given time interval. Keeping the execution inside this interval minimizes production
and client costs. As service selection requires some negotiation between providers
one of the simplest and straightforward solutions is to use distributed agents that
play the roles of service providers and clients.

Marc Eduard Frı̂ncu
Institute e-Austria, Blvd. Vasile Parvan No 4 300223, Room 045B, Timisoara, Romania e-mail:
mfrincu@info.uvt.ro

1



2 Marc Eduard Frı̂ncu

Fig. 1 Connecting devices to
some of the existing clouds

This paper presents an agent based approach to the problem oftask scheduling
inside clouds. Two major problems are dealt with: finding cloud resources and or-
chestrating services from different cloud vendors towardssolving a common goal.
Certain deadline and cost constrains are assumed to exist. Even though the empha-
sis is put on workflow tasks, independent tasks can also be handled. Towards this
aim we first present some solutions to the problem of task scheduling inside clouds.
Then we present some issues regarding task scheduling inside Service Oriented En-
vironments (SOE) together with some details on workflow scheduling. A detailed
overview on a distributed agent based scheduling platform architecture capable of
adapting itself to resource changes is also given. Finally aconcrete experimental
prototype and some conclusions are presented.

2 Related Work on DS Scheduling

Lot of work has been carried out in what concerns task scheduling inside Distributed
Systems (DSs). This work can be divided into specialized Scheduling Algorithms
(SAs) for clouds and Resource Management Systems (RMS) which discover ser-
vices and allocate tasks to them. In what follows we briefly present some of the
main work concerning both SAs for CC and RMS for DSs.

Concerning the development of efficient SAs for DSs, nature has proven to be
a good place of inspiration. Recent papers such as [30], [41]try to cope with the
problem of task scheduling by offering meta-heuristics inspired from behavioral
patterns observed in ant colonies. This technique also called Ant Colony Optimiza-



Scheduling Service Oriented Workflows Inside Clouds 3

tion (ACO) relies on the fact that ants inside a colony act as independent agents
which try to find the best available resource inside their space by using global search
techniques. Each time such an agent finds a resource better than the already existing
one it marks the path to it by using pheromones. These attractother ants which start
using the resource until a better one is found.

In [5] an ACO based approach for initiating the service load distribution inside
clouds has been proposed. Simulated results on Google Application Engine [27]
and Microsoft Live Mesh [32] have shown a slight improvementin the throughput
of cloud services when using the proposed modified ACO algorithm.

The biggest disadvantage ACO has over other approaches is that it is not very ef-
fective when dynamic scheduling is considered. The reason for this is that reschedul-
ing requires a lot of time until an optimal scenario is reached through intensive
training given by multiple iterations. Because DSs are bothunpredictable and het-
erogeneous each time a change is noticed the entire system needs to be trained again.
This process which could last several hours. The large retraining time interval is not
acceptable when tasks are scheduled under deadline constraints as the scheduling
could take longer than the actual task execution. An improvement on this might be
given by mixing the time consuming global search with local search when minor
changes occur inside the DS. However defining the notion of minor changes is still
an open issue.

Paper [26] deals with High Performance Computing (HPC) taskscheduling in-
side clouds. Energy consumption is important both in what concerns the user costs
and in relation to the carbon emissions. The proposed meta-scheduler takes into
consideration factors such as energy costs, carbon emission rate, CPU efficiency
and resource workflows when selecting an appropriate data center belonging to a
cloud provider. The designed energy based scheduling heuristics shows a signifi-
cant increase in energy savings compared with other policies.

Most of the work concerning RMSs has evolved around the assumption of apply-
ing them onto grids and not clouds. This can be explained by two facts. The first one
is that there are many similarities between a cloud and a gridand RMS developed
for one type could also work well on the other. The second one is related with age,
and as grids emerged earlier than clouds most of the solutions have been developed
for the former. Nonetheless several of the grid oriented RMSs could be adapted to
work for clouds too.

One example is represented by the CloudScheduler [17]. It allows users to set up
a Virtual Machine (VM) and submit jobs to a Condor [48] pool. The VM will be
replicated on machines and used as container for executing the jobs.

In what follows we present some of the most known examples of RMS for DSs
in general.

Notable examples include the Globus-GRAM [20], Nim- rod/G [8], Condor [48],
Legion [16], NetSolve [14] and others. Many of these solutions use fixed query
engines to discover and publish resources and do not rely on the advantages offered
by distributed agents.



4 Marc Eduard Frı̂ncu

The ARMS [9] system represents an example of agent based RMS.It uses PACE
[10] for application performance predictions which are later used as inputs to the
scheduling mechanism.

In paper [45] a multi-site agent based scheduling approach consisting of two dis-
tinct decision levels one global and the other local is presented. Each of these levels
has a predictive and a reactive component for dealing with workload distribution
and for reacting to changes in the workloads.

Paper [11] presents a grid load balancing approach by combining both intelligent
agents and multi-agent approaches. Each existing agent is responsible for handling
task scheduling over multiple resources within a grid. As in[45] there also exists
a hierarchy of agents which cooperate with each other in a peer to peer manner
towards a common goal of finding new resources for their tasks. This hierarchy is
composed of a broker, several coordinators and simple agents. By using evolutionary
processes the SAs are able to cope with changes in the number of tasks or resources.

Nimrod/G uses agents [2] to handle the setup of the running environment, the
transport of the task to the site, its execution and the return of the result to the client.
Agents can also record information acquired during task execution as CPU time,
memory consumption etc.

Paper [46] proposes a system which can automatically selectfrom various negoti-
ation models, protocols or strategies the best one for the current computational needs
and changes in resource environment. It does this by solvingtwo main issues DS
have to dealt with [9]: scalability and adaptability. The work carried in [46] creates
an architecture which uses several specialized agents for applications, resources,
yellow pages and jobs. Job agents for example are responsible for handling a job
since its submission and until its execution and their lifespan are restricted to that
interval. The framework offers several negotiation modelsbetween job and resource
agents including contract net protocol, auction and game theory based strategies.

AppLeS (Application-Level Scheduling) [7], [15] is an example of a method-
ology for adaptive scheduling also relying on agents. Applications using AppLeS
share a common architecture and are scheduled adaptively bya customized schedul-
ing agent. The agent follows several well established stepsin order to obtain a sched-
ule for an application: resource discovery, resource selection, schedule selection,
application execution and schedule adaptation.

