Scheduling Service Oriented Workflows Inside
Clouds Using an Adaptive Agent Based
Approach

Marc Eduard Frincu

1 Introduction

In recent years Cloud Computing (CC) emerged as a leadingj@olin the field of
Distributed Computing (DC). In contrast, Grid Computingkad the open-world
vision of overcoming some fundamental problems includiagsparent and easy
access to resources, licensing or political issues, laskrnfalization support or to
complicated to use architectures and end-user tools.

Clouds have emerged as a main choice for service vendordynthst to
their support for virtualization and service oriented aggmh. Inside clouds al-
most everything can be offered as a service. This has lecetaghearance of sev-
eral paradigms including Software as a Service (SaaSphdtrfrcture-as-a-Service
(laaS) or Platform-as-a-Service (PaaS).

As more users begin to use clouds for storing or executirigdpelications these
systems become susceptible to workload related issuegrobé&em is even harder
when considering complex tasks which require accessingcesrprovided by dif-
ferent cloud vendors (see Fig. 1) each with their own intiggnhcies. Selecting the
optimal /fastest service for a specific task becomes in Hgs an important problem
as sometimes users are paying for their time spent usingnitherlying services.

Consequently scheduling tasks on services becomes everdiffaoult as inside
cloud environments each member uses its own policies arud Gbtigated to adhere
to outside rules. We end up with a bundle of services fromouariproviders that
need to be orchestrated together in order to produce theedesiitcome inside a
given time interval. Keeping the execution inside thisimé minimizes production
and client costs. As service selection requires some ragotibetween providers
one of the simplest and straightforward solutions is to ustibuted agents that
play the roles of service providers and clients.

Marc Eduard Frincu
Institute e-Austria, Blvd. Vasile Parvan No 4 300223, Roofs®, Timisoara, Romania e-mail:
mfrincu@info.uvt.ro

2 Marc Eduard Frincu

Fig. 1 Connecting devices to .

some of the existing clouds g‘

Google
Zoho

Microsoft
Internet

Yahoo
Amazon

This paper presents an agent based approach to the probtaskafcheduling
inside clouds. Two major problems are dealt with: findingudesources and or-
chestrating services from different cloud vendors towaaging a common goal.
Certain deadline and cost constrains are assumed to exé&st.tBough the empha-
sis is put on workflow tasks, independent tasks can also bélédnTowards this
aim we first present some solutions to the problem of taskdadhmy inside clouds.
Then we present some issues regarding task scheduling i@sitvice Oriented En-
vironments (SOE) together with some details on workflow dcifing. A detailed
overview on a distributed agent based scheduling platfaahi@cture capable of
adapting itself to resource changes is also given. Finaltprecrete experimental
prototype and some conclusions are presented.

2 Related Work on DS Scheduling

Lot of work has been carried out in what concerns task sclvggliniside Distributed
Systems (DSs). This work can be divided into specializece8aling Algorithms
(SAs) for clouds and Resource Management Systems (RMShwvdiscover ser-
vices and allocate tasks to them. In what follows we brieflgspnt some of the
main work concerning both SAs for CC and RMS for DSs.

Concerning the development of efficient SAs for DSs, nata® froven to be
a good place of inspiration. Recent papers such as [30],tf¢1p cope with the
problem of task scheduling by offering meta-heuristicpired from behavioral
patterns observed in ant colonies. This technique alsea@lht Colony Optimiza-

Scheduling Service Oriented Workflows Inside Clouds 3

tion (ACO) relies on the fact that ants inside a colony actraependent agents
which try to find the best available resource inside theicsp®y using global search
techniques. Each time such an agent finds a resource beittethit already existing
one it marks the path to it by using pheromones. These atithet ants which start
using the resource until a better one is found.

In [5] an ACO based approach for initiating the service lo&dribution inside
clouds has been proposed. Simulated results on Google dapipln Engine [27]
and Microsoft Live Mesh [32] have shown a slight improvemierthe throughput
of cloud services when using the proposed modified ACO alyori

The biggest disadvantage ACO has over other approaches isignot very ef-
fective when dynamic scheduling is considered. The reasadhif is that reschedul-
ing requires a lot of time until an optimal scenario is reatki@ough intensive
training given by multiple iterations. Because DSs are hotpredictable and het-
erogeneous each time a change is noticed the entire syststa toebe trained again.
This process which could last several hours. The largeingtigatime interval is not
acceptable when tasks are scheduled under deadline dotssaa the scheduling
could take longer than the actual task execution. An impr@m on this might be
given by mixing the time consuming global search with loedreh when minor
changes occur inside the DS. However defining the notion nbngéhanges is still
an open issue.

Paper [26] deals with High Performance Computing (HPC) satleduling in-
side clouds. Energy consumption is important both in whateons the user costs
and in relation to the carbon emissions. The proposed noéiedsiler takes into
consideration factors such as energy costs, carbon emiszie, CPU efficiency
and resource workflows when selecting an appropriate datrcbelonging to a
cloud provider. The designed energy based schedulingdtiesrshows a signifi-
cant increase in energy savings compared with other pslicie

Most of the work concerning RMSs has evolved around the aggamof apply-
ing them onto grids and not clouds. This can be explained byfaats. The first one
is that there are many similarities between a cloud and aagmdRMS developed
for one type could also work well on the other. The second smelated with age,
and as grids emerged earlier than clouds most of the sofultiave been developed
for the former. Nonetheless several of the grid oriented BN&uId be adapted to
work for clouds too.

One example is represented by the CloudScheduler [17]oivslusers to set up
a Virtual Machine (VM) and submit jobs to a Condor [48] poohelTVM will be
replicated on machines and used as container for exectignglbs.

In what follows we present some of the most known examples\dERor DSs
in general.

Notable examples include the Globus-GRAM [20], Nim- rod8F Condor [48],
Legion [16], NetSolve [14] and others. Many of these sohdiaise fixed query
engines to discover and publish resources and do not relyepadvantages offered
by distributed agents.

4 Marc Eduard Frincu

The ARMS [9] system represents an example of agent based RMs®s PACE
[10] for application performance predictions which arestatsed as inputs to the
scheduling mechanism.

In paper [45] a multi-site agent based scheduling approawkisting of two dis-
tinct decision levels one global and the other local is presi Each of these levels
has a predictive and a reactive component for dealing wittklead distribution
and for reacting to changes in the workloads.

Paper [11] presents a grid load balancing approach by cantbioth intelligent
agents and multi-agent approaches. Each existing agezgpsmsible for handling
task scheduling over multiple resources within a grid. A§4iB] there also exists
a hierarchy of agents which cooperate with each other in a foepeer manner
towards a common goal of finding new resources for their taBkis hierarchy is
composed of a broker, several coordinators and simple sggntising evolutionary
processes the SAs are able to cope with changes in the nuifritsk® or resources.

Nimrod/G uses agents [2] to handle the setup of the running@rmment, the
transport of the task to the site, its execution and the megfithe result to the client.
Agents can also record information acquired during taskceten as CPU time,
memory consumption etc.