3 Scheduling Issues Inside Service Oriented Environments

Scheduling tasks inside SOE such as clouds is a particular difficult problem as there
are several issues that need to be dealt with. These include:estimating task runtimes
and transfer costs; service discovering and selection; negotiation between clients
and different cloud vendors; and trust between involved parties. In what follows we
address each of these problems separately.



Scheduling Service Oriented Workflows Inside Clouds 5

3.1 Estimating Task Runtimes and Transfer Costs

Many SAs require some sort of user estimates in order to provide improved schedul-
ing solutions. The estimates are either user estimated or generated by using methods
involving code profiling [31], statistical determination of execution times [18], lin-
ear regression [33] or task templating [4], [47]. When applied to SOE these methods
come both with advantages and disadvantages as it is shown inthe next paragraphs.

In SOE there is not much insight on the resource running behind the service
and thus it is hard for users to obtain information that can help them give a correct
runtime estimate.

User given estimates are dependent on the user’s prior experience with execut-
ing similar tasks. Users also tend to overestimate task execution times knowing
that schedulers rely on them. In this case a scheduler, depending on the schedul-
ing heuristics, could postpone other tasks due to wrong information. To deal with
these scenarios schedulers can implement penalty systems where tasks belonging to
these harmful users would be intentionally delayed from execution.

Sometimes it is even difficult for users to provide runtime estimates. These situ-
ations usually occur due to the nature of the service. Considering two examples of
services, one which processes satellite images and anotherone which solves sym-
bolic mathematical problems we can draw the following conclusions. In the first
case it is quite easy to determine runtime estimates from historical execution times
as they depend on the image size and on the required operation. The second case
is more complicated as mathematical problems are usually solved by services ex-
posing a Computer Algebra System (CAS). CASs are specific applications which
are focused on one or more mathematical fields and which offerseveral methods
for solving the same problem. The choice on which method to choose depends on
internal criteria which is unknown to the user. A simple example is given when con-
sidering large integer (more than 60 digits) factorizations. These operations have
strong implications in the field of cryptography. In this case factorizingn does not
depend on similar values asn-1 or n+1. Furthermore the factoring time is not linked
to the times required to factorn-1 or n. It is therefore difficult for users to estimate
runtimes in these situations. Refining as much as possible the notion of similarity
between two tasks could be an answer to this problem but in some cases, such as the
one previously presented this could require searching for identical past submissions.

Code profiling works well on CPU intensive tasks but fails to cope with data
intensive applications where it is hard to predict execution time before all the input
data has been received. Statistical estimations of run times face similar problems as
code profiling.

Templating has also been used for assigning task estimates by placing newly ar-
rived tasks in already existing categories. General task characteristics such as owner,
solver application, machine used for submitting the task, input data size, arguments
used, submission time or start time are used for creating a template. Genetic algo-
rithms can then be used to search the global space for similarities.

Despite the difficulty in estimating runtimes there are SAs which do not require
them at all. These algorithms take into consideration only resource load and move



6 Marc Eduard Frı̂ncu

tasks only when their loads become unbalanced. This approach works well and tests
have shown that scheduling heuristics such as Round-Robin [25] give results com-
parable to other classic heuristics based on runtime estimates.

In SOE the problem of providing runtime estimates could be overcome by an-
other important aspect related with service costs which is execution deadlines. In
this case it does not matter how fast, how slow or where a task gets executed as long
as it gets completed inside the specified time interval. Consequently when submit-
ting jobs inside clouds users could attach deadline constraints instead of runtime es-
timates to either workflows or batch tasks and hope they will not be significantly ex-
ceeded. Deadline based scheduling heuristics are specifically useful in cases where
users rent services for specific amount of times.

Related with task runtimes is the transfer costs for moving atask from a resource
to another. In SOE this is a problem as usually little or nothing is known about
the physical location and network route towards a particular service. When moving
large amounts of data such as satellite images up to several hundreds of mega-bytes
in size the transfer cost becomes an issue. In addition to thetime needed to reallocate
data problems including licensing and monetary cost arise.There are cases when
proprietary data such as satellite images that belong to certain organizations cannot
be moved outside their domain (cloud). In this case reallocation to a cloud which
provides faster and/or cheaper services for image processing is not possible due to
licensing issues.

Task reallocation involves more than simply moving depended data. Clouds rely
heavily on virtualization and thus sometimes in orders to execute tasks VMs with
certain characteristics need to be created. As a result whenreallocating a task the
entire VM could require relocation. This implies several other issues such as stop-
ping and resuming preemptive tasks or restarting non-preemptive tasks once they
are safely transfered. The problem of transfer costs is thusmore problematic than at
first glance.

3.2 Service discovery and selection

Services (SOAP-based [36], RESTful [36], Grid Services [20]) are an important part
of cloud systems. They allow for software, storage, infrastructure or entire platforms
to be exposed through a unitary interface which can be used bythird party clients.
Each service vendor exposes its services to the general public so that the latter can
use them, free or at a cost, in order to solve a particular problem.

Inside this sea of services there is also a constant need of discovering proper
services for solving a particular task. Universal Description Discovery and Integra-
tion (UDDI) [49] registries offer a solution to this problem. Each service provider
registers its services to an UDDI which in turn is used by service consumers for
searching specific services. With the occurrence of Web 2.0 these searches could be
enhanced with semantic content. Once such a service is foundits interface can be



Scheduling Service Oriented Workflows Inside Clouds 7

used for submitting tasks and for retrieving their results.Figure 2 shows the typical
correspondence between services, UDDIs and clients.

After successfully finding a number of possible candidate services there remains
the problem of selecting the best one for the task. In this direction the schedul-
ing heuristics plays an important role as based on several criteria it will select the
service which is most likely to minimize the execution costs. It should be noted
that depending on whether the scheduling heuristics is adaptive or not a task could
be reallocated several times before actually being executed. Task reallocation faces
several problems as addressed in Sect. 3.1.

3.3 Negotiation Between Service Providers

Negotiation plays an important role in task scheduling whenservices from multiple
clouds are involved in solving a given problem. Usually the negotiation is linked to
the phase of service selection and involves a scheduler request for a particular ser-
vice characteristic. When considering it smaller execution costs could be achieved.

Negotiation can also involve the decision on what data/tasks are allowed to be
submitted to the service and whether the service provider can further use the sub-
mitted data/tasks for its own purposes or not.