Paper [46] proposes a system which can automatically seteotvarious negoti-
ation models, protocols or strategies the best one for tirewtcomputational needs
and changes in resource environment. It does this by sotwogmain issues DS
have to dealt with [9]: scalability and adaptability. Thenwgarried in [46] creates
an architecture which uses several specialized agentfiications, resources,
yellow pages and jobs. Job agents for example are resperfeibhandling a job
since its submission and until its execution and their fitasare restricted to that
interval. The framework offers several negotiation mothelsveen job and resource
agents including contract net protocol, auction and gamerthbased strategies.

AppLeS (Application-Level Scheduling) [7], [15] is an expla of a method-
ology for adaptive scheduling also relying on agents. Aggtlons using AppLeS
share a common architecture and are scheduled adaptivalgistomized schedul-
ing agent. The agent follows several well established stepsler to obtain a sched-
ule for an application: resource discovery, resource §elecschedule selection,
application execution and schedule adaptation.

3 Scheduling Issues Inside Service Oriented Environments

Scheduling tasks inside SOE such as clouds is a particdfaudti problem as there
are several issues that need to be dealt with. These in@steating task runtimes
and transfer costs; service discovering and selectiomtiggmpn between clients
and different cloud vendors; and trust between involvedgmrin what follows we

address each of these problems separately.

Scheduling Service Oriented Workflows Inside Clouds 5

3.1 Estimating Task Runtimes and Transfer Costs

Many SAs require some sort of user estimates in order to gedwiproved schedul-
ing solutions. The estimates are either user estimatednargted by using methods
involving code profiling [31], statistical determinatiohexecution times [18], lin-
ear regression [33] or task templating [4], [47]. When agptio SOE these methods
come both with advantages and disadvantages as it is shawe irext paragraphs.

In SOE there is not much insight on the resource running loketiie service
and thus it is hard for users to obtain information that cadp tieem give a correct
runtime estimate.

User given estimates are dependent on the user’s prioriexgerwith execut-
ing similar tasks. Users also tend to overestimate taskugigrtimes knowing
that schedulers rely on them. In this case a scheduler, degeon the schedul-
ing heuristics, could postpone other tasks due to wrongiimétion. To deal with
these scenarios schedulers can implement penalty systeats tasks belonging to
these harmful users would be intentionally delayed frontetien.

Sometimes it is even difficult for users to provide runtimgreates. These situ-
ations usually occur due to the nature of the service. Cenisig two examples of
services, one which processes satellite images and armikerhich solves sym-
bolic mathematical problems we can draw the following casidns. In the first
case it is quite easy to determine runtime estimates frotorital execution times
as they depend on the image size and on the required operaéktiersecond case
is more complicated as mathematical problems are usudilgddy services ex-
posing a Computer Algebra System (CAS). CASs are specifiicapipns which
are focused on one or more mathematical fields and which séezral methods
for solving the same problem. The choice on which method sk depends on
internal criteria which is unknown to the user. A simple ex#aris given when con-
sidering large integer (more than 60 digits) factorizasionhese operations have
strong implications in the field of cryptography. In this edactorizingn does not
depend on similar values asl or n+ 1. Furthermore the factoring time is not linked
to the times required to factorl or n. It is therefore difficult for users to estimate
runtimes in these situations. Refining as much as possibladtion of similarity
between two tasks could be an answer to this problem but i ®aises, such as the
one previously presented this could require searchinglértical past submissions.

Code profiling works well on CPU intensive tasks but fails tipe with data
intensive applications where it is hard to predict executime before all the input
data has been received. Statistical estimations of rurstfax similar problems as
code profiling.

Templating has also been used for assigning task estimatglading newly ar-
rived tasks in already existing categories. General tagkaderistics such as owner,
solver application, machine used for submitting the tagbut data size, arguments
used, submission time or start time are used for creatinghalége. Genetic algo-
rithms can then be used to search the global space for sitieiar

Despite the difficulty in estimating runtimes there are SAsol do not require
them at all. These algorithms take into consideration oegpurce load and move

6 Marc Eduard Frincu

tasks only when their loads become unbalanced. This apipmaiks well and tests
have shown that scheduling heuristics such as Round-R26]rgjve results com-
parable to other classic heuristics based on runtime egténa

In SOE the problem of providing runtime estimates could bercome by an-
other important aspect related with service costs whichxécation deadlines. In
this case it does not matter how fast, how slow or where a tetskaxecuted as long
as it gets completed inside the specified time interval. €guently when submit-
ting jobs inside clouds users could attach deadline cansdrimstead of runtime es-
timates to either workflows or batch tasks and hope they wilbe significantly ex-
ceeded. Deadline based scheduling heuristics are spégitisaful in cases where
users rent services for specific amount of times.

Related with task runtimes is the transfer costs for movitegk from a resource
to another. In SOE this is a problem as usually little or naoghis known about
the physical location and network route towards a particsgavice. When moving
large amounts of data such as satellite images up to sevardiéds of mega-bytes
in size the transfer cost becomes an issue. In addition tinfeeneeded to reallocate
data problems including licensing and monetary cost afisere are cases when
proprietary data such as satellite images that belong tainesrganizations cannot
be moved outside their domain (cloud). In this case rediocao a cloud which
provides faster and/or cheaper services for image proggssinot possible due to
licensing issues.

Task reallocation involves more than simply moving deperdiga. Clouds rely
heavily on virtualization and thus sometimes in orders tecexe tasks VMs with
certain characteristics need to be created. As a result wdalocating a task the
entire VM could require relocation. This implies severdlatissues such as stop-
ping and resuming preemptive tasks or restarting non-ppéeentasks once they
are safely transfered. The problem of transfer costs isrtiare problematic than at
first glance.

3.2 Service discovery and selection

Services (SOAP-based [36], RESTful [36], Grid Serviceg)[aée an important part
of cloud systems. They allow for software, storage, infragttire or entire platforms
to be exposed through a unitary interface which can be usedditadyparty clients.
Each service vendor exposes its services to the generatmabthat the latter can
use them, free or at a cost, in order to solve a particularlenob

Inside this sea of services there is also a constant needsodwdiring proper
services for solving a particular task. Universal DesaipDiscovery and Integra-
tion (UDDI) [49] registries offer a solution to this probleiach service provider
registers its services to an UDDI which in turn is used by isereconsumers for
searching specific services. With the occurrence of Webh2€et searches could be
enhanced with semantic content. Once such a service is fitainderface can be

Scheduling Service Oriented Workflows Inside Clouds 7

used for submitting tasks and for retrieving their resiitgure 2 shows the typical
correspondence between services, UDDIs and clients.

After successfully finding a number of possible candidateises there remains
the problem of selecting the best one for the task. In thisation the schedul-
ing heuristics plays an important role as based on sevatatiarit will select the
service which is most likely to minimize the execution costshould be noted
that depending on whether the scheduling heuristics istageqr not a task could
be reallocated several times before actually being exdclitesk reallocation faces
several problems as addressed in Sect. 3.1.

3.3 Negotiation Between Service Providers

Negotiation plays an important role in task scheduling weenvices from multiple
clouds are involved in solving a given problem. Usually tlegatiation is linked to
the phase of service selection and involves a scheduleesefor a particular ser-
vice characteristic. When considering it smaller executiosts could be achieved.

Negotiation can also involve the decision on what datagask allowed to be
submitted to the service and whether the service providerfudher use the sub-
mitted data/tasks for its own purposes or not.

As most of the times details regarding the VM or applicatiuat is exposed as a
service are hidden from public the negotiation requiregttreduction of negotiator
entities which handle pre-selection discussions in theieeicloud name. Usually
this stage is accomplished by one or more agents [11], [48fail3 regarding the
involved agents will be given in Sect. 5. Depending on theomne of the negotia-
tion either access to the desired service is either grantachew negotiation with
another agent proceeds.

Search Service inside UDDI Register Service to UDDI

J/’ L"B
. Internet

\

\Hk'\, -

(L]

Invoke Service=——p
Fig. 2 Finding and invoking
services using UDDlIs

8 Marc Eduard Frincu

3.4 Overcoming the I nternal Resource Scheduler

An important problem RMSs need to overcome in SOE is thatefriternal sched-
uler used by the service provider. This scheduler is neitiferenced nor bypassed
by outside intervention. As a result it is said that schedpbietween services is ac-
complished by a meta-scheduler [51] that deals with tasksmice level, leaving
the resource level scheduling to the internal Virtual Orgation (VO) schedulers
(see Fig. 3). These internal schedulers handle tasks assiga depending on their
own policies and thus there is no guarantee that the taskigednby the meta-
scheduler will be executed inside the cost constraintstieggd at the time of the
submission.

As aresult of the negotiation between the meta-schedutatherservice provider
the latter could try to favor the task by increasing its gtjorThis action is in the
interest of the provider as it could get penalized, with és/&e trust greatly dimin-
ished, for constantly exceeding the imposed deadlinessé&prently future deci-
sions made by the meta-scheduler could ignore the servitéharprovider would
suffer cost losses. We obtain therefore a symbiotic redatiqp between the meta-
scheduler and the service provider that allows both of treegain advantages: the
service provider’s trust will increase when executing safdster and thus its in-
come will increase by receiving more tasks; and the metadider will execute
tasks faster, minimizing the costs of the client that sutedithem.

Schedules tasks Schedules tasks
inside VO 1 at service level Migrate tasks between inside VO 2 at service level
PR Os
Y N VN o~ Y- ~
e (N —
/ N [¢ B\
/ ~ | Agent _ | Agent \
“ | Scheduler = I | Scheduler
\ L / \ 4
(|
r'/ ! / {
\) |)
VO 1 VO 2
(] (
\ 0 KL Internal ‘ \ L & Internal ‘
~1 Schedulers ~1 ' Schedulers |
R \ S) -~
1 i /
4 / N ’ 1

Schedule tasks AL Y
inside resources e

Fig. 3 Scheduling and meta-scheduling in multi-VOs

Scheduling Service Oriented Workflows Inside Clouds 9

3.5 Trust in Multi-cloud Environments

When executing tasks on remote services a certain trust teteieen peers is
needed. Trust issued occurs due to many problems incluidénigiock box approach
of services and because of security issues.

Services cannot be trusted as their interfaces act as bta@shwith the content
changeable without notice. Thus a service requestor neebls sure that what it
accesses is the same as what was advertised by the sentius. iff not the case
then the VM running behind the service would not be able toesthe given task
inflicting possible cost losses due to time spent for sersalection and task sub-
mission.

Security issues are also important and are closely link#uetprevious problem.
These problems can affect both the service requestor argkthie provider. The
former is usually affected when the data it submits is usedfloer purposes than
those decided during negotiation (e.g. cloning of copytedtdata). The latter can
also be affected when data intended to harm the vendor igs&nA comprehen-
sive insight on the security issues inside DSs is given irepg3].

Trustis usually achieved through digital certificates sasthe X.509 certificates
that are widely used in Web browsers, secure email senacelelectronic payment
systems.

When using certificates clients usually request one fromigeproviders in or-
der to be granted access.

Web-SOAP and Grid-SOAP services handle security issuessing uhe WS-
Security standard [55]. It allows parties to add signataned encryption headers
to SOAP messages. An extension to WS-Security, WS-Tru$t fE&als with issu-
ing, renewing and validating security tokens or brokerttretationships between
participants.

In addition to the WS-Security standard the Transport L&esurity (TLS) can
also be used. HTTPS for example can be used to cover Web-S®APSOAP and
RESTful services.

4 Workflow Scheduling

Workflows consist of several tasks bound together by dateffonal dependencies
that need to be executed in a specific order for achieving dia¢ @f the problem.

They are used especially in cases where the problem can loediinto smaller

steps each of them being executed by a distinct solver, aricase WS. In a cloud
environment users usually submit their workflows to a serwibich orchestrates the
execution and returns the result. Whatever happens beyensktvice interface is
out of reach and invisible to the client. The workflows can tEated either by using
graphical tools [52] or by directly writing the code in a sopied format such as
BPEL [53], YAWL [1], Scufl [28], etc. Once the workflow is subttgd an enactment
engine is responsible for executing the tasks by sendimg tbeorresponding WSs.

10 Marc Eduard Frincu

In our case these WSs are replaced by scheduling agents/ttasthedule the tasks
on the best available service through negotiation with o#gents. Once a task is
completed its result is sent back to the enactment enginehwdan proceed to the
next task and so forth.

An important problem in this communication chain is the retof the result to
the workflow engine. To solve this problem the address of gemaresponsible for
the VO in which the engine is located in is attached to eacimdttdd task. In this
way once the execution is completed the result is sent &trback to the agent that
initially received the task. This task is usually achievednbessages and will be
detailed in Sect. 5.2.

It can be noticed that no prior scheduling decisions are etk that tasks are
scheduled one by one as they become ready for schedulingisThecessary due
to the dynamism and unpredictability of the environmentpéper [24] a unified
scheduling model forindependent and dependent tasks bagliszussed. The goal
was to allow SA for independent tasks to be applied to worldlavhen dynamic
environments and online scheduling were considered.

Although this approach is suited when global schedulingsites are needed
there are cases where the workflow engine cannot easily\actask-to-resource
mappings [3] during runtime. Instead workflow SAs such as R3], Hybrid
[44] or CPA [39] could be used. However they only considertdsks in the cur-
rent workflow when scheduling or rescheduling decisionsnaeded. These algo-
rithms provide strategies to schedule workflow tasks onrbgeneous resources
based on the analysis of the entire task graph. Every timerkflow is submitted
tasks would first be assigned to resources and only then wbaldorkflow exe-
cution begin. The negotiation for resources thus takeseppaior to runtime. This
static approach however is not suited for highly dynamidremments (for example
clouds) where: resource availability cannot be prediateskrvations are difficult to
achieve; a global perspective needs to be obtained; andimkeadnstraints require
permanent rescheduling negotiations.