As most of the times details regarding the VM or application that is exposed as a
service are hidden from public the negotiation requires theintroduction of negotiator
entities which handle pre-selection discussions in the service/cloud name. Usually
this stage is accomplished by one or more agents [11], [45]. Details regarding the
involved agents will be given in Sect. 5. Depending on the outcome of the negotia-
tion either access to the desired service is either granted or a new negotiation with
another agent proceeds.

Fig. 2 Finding and invoking
services using UDDIs



8 Marc Eduard Frı̂ncu

3.4 Overcoming the Internal Resource Scheduler

An important problem RMSs need to overcome in SOE is that of the internal sched-
uler used by the service provider. This scheduler is neitherinfluenced nor bypassed
by outside intervention. As a result it is said that scheduling between services is ac-
complished by a meta-scheduler [51] that deals with tasks atservice level, leaving
the resource level scheduling to the internal Virtual Organization (VO) schedulers
(see Fig. 3). These internal schedulers handle tasks assignments depending on their
own policies and thus there is no guarantee that the task submitted by the meta-
scheduler will be executed inside the cost constraints negotiated at the time of the
submission.

As a result of the negotiation between the meta-scheduler and the service provider
the latter could try to favor the task by increasing its priority. This action is in the
interest of the provider as it could get penalized, with its service trust greatly dimin-
ished, for constantly exceeding the imposed deadlines. Consequently future deci-
sions made by the meta-scheduler could ignore the service and the provider would
suffer cost losses. We obtain therefore a symbiotic relationship between the meta-
scheduler and the service provider that allows both of them to gain advantages: the
service provider’s trust will increase when executing tasks faster and thus its in-
come will increase by receiving more tasks; and the meta-scheduler will execute
tasks faster, minimizing the costs of the client that submitted them.

Fig. 3 Scheduling and meta-scheduling in multi-VOs



Scheduling Service Oriented Workflows Inside Clouds 9

3.5 Trust in Multi-cloud Environments

When executing tasks on remote services a certain trust level between peers is
needed. Trust issued occurs due to many problems including the block box approach
of services and because of security issues.

Services cannot be trusted as their interfaces act as black boxes with the content
changeable without notice. Thus a service requestor needs to be sure that what it
accesses is the same as what was advertised by the service. Ifthis is not the case
then the VM running behind the service would not be able to solve the given task
inflicting possible cost losses due to time spent for serviceselection and task sub-
mission.

Security issues are also important and are closely linked tothe previous problem.
These problems can affect both the service requestor and theservice provider. The
former is usually affected when the data it submits is used for other purposes than
those decided during negotiation (e.g. cloning of copyrighted data). The latter can
also be affected when data intended to harm the vendor is sentto it. A comprehen-
sive insight on the security issues inside DSs is given in paper [13].

Trust is usually achieved through digital certificates suchas the X.509 certificates
that are widely used in Web browsers, secure email services,and electronic payment
systems.

When using certificates clients usually request one from service providers in or-
der to be granted access.

Web-SOAP and Grid-SOAP services handle security issues by using the WS-
Security standard [55]. It allows parties to add signaturesand encryption headers
to SOAP messages. An extension to WS-Security, WS-Trust [55], deals with issu-
ing, renewing and validating security tokens or broker trust relationships between
participants.

In addition to the WS-Security standard the Transport LayerSecurity (TLS) can
also be used. HTTPS for example can be used to cover Web-SOAP,Grid-SOAP and
RESTful services.

4 Workflow Scheduling

Workflows consist of several tasks bound together by data/functional dependencies
that need to be executed in a specific order for achieving the goal of the problem.
They are used especially in cases where the problem can be divided into smaller
steps each of them being executed by a distinct solver, or in our case WS. In a cloud
environment users usually submit their workflows to a service which orchestrates the
execution and returns the result. Whatever happens beyond the service interface is
out of reach and invisible to the client. The workflows can be created either by using
graphical tools [52] or by directly writing the code in a supported format such as
BPEL [53], YAWL [1], Scufl [28], etc. Once the workflow is submitted an enactment
engine is responsible for executing the tasks by sending them to corresponding WSs.



10 Marc Eduard Frı̂ncu

In our case these WSs are replaced by scheduling agents that try to schedule the tasks
on the best available service through negotiation with other agents. Once a task is
completed its result is sent back to the enactment engine which can proceed to the
next task and so forth.

An important problem in this communication chain is the return of the result to
the workflow engine. To solve this problem the address of the agent responsible for
the VO in which the engine is located in is attached to each submitted task. In this
way once the execution is completed the result is sent straight back to the agent that
initially received the task. This task is usually achieved by messages and will be
detailed in Sect. 5.2.

It can be noticed that no prior scheduling decisions are made, and that tasks are
scheduled one by one as they become ready for scheduling. This is necessary due
to the dynamism and unpredictability of the environment. Inpaper [24] a unified
scheduling model for independent and dependent tasks has been discussed. The goal
was to allow SA for independent tasks to be applied to workflows when dynamic
environments and online scheduling were considered.

Although this approach is suited when global scheduling decisions are needed
there are cases where the workflow engine cannot easily achieve task-to-resource
mappings [3] during runtime. Instead workflow SAs such as HEFT [43], Hybrid
[44] or CPA [39] could be used. However they only consider thetasks in the cur-
rent workflow when scheduling or rescheduling decisions areneeded. These algo-
rithms provide strategies to schedule workflow tasks on heterogeneous resources
based on the analysis of the entire task graph. Every time a workflow is submitted
tasks would first be assigned to resources and only then wouldthe workflow exe-
cution begin. The negotiation for resources thus takes place prior to runtime. This
static approach however is not suited for highly dynamic environments (for example
clouds) where: resource availability cannot be predicted;reservations are difficult to
achieve; a global perspective needs to be obtained; and deadline constraints require
permanent rescheduling negotiations.

In what follows we present an agent-based solution for scheduling workflows.
So called scheduling agents are used to negotiate, to schedule tasks and to send
the answer back to the workflow engine. Its aim is to provide a platform for on-
line workflow scheduling where tasks get scheduled only whenthey become ready
for execution. This means that a task whose predecessors have not completed their
execution is not considered to be submitted for execution.

5 Distributed Agent Based Scheduling Platform Inside Clouds

As clouds are unpredictable in what concerns resource and network load, systems
need to be able to adapt to the new execution configurations sothat the cost over-
heads are not greatly exceeded. Multi-Agent Systems (MAS) provide an answer for
this problem as they rely on (semi)decentralized environments made up of several
specialized agents working together towards achieving a goal through negotiation.