In what follows we present an agent-based solution for saliveglworkflows.
So called scheduling agents are used to negotiate, to dehtediks and to send
the answer back to the workflow engine. Its aim is to providdasfgrm for on-
line workflow scheduling where tasks get scheduled only wthey become ready
for execution. This means that a task whose predecesscesibdcompleted their
execution is not considered to be submitted for execution.

5 Distributed Agent Based Scheduling Platform Inside Cloud

As clouds are unpredictable in what concerns resource amebrieload, systems
need to be able to adapt to the new execution configuratiottsasahe cost over-
heads are not greatly exceeded. Multi-Agent Systems (MAS)ige an answer for
this problem as they rely on (semi)decentralized envirantsimade up of several
specialized agents working together towards achievinged tpoough negotiation.

Scheduling Service Oriented Workflows Inside Clouds 11

While negotiating each agent keeps a self-centered poirieaf by trying to mini-
mize its costs.

Although a good option when highly dynamic DS are involveidiributed ap-
proaches involve a great amount of transfer overhead [S®Bleasrequire permanent
updated from their peers in order to maintain an up to datbagleiew. Contrary,
centralized approaches do not require a lot of communicatid their efficiency
peak is maximized mostly when dealing with DS that maintaielatively stable
configuration.

Decentralized agent based solutions for task schedulgtgaalse as suited solu-
tions when considering a federation of multiple VOs eaclhirwaits own resources
and implementing its own scheduling policies. Submittiagks in such an envi-
ronment requires inter-VO cooperation in order to exedudent under restrictions
including execution deadlines, workloads, |0 dependereie.

A computing agent can be defined by flexibility, agility andanomy and as de-
picted in [21] can act as the brain for task scheduling inffiigemulti-cloud infras-
tructure. Agents allow resources to act as autonomousesntvhich take decisions
on their own based on internal logic. Furthermore an irgetit agent [45] can be
seen as an extension to the previously given definition byngdtiree more char-
acteristics: reactivity (agents react to the environmet)-activeness (agents take
initiatives driven by goals) and social ability (interaxtiwith other agents).

In order to take scheduling decisions agents must meetaprdvious require-
ments. They need to quickly adapt to cloud changes and to comcate with others
in order to find a suitable service for tasks that need fastecwgion. In the con-
text of task scheduling agent adaptiveness includes handhanges in resource
workload or availability. In what follows we present a SOEeoted agent based
scheduling platform.

5.1 The Scheduling Platform

A distributed agent scheduling platform consists of seagants working together
for scheduling tasks. Inside a cloud consisting of severalise providers (VOS),
agents have the role of negotiating and reaching an agradyagmeen the peers.
Based on the meta-scheduling heuristics, the internaldsdée the knowledge on
the services it governs and the tasks’ characteristics ageht will try to negotiate
the relocation from/towards it of several tasks. In tryingthieve this goal agents
will also attempt to minimize a global cost attached to eaohkfiow.

Agent based approaches can allow each cloud provider totaiaiits own in-
ternal scheduling policies [23]. Furthermore they can a®their own scheduling
policies at meta-scheduling level. When deciding on tagbcegions every agent
will follow its own scheduling rules and will try to reach agraement, through
negotiation, with the rest. These aspects allow VOs to raairdutonomy and to
continue functioning as independents unit inside the cldudonomy is a manda-

12 Marc Eduard Frincu

tory requirement as VOs usually represent companies that tgamaintain their
independence while providing services to the general publi

Every VO willing to expose services will list one or more atgeto a Yellow
Pages online directory which can be queried by other ageatsimg to negotiate
for a better resource.

Agents can be designed as modular entities. In this way weddmew func-
tionalities to agents without requiring creating new agiypes. This is different
from previous works [11], [45] which mostly dealt with hiechies of agents. By
doing this we create a super-agent which tries to ensuréhbaasks in its domain
get the best resources. In addition the need of having neiligents working to-
gether for handling the same task is eliminated. Examplesicli agents include:
the execution agent, the scheduling agent, the transfet,afe interface agent, etc.

In our vision all the previously listed specialized agergsdime sub-modules in-
side every agent. Thus each agent will have: a schedulingitepcal communication
module, a service discovery module and an execution mod@h&sum of all agents
forms the meta-scheduler, which is responsible for the-seevice task allocation.
Figure 4 details this modular structure together with therections between agents
and other cloud components.

In what follows we divide the agents in two categories deppgndn whether
they initiate the requesti.e. requestor agents, or thgyorekto an inquiry i.e. solver
agents. This division does not influence the charactesistithe agent and is only
intended to depict its role.

The communication module handles any type of message exchange with other
agents. It also facilitates the dialogue between modulgsas between the schedul-
ing module and the service discovery module, or betweendhedaling module
and the executor module.

Theservicediscovery moduleallows each agent to discover services published on
UDDI's located inside its own domain. Typically every resoeior provider inside a
VO willing to offer some functionality to the general pubpablishes it as services
inside an UDDI. Once a service has been published it can lzehysthe scheduling
agent when reallocating tasks. This module is not used tmds services outside
the agent’s domain. The reason for this behavior is simpleryeservice outside
its domain is not controlled by the agent and thus not truskeast on services is
achieved through negotiation with other agents.

The execution module is responsible for invoking the service selected for task
execution. Service invocation is usually achieved by @nged client tailored to fit
the service interface. The creation has to be done dynasnaiing runtime as it
is not feasible to maintain a list of precompiled clients éascdlue to the number
and diversity of the existing services. Paper [12] present&P| for accessing both
SOAP-based services and Grid Services by dynamicallyiogeatients based on
the service WSDL (Web Service Description Language) [S6hbuld be noted
that the execution module is not responsible for creatirygév required by tasks.
Itis up to the resources behind the service to initialize mquired VMs based on
the task description.

Scheduling Service Oriented Workflows Inside Clouds 13

T |
L Publish agent =
\ Cloud Negotiate task with
Invoke Services other agents
outside own domain
Agent Yellow Pages »
e Service .
\1 e
=~)
) ;7”/&‘\;¥ e " NG ,,/’! T
Query for agents—
v v

—_—— Y T

r |
: |
! |
! I
! |
! |
! |
! |
! |
! |
! |
! |
| [Scheduling Agent j :
: :
: |

|
| Scheduling | | Execution | | Service Discovery ||
i Module Module Module !

|
\

Communication

Module
B T ~
{
Schedule and Invc;ke Services Agent Domain

inside own domain

n N o J
A N/
\r Y, AN —

Internal ‘
N \Schedulers ,

Fig. 4 Agent based scheduling platform

The scheduling module deals with task-to-service or task-to-agent allocations.
This module is the heart of the agent based scheduling platénd relies on
scheduling heuristics for taking its decisions. Every ag@s one or more tasks as-
signed to it. Depending on the scheduling heuristics it daobse to execute some

14 Marc Eduard Frincu

of the tasks on services governed by agents outside its doinaihe same way it
can decide to accept new tasks from other agents.

Depending on the policies implemented by the VO there arepossible sce-
narios that the scheduling module can face. The first occhenthe agent has no
information on the resources running the applications dhid sees are the inter-
faces of the services. The second is the case when an agems latichere is to
know about the underlying resources i.e. workflow, charttes, network topol-
ogy, etc. Both of these scenarios are important dependimgwarthe agent behaves
when a task needs to executed on one of its services.

The requestor agent submits the job either directly to thdcor to the solver
agent. In what concerns the rest of this paper we deal witHatter case. The
former option involves bypassing the VO scheduler reprieseby the agent. This
happens because the task will be handled directly by thenalteesource scheduler.
As a consequence any further scheduling optimization atngia-scheduling level
would be hindered.

The scheduling module inside an agent implements a scimediodiuristics de-
signed to deal with SOE. The scheduling heuristics can be agé¢he strategy used
by the agent to select a resource for its tasks, while thedatien with other agents
represents the negotiation phase. The negotiation preteesed on rules embedded
inside the strategy. A common bargaining language and & geedefined partici-
pation rules are used to ensure a successful negotiation.

Each agent has several services it governs (see Fig. 5hatiato them there
are task queues. Depending on the scheduling heuristigsaogiven number of
tasks can be submitted (by using the execution module) tovécseat any given
moment. Once submitted to the service itis the job of theimatescheduler to assign
the tasks to the resources. Similarly to the service levelgs there could also
exist queues attached to physical resources. Reallodagiveen these queues is
accomplished by the internal scheduler and is independeaty meta-scheduling
decisions taken by agents. Each resource behind a senndenptement its own
scheduling policies. Usually tasks submitted to a servieenat sent back to the
agent for meta-scheduling. There are many ways of checkimgthver a task has
been completed or not. One of them requires the scheduliegtag periodically
query the service to which it has submitted it for the rednlSect. 5.3 we briefly
present a prototype where internal schedulers have the&irsoieduling heuristics
and work independently from the agent meta-scheduling$tés.

5.2 Scheduling Through Negotiation

The central entity of every agent based scheduling platfetime scheduling mech-
anism. Based on its rules agents make active/passive alesish whether to move
or to accept new tasks. Every decision is proceeded by aiaégatphase where
the agent requests/receives information from other agenislecides, based on the
scheduling heuristics, which offer to accept. Negotiatiequires both a language

Scheduling Service Oriented Workflows Inside Clouds 15

/ / \/ [o @ | Vv \
/ . | / \

)}/ Negotiate with_——p ~—"/
cloud # otheragents

Scheduling Agent

1 / | — A
\ ™ Schedule tasks '\
‘~,‘. % &
© |
f w
| o | w | 7)) |
c 2 3 g
\ 8 Submit task and | o = \
o 2 querystatus | o | i \
/ c o \
’ [0} c c |
5 2 [}
“‘j (0] SH % |
Invoke service
‘ |
¥ j
| Agent domain |:| \
\\
L
~— Send tasks to " ‘
internal scheduler |
S A
Internal \
Resource
‘ Scheduler
| 1 Ry
Schedule tasks
\ l A AN W /
| ARERERER
Y %7 ® %7 ® Send task status e
\ 28] 2|2 and result ‘\
[0 @ [0} @ I
N = c c = |
N O %

j

Execute tasks.
On resorce

Resource exposed by
the service

Fig. 5 Task scheduling inside the agent’s domain

and a set of participation rules [40]. Depending on the VOgyand on the adher-
ence of other VOs to it many types of negotiation can be usgdriples include
game theory models [42], heuristic approaches [19] andnaegt based [35] solu-
tions.

16 Marc Eduard Frincu

A minimal set of locutions has been devised for the commuitindanguage
used by our platform:

e requestOffer(i,j,k): agenti requires an offer from ageitfor a taskk. Taskk
contains all the information required to make a scheduliegigion. This may
include (if available): estimated execution times, estedadransfer costs, execu-
tion deadlines, required input, etc.;

e sendOffer(j,i,k,p): agent sends an offer of pricp to agent for the execution of
taskk. The pricep represents the cost to execute thsin resourcg. Measuring
costs depends on the scheduling heuristics. For examptaiit cepresent the
estimated time required for executing the task on a senat@nging to agent

o acceptOffer(i,j,K): agent accepts the offer of agepfor executing task;

e sendTask(i,j,k): agenti sends for execution tagkto a service provided by agent
)i

o regjectOffer(i,j,k): agent rejects the offer of ageitfor executing task;

e requestTasks(i,j): agent informs agenj that it is willing to execute more tasks;
e requireDetails(i,j): agenti informs agen{ that it requires more details on the
services/resources under the latter’'s management. Meu#isally they refer to

details (WSDL URL for example) on the service proposed byhage

e sendDetails(j,i,d): agent sends available details to agénthese details contain
only publicly available data as result of internal poligies

e informTaskStatus(i,j,k,m): agenti informs by using message agentj about the

status of a task. For example the message could contain the result of a task

execution.

Participation rules are required in order to prohibit agéram saying something
they are not allowed to say at a particular moment. Figure@/siparticipation rules
between these locutions in the form of a finite state machine:

A negotiation starts either from a request for more tasksfam ageng or from
a request for offers for a given task which an agedécided to relocate. There is
a permanent link between the workflow engine agent and thedsding agent re-
sponsible for the VO in which the engine executes. It is te #iient where tasks are
placed first. Once a new task has been sent to this agentitresiponsibility to find
and negotiate the execution on a resource which has thedtighance of minimiz-
ing the deadline constraint. Workflow engines agents ardéasiwith scheduling
agents and can communicate with them. However they canhetlste tasks on re-
sources. Their only purpose is to provide an interface betvibe engine and the
meta-scheduling platform.

When scheduling workflows an important problem that needsetintegrated
inside the negotiation phase occurs. Considering the ¢&xacf a task on a service
that provides a result which can only be further used on sesvibelonging to the
same VO, any other possible solutions outside of that VO ditel ignored. It is
therefore the job of the requestor agent to negotiate foludisn that maximizes the
search set. For that reason a balance between the best tin&t @ogiven moment
and future restrictions needs to be achieved. As an exarsglesting the fastest

Scheduling Service Oriented Workflows Inside Clouds 17

|1 Initial state

SN S
/ \/ 2)T T -
| requestTasks(j,i) T Final state
\l requestOffer(i,j,k)\‘\
\ |
: S S S v T
1 \:\,\k\\ requestOffer(i,j k) ~_sendOffer(jik.p) [o)
\ / / N \ y \\

Ve \\\ |
/ requestOffer(i,j,k)\ /
| 3

\

\ / \ /
\ / . S
AN / T —
Ve N
/
|
\

< 6 sendDetails(j,i,d) |
1 " rejectOffer(i,j.k) / |

N e /
P S W)

e - Y.
| — . w

| informTaskStatus(j, NN P

\ e [e . acceptOffer(ij.k) ‘ o

» sendTask(i,j,k) -

N Y
S -

Fig. 6 State transitions between the communication languageidosu

service for executing the task could be transformed intectielg the service which
executes the task faster and without restrictions on usi@gdsult.

In case an agerjthas requested more tasks from another agéme latter will
ask the former for offers regarding the cost of executingeaiits tasks. At this
point agen§ will send back to ageritan offer for the task in question.