Scheduling Service Oriented Workflows Inside Clouds 11

While negotiating each agent keeps a self-centered point ofview by trying to mini-
mize its costs.

Although a good option when highly dynamic DS are involved, distributed ap-
proaches involve a great amount of transfer overhead [50] asthey require permanent
updated from their peers in order to maintain an up to date global view. Contrary,
centralized approaches do not require a lot of communication but their efficiency
peak is maximized mostly when dealing with DS that maintain arelatively stable
configuration.

Decentralized agent based solutions for task scheduling also arise as suited solu-
tions when considering a federation of multiple VOs each having its own resources
and implementing its own scheduling policies. Submitting tasks in such an envi-
ronment requires inter-VO cooperation in order to execute them under restrictions
including execution deadlines, workloads, IO dependencies etc.

A computing agent can be defined by flexibility, agility and autonomy and as de-
picted in [21] can act as the brain for task scheduling insidethe multi-cloud infras-
tructure. Agents allow resources to act as autonomous entities which take decisions
on their own based on internal logic. Furthermore an intelligent agent [45] can be
seen as an extension to the previously given definition by adding three more char-
acteristics: reactivity (agents react to the environment), pro-activeness (agents take
initiatives driven by goals) and social ability (interaction with other agents).

In order to take scheduling decisions agents must meet all the previous require-
ments. They need to quickly adapt to cloud changes and to communicate with others
in order to find a suitable service for tasks that need faster execution. In the con-
text of task scheduling agent adaptiveness includes handling changes in resource
workload or availability. In what follows we present a SOE oriented agent based
scheduling platform.

5.1 The Scheduling Platform

A distributed agent scheduling platform consists of several agents working together
for scheduling tasks. Inside a cloud consisting of several service providers (VOs),
agents have the role of negotiating and reaching an agreement between the peers.
Based on the meta-scheduling heuristics, the internal scheduler, the knowledge on
the services it governs and the tasks’ characteristics eachagent will try to negotiate
the relocation from/towards it of several tasks. In trying to achieve this goal agents
will also attempt to minimize a global cost attached to each workflow.

Agent based approaches can allow each cloud provider to maintain its own in-
ternal scheduling policies [23]. Furthermore they can alsouse their own scheduling
policies at meta-scheduling level. When deciding on task relocations every agent
will follow its own scheduling rules and will try to reach an agreement, through
negotiation, with the rest. These aspects allow VOs to maintain autonomy and to
continue functioning as independents unit inside the cloud. Autonomy is a manda-



12 Marc Eduard Frı̂ncu

tory requirement as VOs usually represent companies that want to maintain their
independence while providing services to the general public.

Every VO willing to expose services will list one or more agents to a Yellow
Pages online directory which can be queried by other agents wanting to negotiate
for a better resource.

Agents can be designed as modular entities. In this way we canadd new func-
tionalities to agents without requiring creating new agenttypes. This is different
from previous works [11], [45] which mostly dealt with hierarchies of agents. By
doing this we create a super-agent which tries to ensure thatthe tasks in its domain
get the best resources. In addition the need of having multiple agents working to-
gether for handling the same task is eliminated. Examples ofsuch agents include:
the execution agent, the scheduling agent, the transfer agent, the interface agent, etc.

In our vision all the previously listed specialized agents become sub-modules in-
side every agent. Thus each agent will have: a scheduling module, a communication
module, a service discovery module and an execution module.The sum of all agents
forms the meta-scheduler, which is responsible for the inter-service task allocation.
Figure 4 details this modular structure together with the interactions between agents
and other cloud components.

In what follows we divide the agents in two categories depending on whether
they initiate the request i.e. requestor agents, or they respond to an inquiry i.e. solver
agents. This division does not influence the characteristics of the agent and is only
intended to depict its role.

The communication module handles any type of message exchange with other
agents. It also facilitates the dialogue between modules such as between the schedul-
ing module and the service discovery module, or between the scheduling module
and the executor module.

Theservice discovery module allows each agent to discover services published on
UDDI’s located inside its own domain. Typically every resource or provider inside a
VO willing to offer some functionality to the general publicpublishes it as services
inside an UDDI. Once a service has been published it can be used by the scheduling
agent when reallocating tasks. This module is not used to discover services outside
the agent’s domain. The reason for this behavior is simple: every service outside
its domain is not controlled by the agent and thus not trusted. Trust on services is
achieved through negotiation with other agents.

The execution module is responsible for invoking the service selected for task
execution. Service invocation is usually achieved by creating a client tailored to fit
the service interface. The creation has to be done dynamically during runtime as it
is not feasible to maintain a list of precompiled clients on disc due to the number
and diversity of the existing services. Paper [12] presentsan API for accessing both
SOAP-based services and Grid Services by dynamically creating clients based on
the service WSDL (Web Service Description Language) [56]. It should be noted
that the execution module is not responsible for creating any VM required by tasks.
It is up to the resources behind the service to initialize anyrequired VMs based on
the task description.



Scheduling Service Oriented Workflows Inside Clouds 13

Fig. 4 Agent based scheduling platform

The scheduling module deals with task-to-service or task-to-agent allocations.
This module is the heart of the agent based scheduling platform and relies on
scheduling heuristics for taking its decisions. Every agent has one or more tasks as-
signed to it. Depending on the scheduling heuristics it can choose to execute some



14 Marc Eduard Frı̂ncu

of the tasks on services governed by agents outside its domain. In the same way it
can decide to accept new tasks from other agents.

Depending on the policies implemented by the VO there are twopossible sce-
narios that the scheduling module can face. The first occurs when the agent has no
information on the resources running the applications and all it sees are the inter-
faces of the services. The second is the case when an agent knows all there is to
know about the underlying resources i.e. workflow, characteristics, network topol-
ogy, etc. Both of these scenarios are important depending onhow the agent behaves
when a task needs to executed on one of its services.

The requestor agent submits the job either directly to the service or to the solver
agent. In what concerns the rest of this paper we deal with thelatter case. The
former option involves bypassing the VO scheduler represented by the agent. This
happens because the task will be handled directly by the internal resource scheduler.
As a consequence any further scheduling optimization at themeta-scheduling level
would be hindered.

The scheduling module inside an agent implements a scheduling heuristics de-
signed to deal with SOE. The scheduling heuristics can be seen as the strategy used
by the agent to select a resource for its tasks, while the interaction with other agents
represents the negotiation phase. The negotiation proceeds based on rules embedded
inside the strategy. A common bargaining language and a set of predefined partici-
pation rules are used to ensure a successful negotiation.