Based on this offer agenwill ask for more details regarding the available ser-
vices which will allow it to make a proper decision: it willtBer reject or accept
the offer. In case agetaccepts the offer of agepthe task will be submitted to a
service queue governed by the latter agent (see Fig. 5)tumré will send back a
message on the task status. Once the task is completed thiewidisbe sent back
to the workflow agent which will communicate it to the engifbe engine will use
the result to select consequent tasks for scheduling aralitza.

In the frame of the presented negotiation protocol the keyneht is played by
the moment a request for a relocation offer or for new tasksade. This point in
time basically marks the starting of the negotiation.

18 Marc Eduard Frincu

The problem of properly selecting the moment of an offer estas been ad-
dressed in our paper [22]. The proposed scheduling hexgristcorporates this re-
allocation moment and it is shown that the schedule outcerdé@éctly influenced
by it.

In order to extend this approach to SOE, a deadline-basewagip has been
investigated in paper [23]. The study is based on the fatinhaOE users usually
want to minimize their costs with regard to usage time and grovide an execution
deadline for each task inside their workflows. The aim of ttreeglule is to minimize
the global task lateness i.e. the difference between thiakeisk finish time and the
user given deadline time.

The scheduling heuristics is called DMECT [22] (Dynamic Miization of Es-
timated Completion Time). It periodically computes, foegytask, the Time Until
Deadline (TUD), the Local Waiting Time (LWT) - the time sintevas assigned
to the current service queue - and the Total Waiting Time ()Wfiime since the
task’s submission. From these values a decision on wheitreove the task or not
is taken by checking if the TUD / TWT - LWT is smaller than 0 ottnibthe value is
smaller arequestOffer action is taken. It must be noted that when the decissionto re
locate the task is taken, all the available services arentate consideration. These
include both internal (part of the current agent domain)extdrnal (obtained from
therequestOffer inquiry) ones. In this way every existing service gets ac¢aance
for competing for tasks. It can be easily seen that the rétmtaelation will try to
relocate tasks faster as their deadline approaches.

As a response to eequestOffer inquiry, every agent will perform aendOffer
action which will inform the requestor agent on possibleicés. Every reply typi-
cally contains a cost for the task’s execution on its besticer|f the initial inquiry
also contained a lower bound for that cost a list of servidésriag better prices
is returned. The cost for scheduling is made up of executioag possible com-
bined with monetary costs. For example when inquired, egemtawill compute
the estimated execution time on every service and retusntboke which have val-
ues smaller than the initially provided limit. Alternatlydt could return only the
smallest value, ensuring that the best available offerdtias made.

In case where it is impossible to estimate the execution tdoeeto insufficient
data or internal policies the length of a service queue cbaldsed as measure. In
[23] we have shown that the smaller a queue is the likelihbadlit executes tasks
faster is.

After gathering all the costs the requestor agent will se¢tezbest one according
to the scheduling heuristics i.e. smallest execution timeur example. All other
offers will be rejected. Once selected the task will be serthe selected solver
agent which will place the task in the service queue and thd Walue for the
relocated task will be set to 0. In the scenario that the ta#lknaet get executed
on the newly elected service as well, i.e. TUD / TWT - LWTO, the solver agent
will send arequestOffer inquiry to other agents, thus becoming the newly requestor
agent for that task.

Deciding when to request for new tasks is another importase evhich triggers
the negotiation process. In this case an agent seragiest Tasks message to all the

Scheduling Service Oriented Workflows Inside Clouds 19

other agents informing them about its willingness to actagks. Once this message
has been sent agents will begin sendieguestOffers to it for tasks they wish to
reallocate. From this point the negotiation proceeds aityilwith the previously
discussed case.

Depending on the policy the request for new tasks can be deriedically or
when the load of the services under an agent’s supervisiopsdrelow a certain
limit. Depending on the scheduling policy this approachafvely searching new
tasks could be inefficient. For example in our scenario ugiedMECT heuristics
such arequest would have no effect until at least one tageebsdts staying limit on
a resource queue. Other scheduling heuristics based oiredimag balancing tech-
niques such as the one presented in [24] could be more swoitedi$ scenario. In
these cases there are no conditions preventing tasks frgnatinig between agents.
Once an agent decides that the load on its services has drapffeciently new
tasks can be requested.

5.3 Prototype | mplementation Details

In this section we present some implementation aspecteafdheduling platform
prototype. The platform relies on JADE [6] as an agent ptatfand on the OSyRIS
[34] engine for workflow enactment.

JADE facilitates the development of distributed applicas following the agent-
oriented paradigm and is in fact a FIPA (Foundation for ligeht Physical Agents)
compliant multi-agent middleware. It is implemented in f§a&a language and pro-
vides an Eclipse plug-in which eases the development psdzgsntegrating de-
velopment, deployment and debugging graphical tools. Wit JADE can be
distributed across several resources and its configuraginribe controlled through
a remote graphical user interface. Agents can migrate artasg resources freely
at any time. Also JADE provides: a standard architectured¢beduling agent activ-
ities; a standard communication protocol by using the Agssrhmunication Lan-
guage (ACL); and allows the integration of higher functilityaby allowing users
to include their own Prolog modules for activity reasonikgen though the sim-
ple model of JADE agents makes the development easier itresga considerable
amount of effort for including intelligence when complexwt@l is required.

Paper [38] presents an extension to JADE where the platfeangmented with
two types of agents with the aim of paving the way for a moreitflexagent cloud
system. The two types of agents are:BeanShell agent responsible for sending and
executing behaviors coming from other agents; andOhaols agent responsible
for receiving and executing rules coming from other ageatghentication and
authorization mechanisms are offered for both types oftsgen

OSYRIS is a workflow enactment engine inspired by nature ehgles are ex-
pressed following the Event Condition Action paradigmktaare executed only
when some events occur and additional optional conditivasneet. In OSyRIS
events represent the completion of tasks and conditionssarally placed on the

20 Marc Eduard Frincu

output values. A single instruction is used all the resti{gpin, parallel, sequence,
choice, loop) deriving from itt HS-> RHS|| condition, salience, whereLHS (Left
Hand Side) represents the tasks that need to be completme sk cuting th&HS
(Right Hand Side) tasks. The engine relies on a chemicalphetavhere tasks play
the role of molecules and the execution rules are the reectio

In order to simulate VOs we have used two clusters availablbeauniversity.
One consisting of 8 Pentium dual-core nodes with 4 GB of RAkhdaalled VO1)
and the other having 42 nodes with 8 cores and 8 GB of RAM eduhlatter cluster
is divided into 3 blades (called VO2, VO2 and VO3) each withribtles each.
To each blade there is attached one scheduling agent whinhgea the services
running on them. A single agent is used for governing ther@MD1. Nodes are
paired and each pair is exposed through a service handleldebggent handling
the governing VO. The agents are registered to a yellow pagesitory as depicted
in Fig. 4. For inter-agent task scheduling the DMECT heiassis used. Although
different SAs could be used for local resource schedulinawe opted for a single
one: the MinQL [24] heuristics.

The scheduling scenario proceeds as follows: once a sdhgdigent receives a
task, it attaches it to one of its service queues (see Figasks are received either
by negotiating with other agents or directly from a workflogeat. The negotiation
protocol is similar with the one in Fig. 6 and uses the DMECTsS&location
condition [23] as described in Sect. 5.2. Each service caowgr at modt instances
simultaneously. Variablkis equal to the number of processors inside the node pair.
Once sent to a service a task cannot be sent back to the agess @xplicitly
specified in the scheduling heuristics. Tasks sent to sesvace scheduled inside
the resource by using the MinQL SA which uses a simple loaarnzahg technique.
Scheduling agents periodically query the service for cetegl tasks. Once one is
found the information inside it is used to return the resultite agent responsible
for the workflow instance. This passes the information toethgine which in turn
passes the consequent set of tasks to the agent for schgedulin

In order to simulate the cloud heterogeneity in terms of bijias services offer
different functionalities. In our case services offer asc® both CASs and image
processing methods. As each CAS offers different functfion$andling mathe-
matical problems so does the service exposing it. The sapleegfor the image
processing services that do not implement all the availatdéhods on every ser-
vice. An insight on how CASs with different capabilities damexposed as services
is given in [37].

6 Conclusions

In this paper we have presented some issues regarding faséuding when ser-
vices from various providers are offered. Problems suchstimating runtimes
and transfer costs; service discovery and selection; &mdtnegotiation between
providers for accessing their services; or making the iedéepnt resource sched-

Scheduling Service Oriented Workflows Inside Clouds 21

uler cooperate with the meta-scheduler, have been distussalescribed much of
the existing scheduling platforms are grid oriented andi¢lschedulers are only
beginning to emerge. As a consequence a MAS approach todhd stheduling
problem has been introduced. MAS have been chosen sinceptheile greater
flexibility and are distributed by nature. They could alspresent a good choice
for scheduling scenarios where negotiation between vendaequired. Negotia-
tion is particularly important when dealing with workflowsere tasks need to be
orchestrated together and executed under strict deadiireeder to minimize user
costs. This is due to the fact that vendors have differerdsscand scheduling poli-
cies and therefore selecting the best service for execatitagk with a provided
input becomes more than just a simple reallocation probldra.prototype system
uses a single type of agents which combine multiple funelites. The resulting
meta-scheduler maintains the autonomy of each VO insideltugl.

The presented solution is under current development andeftésts using vari-
ous SAs and platform configurations are planned.

Acknowledgements This research is partially supported by European Union Eveonk 6 grant
RII3-CT-2005-026133 SCIEnce: Symbolic Computing Infrasture in Europe.

References

1. W. M. P. van der Aalst, and A. H. M. ter Hofstede, "Yawl: yetogher workflow language”,
Information Systems”, Vol. 30, No. 4, 2005, pp. 245-275.

2. D. Abramson, R. Buyya, and J. Giddy, "A Computational Emog for Grid Computing
and its Implementation in the NIMROD-G Resource Broker'fufe Generation Computer
Systems, Vol. 18, No. 8, 2000, pp. 1061-1074.

3. ActiveBPEL, http://www.activebpel.org/ Cited 7 Jan 201

4. A. Ali, J. Bunn, et al, Predicting Resource Requiremelifiita dob Submission, Proceedings
of the Conference on Computing in High Energy and NucleaisRBy 2004.

5. S. Banerjee, |. Mukherjee, and P. K. Mahanti, "Cloud Cotimgulnitiative using Modified
Ant Colony Framework”, World Academy of Science, Enginegrand Technology, Vol.56,
2009, pp. 221-224.

6. F. Bellifemine, A. Poggi, and G. Rimassa, "Jade: a FIPARGOmpliant Agent Development
Environment”, In Proceedings of the fifth international f@ence on Autonomous agents,
2001, pp. 216-217.

7. F. Berman, R. Wolski, H. Casanova, W. Cirne, et al, "Adap€omputing on the Grid using
APPLES”, IEEE Transactions on Parallel and Distributedt@ys, Vol. 14, No. 4, 2003, pp.
369-382.

8. R. Buyya, D. Abramson, and J. Giddy, "Nimrod/g: An Arcletigre for a Resource Man-
agement and Scheduling System in a Global Computational’ G?roceedings of the 4th
International Conference on High Performance Computingsia-Pacific Region, Vol. 1,
2000, pp. 283-289.

9. J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R. Nudldns: An Agent-based
Resource Management System for Grid Computing”, ScierRiftgramming, Vol. 10, No.
2, 2002, pp. 135-148.

10. J. Cao, D. J. Kerbyso, E. Papaefstathiou, and G. R. Ni#fdrmance Modelling of Paral-
lel and Distributed Computing using PACE”, Proceedings®@thlEEE International Perfor-
mance, Computing and Communication Conference, pp. 4&5-2400.

22

11

12

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

34.

Marc Eduard Frincu

. J. Cao, D. P. Spooner, S. A. Jarvis, and G. R. Nudd, "GradLBalancing using Intelligent
Agents”, Future Generation Computer Systems, Vol. 21, Na005, pp. 135-149.

. A. Carstea, M. Frincu, G. Macariu, D. Petcu, and K. HamthdGeneric Access to Web an

Grid-based Symbolic Computing Services”, Proceedingh@bth International Symposium

in Parallel and Distributed Computing, 2007, pp. 143-150.

A. Carstea, G. Macariu, M. Frincu, and D. Petcu, "Secureh€stration of Symbolic Grid

Services”, leAT Technical Report, No. 08-08, 2008.

H. Casanova, and J. Dongarra, "Applying Netsolve's Netwenabled Server”, EEE Com-

putational Science and Engineering, Vol. 5, No. 3, 19985Fp67.

H. Casanova, G. Obertelli, F. Berman, and R. Wolski, "ARPLES Parameter Sweep Tem-

plate: User-level Middleware for the Grid”, ProceedingsSafer Computing SC’00, pp. 75—

76, 2000.

S. J. Chapin, D. Katramatos, J. Karpovich, and A. GrimsliResource Management in

Legion”, Future Generation Computer Systems, Vol. 15, NA999, pp. 583-594.

Cloud Scheduler, http://cloudscheduler.org/ Citedr7 2010.

L. David, and I. Puaut, "Static Determination of Proltiasbt Execution Times”, Proceedings

of the 16th Euromicro Conference on Real-Time Systems, 2§-230, 2004.

P. Faratin, C. Sierra, N. R. Jennings, "Using similadtieria to make issue trade-offs in

automated negotiation”, Artificial Intelligence, Vol. 1440. 2, 2001, pp. 205-237.

|. T. Foster, "Globus Toolkit Version 4: Software for @ee-Oriented Systems”, Proceedings

of International Conference on Network and Parallel Conmgitvol. 3779, 2005, pp. 2-13.
I. Foster, N. R. Jennings, and C. Kesselman, "Brain M@eten: Why Grid and Agents Need

Each Other”, In Proceedings of the Third International i@onference on Autonomous

Agents and Multiagent Systems, 2004, pp. 8-15.