Each agent has several services it governs (see Fig. 5). Attached to them there
are task queues. Depending on the scheduling heuristics only a given number of
tasks can be submitted (by using the execution module) to a service at any given
moment. Once submitted to the service it is the job of the internal scheduler to assign
the tasks to the resources. Similarly to the service level queues there could also
exist queues attached to physical resources. Reallocationbetween these queues is
accomplished by the internal scheduler and is independent on any meta-scheduling
decisions taken by agents. Each resource behind a service can implement its own
scheduling policies. Usually tasks submitted to a service are not sent back to the
agent for meta-scheduling. There are many ways of checking whether a task has
been completed or not. One of them requires the scheduling agent to periodically
query the service to which it has submitted it for the result.In Sect. 5.3 we briefly
present a prototype where internal schedulers have their own scheduling heuristics
and work independently from the agent meta-scheduling heuristics.

5.2 Scheduling Through Negotiation

The central entity of every agent based scheduling platformis the scheduling mech-
anism. Based on its rules agents make active/passive decisions on whether to move
or to accept new tasks. Every decision is proceeded by a negotiation phase where
the agent requests/receives information from other agentsand decides, based on the
scheduling heuristics, which offer to accept. Negotiationrequires both a language



Scheduling Service Oriented Workflows Inside Clouds 15

Fig. 5 Task scheduling inside the agent’s domain

and a set of participation rules [40]. Depending on the VO policy and on the adher-
ence of other VOs to it many types of negotiation can be used. Examples include
game theory models [42], heuristic approaches [19] and argument based [35] solu-
tions.



16 Marc Eduard Frı̂ncu

A minimal set of locutions has been devised for the communication language
used by our platform:

• requestOffer(i,j,k): agenti requires an offer from agentj for a taskk. Task k
contains all the information required to make a scheduling decision. This may
include (if available): estimated execution times, estimated transfer costs, execu-
tion deadlines, required input, etc.;

• sendOffer(j,i,k,p): agentj sends an offer of pricep to agenti for the execution of
taskk. The pricep represents the cost to execute taskk on resourcej. Measuring
costs depends on the scheduling heuristics. For example it could represent the
estimated time required for executing the task on a service belonging to agentj;

• acceptOffer(i,j,k): agenti accepts the offer of agentj for executing taskk;
• sendTask(i,j,k): agenti sends for execution taskk to a service provided by agent

j;
• rejectOffer(i,j,k): agenti rejects the offer of agentj for executing taskk;
• requestTasks(i,j): agenti informs agentj that it is willing to execute more tasks;
• requireDetails(i,j): agenti informs agentj that it requires more details on the

services/resources under the latter’s management. More specifically they refer to
details (WSDL URL for example) on the service proposed by agent j;

• sendDetails(j,i,d): agentj sends available details to agenti. These details contain
only publicly available data as result of internal policies;

• informTaskStatus(i,j,k,m): agenti informs by using messagem agentj about the
status of a taskk. For example the message could contain the result of a task
execution.

Participation rules are required in order to prohibit agents from saying something
they are not allowed to say at a particular moment. Figure 6 shows participation rules
between these locutions in the form of a finite state machine:

A negotiation starts either from a request for more tasks from an agentj or from
a request for offers for a given task which an agenti decided to relocate. There is
a permanent link between the workflow engine agent and the scheduling agent re-
sponsible for the VO in which the engine executes. It is to this agent where tasks are
placed first. Once a new task has been sent to this agent it is its responsibility to find
and negotiate the execution on a resource which has the highest chance of minimiz-
ing the deadline constraint. Workflow engines agents are similar with scheduling
agents and can communicate with them. However they cannot schedule tasks on re-
sources. Their only purpose is to provide an interface between the engine and the
meta-scheduling platform.

When scheduling workflows an important problem that needs tobe integrated
inside the negotiation phase occurs. Considering the execution of a task on a service
that provides a result which can only be further used on services belonging to the
same VO, any other possible solutions outside of that VO would be ignored. It is
therefore the job of the requestor agent to negotiate for a solution that maximizes the
search set. For that reason a balance between the best time cost at a given moment
and future restrictions needs to be achieved. As an example,selecting the fastest



Scheduling Service Oriented Workflows Inside Clouds 17

Fig. 6 State transitions between the communication language locutions

service for executing the task could be transformed into selecting the service which
executes the task faster and without restrictions on using the result.

In case an agentj has requested more tasks from another agenti the latter will
ask the former for offers regarding the cost of executing some of its tasks. At this
point agentj will send back to agenti an offer for the task in question.

Based on this offer agenti will ask for more details regarding the available ser-
vices which will allow it to make a proper decision: it will either reject or accept
the offer. In case agenti accepts the offer of agentj the task will be submitted to a
service queue governed by the latter agent (see Fig. 5). In return it will send back a
message on the task status. Once the task is completed the result will be sent back
to the workflow agent which will communicate it to the engine.The engine will use
the result to select consequent tasks for scheduling and execution.

In the frame of the presented negotiation protocol the key element is played by
the moment a request for a relocation offer or for new tasks ismade. This point in
time basically marks the starting of the negotiation.



18 Marc Eduard Frı̂ncu

The problem of properly selecting the moment of an offer request has been ad-
dressed in our paper [22]. The proposed scheduling heuristics incorporates this re-
allocation moment and it is shown that the schedule outcome is directly influenced
by it.

In order to extend this approach to SOE, a deadline-based approach has been
investigated in paper [23]. The study is based on the fact that in SOE users usually
want to minimize their costs with regard to usage time and thus provide an execution
deadline for each task inside their workflows. The aim of the schedule is to minimize
the global task lateness i.e. the difference between the actual task finish time and the
user given deadline time.

The scheduling heuristics is called DMECT [22] (Dynamic Minimization of Es-
timated Completion Time). It periodically computes, for every task, the Time Until
Deadline (TUD), the Local Waiting Time (LWT) - the time sinceit was assigned
to the current service queue - and the Total Waiting Time (TWT) - time since the
task’s submission. From these values a decision on whether to move the task or not
is taken by checking if the TUD / TWT - LWT is smaller than 0 or not. If the value is
smaller arequestOffer action is taken. It must be noted that when the decission to re-
locate the task is taken, all the available services are taken into consideration. These
include both internal (part of the current agent domain) andexternal (obtained from
therequestOffer inquiry) ones. In this way every existing service gets a fairchance
for competing for tasks. It can be easily seen that the relocation relation will try to
relocate tasks faster as their deadline approaches.