M. Frincu, "Dynamic Scheduling Algorithm for Heterogmus Environments with Regular

Task Input from Multiple Requests”, In Lecture Notes in Cartgy Science, Vol. 5529, 2009,

pp. 199-210.

M. Frincu, "Distributed Scheduling Policy in Servicei€@ted Environments”, Proceedings

of the 11th International Symposium on Symbolic and Num@iigorithms for Scientific

Computing, 2009.

M. Frincu, G. Macariu, and A. Carstea, "Dynamic and AdaepWorkflow Execution Plat-

form for Symbolic Computations”, Pollack Periodica, Akadei Kiado, Vol. 4, No. 1, 2009,

pp. 145-156.

N. Fujimoto,, and K. Hagihara, "A Comparison Among Grith8duling Algorithms for In-

dependent Coarse-grained Tasks”, International SymposiuApplications and the Internet

Workshops, 2004.

S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya, "Epétfiicient Scheduling of HPC

Applications in Cloud Computing Environments”, Techniadport, 2009.

Google Application Engine, http://appengine.goagim Cited 7 Jan 2010.

M. Greenwood, "Xscufl language reference” , 2004, htgpviv.mygrid.org.uk/wiki/Mygrid

/WorkFlow#XScufl workflow definitions Cited 7 Jan 2010

B. Lawson, and E. Smirni, "Multiple-queue Backfillingteluling with Priorities and Reser-

vations for Parallel Systems”, In Lecture Notes in Comp@&eience, vol. 2862, 2002, pp.

72-87.

S. Lorpunmanee, M. N. Sap, A. H. Abdullah, and C. Chompaai, "An ant Colony Op-

timization for Dynamic Job Scheduling in Grid Environmenorld Academy of Science,

Engineering and Technology, Vol. 23, 2007, pp. 314-321.

M. Maheswaran, T. D. Braun, and H. J. Siegel, "HeterogeseDistributed Computing”,

Encyclopedia of Electrical and Electronics EngineerirghndWiley & Sons, Vol. 8, 1999,

pp. 679-690.

Microsoft Live Mesh, http://www.mesh.com Cited 7 Jai@0

. V. Muniyappa, "Inference of Task Execution Times Usirigdar Regression Techniques”,

Masters Thesis, Texas Tech University, 2002.

OSyRIS Workflow Engine, http://gisheo.info.uvt.rafttwiki/Workflow Cited 7 Jan 2010.

Scheduling Service Oriented Workflows Inside Clouds 23

35.

36.

37.

38.

39.

40.

41.

42.
43.

44,

45.

46.

47.

48.

49.
50.

51.

52.

53.

54.

55.
56.

S. Parsons, C. Sierra, and N. R. Jennings, "Agents tregdReand Negotiate by Arguing”,
Journal of Logic and Computation, Vol. 8, No. 3, 1998, pp.-2812.

C. Pautasso, O. Zimmermann, and F. Leymann, "RESTful Béghices vs. Big Web Ser-
vices: Making the Right Architectural Decision”, 17th Imational World Wide Web Con-
ference, 2008.

D. Petcu, A. Carstea, G. Macariu, and M. Frincu, "Seradgented Symbolic Computing
with SymGrid”, Scalable Computing: Practice and Expergn®l. 9, No. 2, 2008, pp. 111—
124.

A. Poggi, M. Tomaiuolo, and P. Turci, "Extending JADE fegent Grid Applications”, Pro-
ceedings of the 13th IEEE International Workshops on Engblechnologies: Infrastructure
for Collaborative Enterprise, 2004, pp. 352-357.

A. Radulescu, and A. van Gemund, "A Low-cost Approach dials Mixed Task and Data
Parallel Scheduling”, Proceedings of the Internationahf€mence on Parallel Processing,
2001.

S. D. Ramchurn, "Multi-Agent Negotiation using Trusdaersuasion”, PhD Thesis, Uni-
versity of Southampton UK, 2004.

G. R. S. Ritchie, and J. Levine: "A Hybrid Ant Algorithmrf&cheduling Independent Jobs
in Heterogeneous Computing Environments”, Proceedingseo23rd Workshop of the UK
Planning and Scheduling Special Interest Group, 2004.

J. S. Rosenschein, and G. Zlotkin, "Roles of EncountdiT, Press, 1994.

R. Sakellariou, and H. Zhao, "Experimental Investigiatinto the Rank function of the Het-
erogeneous Earliest Finish Time Scheduling Algorithm”&tture Notes in Computer Sci-
ence, Vol. 2790, 2003, pp. 189-194.

R. Sakellariou, and Zhao, "A Hybrid Heuristic for DAG ®cluling on Heterogeneous Sys-
tems”, Proceedings of the 18th International Symposiumalaliel and Distributed Process-
ing, 2004.

J. Sauer, T. Freese, and T. Teschke, "Towards Agenttdsti-site Scheduling”, Proceed-
ings of the ECAI 2000 Workshop on New Results in Planning e8ating, and Design, 2000.
W. Shen, Y. Li, H. Genniwa, and C. Wang, "Adaptive Neguia for Agent-based Grid
Computing”, Proceedings of the Agentcities’/AAMAS’'02, 200

W. Smith, I. Foster, and V. E. Taylor, "Predicting Apglion Run Times with Historical
Information”, Journal of Parallel and Distributed Comgj Vol. 64, No. 9, 2004, pp. 1007—
1016.

D. Thain, T. Tannenbaum, and M. Livny, "Distributed Cartipg in Practice: the Condor Ex-
perience”, Concurrency and Computation: Practice and fispee, Vol. 17, No. 2—4, 2005,
pp. 323-356.

UDDI, www.uddi.org/pubs/uddi-tech-wp.pdf Cited 7 Z410.

G. Weichhart, M. Affenzeller, A. Reitbauer, and S. Wagiiodelling of an Agent-based
Schedule Optimisation System”, Proceedings of the IMSrihatigonal Forum, pp. 79-87,
2004.

J.B Weissman, "Metascheduling: a Scheduling Model f@tddomputing Systems”, The
Seventh International Symposium on High Performance iDigied Computing, pp 348-349,
1998.

P. Wolniewicz, N. Meyer, M. Stroinski, M. Stuempert, Foridmayer, M. Polak, and H. Gjer-
mundrod, "Accessing Grid Computing Resources with G-Bdiplatform”, Computational
Methods in Science and Technologie, Vol. 13, No. 2, 2007 1pf-141.

WS-BPEL 2.0, http://docs.oasis-open.org/wsbpeli&bpel-v2.0.pdf Cited 7 Jan 2010.
WS Security, http://www.ibm.com/developerworks#ity/specification/ws-secure/ Cited 7
Jan 2010.

WS Trust 1.4, http://docs.oasis-open.org/ws-sxfwstiv1l.4/ws-trust.html Cited 7 Jan 2010.
WSDL, http://www.w3.org/TR/wsdl Cited 7 Jan 2010.

Index

C

cloud systems 6

M

Multi-Agent Systems 10
S

scheduling platform 2

Service Oriented Environments
\Y

Virtual Organization 8

W

workflow scheduling 10

2

25