As a response to arequestOffer inquiry, every agent will perform asendOffer
action which will inform the requestor agent on possible choices. Every reply typi-
cally contains a cost for the task’s execution on its best service. If the initial inquiry
also contained a lower bound for that cost a list of services offering better prices
is returned. The cost for scheduling is made up of execution times possible com-
bined with monetary costs. For example when inquired, each agent will compute
the estimated execution time on every service and return only those which have val-
ues smaller than the initially provided limit. Alternatively it could return only the
smallest value, ensuring that the best available offer it had was made.

In case where it is impossible to estimate the execution timedue to insufficient
data or internal policies the length of a service queue couldbe used as measure. In
[23] we have shown that the smaller a queue is the likelihood that it executes tasks
faster is.

After gathering all the costs the requestor agent will select the best one according
to the scheduling heuristics i.e. smallest execution time in our example. All other
offers will be rejected. Once selected the task will be sent to the selected solver
agent which will place the task in the service queue and the LWT value for the
relocated task will be set to 0. In the scenario that the task will not get executed
on the newly elected service as well, i.e. TUD / TWT - LWT< 0, the solver agent
will send arequestOffer inquiry to other agents, thus becoming the newly requestor
agent for that task.

Deciding when to request for new tasks is another important case which triggers
the negotiation process. In this case an agent sends arequestTasks message to all the



Scheduling Service Oriented Workflows Inside Clouds 19

other agents informing them about its willingness to accepttasks. Once this message
has been sent agents will begin sendingrequestOffers to it for tasks they wish to
reallocate. From this point the negotiation proceeds similarly with the previously
discussed case.

Depending on the policy the request for new tasks can be done periodically or
when the load of the services under an agent’s supervision drops below a certain
limit. Depending on the scheduling policy this approach of actively searching new
tasks could be inefficient. For example in our scenario usingthe DMECT heuristics
such a request would have no effect until at least one task exceeds its staying limit on
a resource queue. Other scheduling heuristics based on simple load balancing tech-
niques such as the one presented in [24] could be more suited for this scenario. In
these cases there are no conditions preventing tasks from migrating between agents.
Once an agent decides that the load on its services has dropped sufficiently new
tasks can be requested.

5.3 Prototype Implementation Details

In this section we present some implementation aspects of the scheduling platform
prototype. The platform relies on JADE [6] as an agent platform and on the OSyRIS
[34] engine for workflow enactment.

JADE facilitates the development of distributed applications following the agent-
oriented paradigm and is in fact a FIPA (Foundation for Intelligent Physical Agents)
compliant multi-agent middleware. It is implemented in theJava language and pro-
vides an Eclipse plug-in which eases the development process by integrating de-
velopment, deployment and debugging graphical tools. In addition JADE can be
distributed across several resources and its configurationcan be controlled through
a remote graphical user interface. Agents can migrate amongthese resources freely
at any time. Also JADE provides: a standard architecture forscheduling agent activ-
ities; a standard communication protocol by using the AgentCommunication Lan-
guage (ACL); and allows the integration of higher functionality by allowing users
to include their own Prolog modules for activity reasoning.Even though the sim-
ple model of JADE agents makes the development easier it requires a considerable
amount of effort for including intelligence when complex control is required.

Paper [38] presents an extension to JADE where the platform is augmented with
two types of agents with the aim of paving the way for a more flexible agent cloud
system. The two types of agents are: theBeanShell agent responsible for sending and
executing behaviors coming from other agents; and theDrools agent responsible
for receiving and executing rules coming from other agents.Authentication and
authorization mechanisms are offered for both types of agents.

OSyRIS is a workflow enactment engine inspired by nature where rules are ex-
pressed following the Event Condition Action paradigm: tasks are executed only
when some events occur and additional optional conditions are met. In OSyRIS
events represent the completion of tasks and conditions areusually placed on the



20 Marc Eduard Frı̂ncu

output values. A single instruction is used all the rest (split, join, parallel, sequence,
choice, loop) deriving from it:LHS -> RHS | condition, salience, whereLHS (Left
Hand Side) represents the tasks that need to be completed before executing theRHS
(Right Hand Side) tasks. The engine relies on a chemical metaphor where tasks play
the role of molecules and the execution rules are the reactions.

In order to simulate VOs we have used two clusters available at the university.
One consisting of 8 Pentium dual-core nodes with 4 GB of RAM each (called VO1)
and the other having 42 nodes with 8 cores and 8 GB of RAM each. The latter cluster
is divided into 3 blades (called VO2, VO2 and VO3) each with 14nodes each.
To each blade there is attached one scheduling agent which manages the services
running on them. A single agent is used for governing the entire VO1. Nodes are
paired and each pair is exposed through a service handled by the agent handling
the governing VO. The agents are registered to a yellow page repository as depicted
in Fig. 4. For inter-agent task scheduling the DMECT heuristics is used. Although
different SAs could be used for local resource scheduling wehave opted for a single
one: the MinQL [24] heuristics.

The scheduling scenario proceeds as follows: once a scheduling agent receives a
task, it attaches it to one of its service queues (see Fig. 5).Tasks are received either
by negotiating with other agents or directly from a workflow agent. The negotiation
protocol is similar with the one in Fig. 6 and uses the DMECT SA’s relocation
condition [23] as described in Sect. 5.2. Each service can execute at mostk instances
simultaneously. Variablek is equal to the number of processors inside the node pair.
Once sent to a service a task cannot be sent back to the agent unless explicitly
specified in the scheduling heuristics. Tasks sent to services are scheduled inside
the resource by using the MinQL SA which uses a simple load balancing technique.
Scheduling agents periodically query the service for completed tasks. Once one is
found the information inside it is used to return the result to the agent responsible
for the workflow instance. This passes the information to theengine which in turn
passes the consequent set of tasks to the agent for scheduling.

In order to simulate the cloud heterogeneity in terms of capabilities services offer
different functionalities. In our case services offer access to both CASs and image
processing methods. As each CAS offers different functionsfor handling mathe-
matical problems so does the service exposing it. The same applies for the image
processing services that do not implement all the availablemethods on every ser-
vice. An insight on how CASs with different capabilities canbe exposed as services
is given in [37].

6 Conclusions

In this paper we have presented some issues regarding task scheduling when ser-
vices from various providers are offered. Problems such as estimating runtimes
and transfer costs; service discovery and selection; trustand negotiation between
providers for accessing their services; or making the independent resource sched-



Scheduling Service Oriented Workflows Inside Clouds 21

uler cooperate with the meta-scheduler, have been discussed. As described much of
the existing scheduling platforms are grid oriented and cloud schedulers are only
beginning to emerge. As a consequence a MAS approach to the cloud scheduling
problem has been introduced. MAS have been chosen since theyprovide greater
flexibility and are distributed by nature. They could also represent a good choice
for scheduling scenarios where negotiation between vendors is required. Negotia-
tion is particularly important when dealing with workflows where tasks need to be
orchestrated together and executed under strict deadlinesin order to minimize user
costs. This is due to the fact that vendors have different access and scheduling poli-
cies and therefore selecting the best service for executinga task with a provided
input becomes more than just a simple reallocation problem.The prototype system
uses a single type of agents which combine multiple functionalities. The resulting
meta-scheduler maintains the autonomy of each VO inside thecloud.

The presented solution is under current development and future tests using vari-
ous SAs and platform configurations are planned.

Acknowledgements This research is partially supported by European Union Framework 6 grant
RII3-CT-2005-026133 SCIEnce: Symbolic Computing Infrastructure in Europe.

References

1. W. M. P. van der Aalst, and A. H. M. ter Hofstede, ”Yawl: yet another workflow language”,
Information Systems”, Vol. 30, No. 4, 2005, pp. 245–275.

2. D. Abramson, R. Buyya, and J. Giddy, ”A Computational Economy for Grid Computing
and its Implementation in the NIMROD-G Resource Broker”, Future Generation Computer
Systems, Vol. 18, No. 8, 2000, pp. 1061–1074.

3. ActiveBPEL, http://www.activebpel.org/ Cited 7 Jan 2010.
4. A. Ali, J. Bunn, et al, Predicting Resource Requirements of a Job Submission, Proceedings

of the Conference on Computing in High Energy and Nuclear Physics, 2004.
5. S. Banerjee, I. Mukherjee, and P. K. Mahanti, ”Cloud Computing Initiative using Modified

Ant Colony Framework”, World Academy of Science, Engineering and Technology, Vol.56,
2009, pp. 221–224.

6. F. Bellifemine, A. Poggi, and G. Rimassa, ”Jade: a FIPA2000 Compliant Agent Development
Environment”, In Proceedings of the fifth international conference on Autonomous agents,
2001, pp. 216–217.

7. F. Berman, R. Wolski, H. Casanova, W. Cirne, et al, ”Adaptive Computing on the Grid using
APPLES”, IEEE Transactions on Parallel and Distributed Systems, Vol. 14, No. 4, 2003, pp.
369–382.

8. R. Buyya, D. Abramson, and J. Giddy, ”Nimrod/g: An Architecture for a Resource Man-
agement and Scheduling System in a Global Computational Grid”, Proceedings of the 4th
International Conference on High Performance Computing inAsia-Pacific Region, Vol. 1,
2000, pp. 283–289.

9. J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R. Nudd, ”Arms: An Agent-based
Resource Management System for Grid Computing”, ScientificProgramming, Vol. 10, No.
2, 2002, pp. 135–148.

10. J. Cao, D. J. Kerbyso, E. Papaefstathiou, and G. R. Nudd, ”Performance Modelling of Paral-
lel and Distributed Computing using PACE”, Proceedings of 19th IEEE International Perfor-
mance, Computing and Communication Conference, pp. 485–492, 2000.



22 Marc Eduard Frı̂ncu

11. J. Cao, D. P. Spooner, S. A. Jarvis, and G. R. Nudd, ”Grid Load Balancing using Intelligent
Agents”, Future Generation Computer Systems, Vol. 21, No. 1, 2005, pp. 135–149.

12. A. Carstea, M. Frincu, G. Macariu, D. Petcu, and K. Hammond, ”Generic Access to Web an
Grid-based Symbolic Computing Services”, Proceedings of the 6th International Symposium
in Parallel and Distributed Computing, 2007, pp. 143–150.

13. A. Carstea, G. Macariu, M. Frincu, and D. Petcu, ”Secure Orchestration of Symbolic Grid
Services”, IeAT Technical Report, No. 08-08, 2008.

14. H. Casanova, and J. Dongarra, ”Applying Netsolve’s Network-enabled Server”, EEE Com-
putational Science and Engineering, Vol. 5, No. 3, 1998, pp.57–67.

15. H. Casanova, G. Obertelli, F. Berman, and R. Wolski, ”TheAPPLES Parameter Sweep Tem-
plate: User-level Middleware for the Grid”, Proceedings ofSuper Computing SC’00, pp. 75–
76, 2000.

16. S. J. Chapin, D. Katramatos, J. Karpovich, and A. Grimshaw, ”Resource Management in
Legion”, Future Generation Computer Systems, Vol. 15, No. 5, 1999, pp. 583–594.

17. Cloud Scheduler, http://cloudscheduler.org/ Cited 7 Jan 2010.
18. L. David, and I. Puaut, ”Static Determination of Probabilistic Execution Times”, Proceedings

of the 16th Euromicro Conference on Real-Time Systems, pp. 223–230, 2004.
19. P. Faratin, C. Sierra, N. R. Jennings, ”Using similaritycriteria to make issue trade-offs in

automated negotiation”, Artificial Intelligence, Vol. 142, No. 2, 2001, pp. 205–237.
20. I. T. Foster, ”Globus Toolkit Version 4: Software for Service-Oriented Systems”, Proceedings

of International Conference on Network and Parallel Computing, vol. 3779, 2005, pp. 2–13.
21. I. Foster, N. R. Jennings, and C. Kesselman, ”Brain MeetsBrawn: Why Grid and Agents Need

Each Other”, In Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems, 2004, pp. 8–15.

22. M. Frincu, ”Dynamic Scheduling Algorithm for Heterogeneous Environments with Regular
Task Input from Multiple Requests”, In Lecture Notes in Computer Science, Vol. 5529, 2009,
pp. 199–210.

23. M. Frincu, ”Distributed Scheduling Policy in Service Oriented Environments”, Proceedings
of the 11th International Symposium on Symbolic and NumericAlgorithms for Scientific
Computing, 2009.

24. M. Frincu, G. Macariu, and A. Carstea, ”Dynamic and Adaptive Workflow Execution Plat-
form for Symbolic Computations”, Pollack Periodica, Akademiai Kiado, Vol. 4, No. 1, 2009,
pp. 145–156.

25. N. Fujimoto,, and K. Hagihara, ”A Comparison Among Grid Scheduling Algorithms for In-
dependent Coarse-grained Tasks”, International Symposium on Applications and the Internet
Workshops, 2004.

26. S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya, ”Energy-Efficient Scheduling of HPC
Applications in Cloud Computing Environments”, TechnicalReport, 2009.

27. Google Application Engine, http://appengine.google.com Cited 7 Jan 2010.
28. M. Greenwood, ”Xscufl language reference” , 2004, http://www.mygrid.org.uk/wiki/Mygrid

/WorkFlow#XScufl workflow definitions Cited 7 Jan 2010
29. B. Lawson, and E. Smirni, ”Multiple-queue Backfilling Scheduling with Priorities and Reser-

vations for Parallel Systems”, In Lecture Notes in ComputerScience, vol. 2862, 2002, pp.
72–87.

30. S. Lorpunmanee, M. N. Sap, A. H. Abdullah, and C. Chompooinwai, ”An ant Colony Op-
timization for Dynamic Job Scheduling in Grid Environment”, World Academy of Science,
Engineering and Technology, Vol. 23, 2007, pp. 314–321.

31. M. Maheswaran, T. D. Braun, and H. J. Siegel, ”Heterogeneous Distributed Computing”,
Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Vol. 8, 1999,
pp. 679–690.

32. Microsoft Live Mesh, http://www.mesh.com Cited 7 Jan 2010.
33. V. Muniyappa, ”Inference of Task Execution Times Using Linear Regression Techniques”,

Masters Thesis, Texas Tech University, 2002.
34. OSyRIS Workflow Engine, http://gisheo.info.uvt.ro/trac/wiki/Workflow Cited 7 Jan 2010.



Scheduling Service Oriented Workflows Inside Clouds 23

35. S. Parsons, C. Sierra, and N. R. Jennings, ”Agents that Reason and Negotiate by Arguing”,
Journal of Logic and Computation, Vol. 8, No. 3, 1998, pp. 261–292.

36. C. Pautasso, O. Zimmermann, and F. Leymann, ”RESTful WebServices vs. Big Web Ser-
vices: Making the Right Architectural Decision”, 17th International World Wide Web Con-
ference, 2008.

37. D. Petcu, A. Carstea, G. Macariu, and M. Frincu, ”Service-oriented Symbolic Computing
with SymGrid”, Scalable Computing: Practice and Experience, Vol. 9, No. 2, 2008, pp. 111–
124.

38. A. Poggi, M. Tomaiuolo, and P. Turci, ”Extending JADE forAgent Grid Applications”, Pro-
ceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprise, 2004, pp. 352–357.

39. A. Radulescu, and A. van Gemund, ”A Low-cost Approach Towards Mixed Task and Data
Parallel Scheduling”, Proceedings of the International Conference on Parallel Processing,
2001.

40. S. D. Ramchurn, ”Multi-Agent Negotiation using Trust and Persuasion”, PhD Thesis, Uni-
versity of Southampton UK, 2004.

41. G. R. S. Ritchie, and J. Levine: ”A Hybrid Ant Algorithm for Scheduling Independent Jobs
in Heterogeneous Computing Environments”, Proceedings ofthe 23rd Workshop of the UK
Planning and Scheduling Special Interest Group, 2004.

42. J. S. Rosenschein, and G. Zlotkin, ”Roles of Encounter”,MIT Press, 1994.
43. R. Sakellariou, and H. Zhao, ”Experimental Investigation into the Rank function of the Het-

erogeneous Earliest Finish Time Scheduling Algorithm”, InLecture Notes in Computer Sci-
ence, Vol. 2790, 2003, pp. 189–194.

44. R. Sakellariou, and Zhao, ”A Hybrid Heuristic for DAG Scheduling on Heterogeneous Sys-
tems”, Proceedings of the 18th International Symposium In Parallel and Distributed Process-
ing, 2004.

45. J. Sauer, T. Freese, and T. Teschke, ”Towards Agent-based Multi-site Scheduling”, Proceed-
ings of the ECAI 2000 Workshop on New Results in Planning, Scheduling, and Design, 2000.

46. W. Shen, Y. Li, H. Genniwa, and C. Wang, ”Adaptive Negotiation for Agent-based Grid
Computing”, Proceedings of the Agentcities/AAMAS’02, 2002.

47. W. Smith, I. Foster, and V. E. Taylor, ”Predicting Application Run Times with Historical
Information”, Journal of Parallel and Distributed Computing, Vol. 64, No. 9, 2004, pp. 1007–
1016.

48. D. Thain, T. Tannenbaum, and M. Livny, ”Distributed Computing in Practice: the Condor Ex-
perience”, Concurrency and Computation: Practice and Experience, Vol. 17, No. 2–4, 2005,
pp. 323-356.

49. UDDI, www.uddi.org/pubs/uddi-tech-wp.pdf Cited 7 Jan2010.
50. G. Weichhart, M. Affenzeller, A. Reitbauer, and S. Wagner, ”Modelling of an Agent-based

Schedule Optimisation System”, Proceedings of the IMS International Forum, pp. 79–87,
2004.

51. J.B Weissman, ”Metascheduling: a Scheduling Model for Metacomputing Systems”, The
Seventh International Symposium on High Performance Distributed Computing, pp 348–349,
1998.

52. P. Wolniewicz, N. Meyer, M. Stroinski, M. Stuempert, H. Kornmayer, M. Polak, and H. Gjer-
mundrod, ”Accessing Grid Computing Resources with G-Eclipse Platform”, Computational
Methods in Science and Technologie, Vol. 13, No. 2, 2007, pp.131–141.

53. WS-BPEL 2.0, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf Cited 7 Jan 2010.
54. WS Security, http://www.ibm.com/developerworks/library/specification/ws-secure/ Cited 7

Jan 2010.
55. WS Trust 1.4, http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html Cited 7 Jan 2010.
56. WSDL, http://www.w3.org/TR/wsdl Cited 7 Jan 2010.





Index

C

cloud systems 6

M

Multi-Agent Systems 10

S

scheduling platform 2

Service Oriented Environments 2

V

Virtual Organization 8

W

workflow scheduling 10

25


