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Abstract 
 

In this paper we propose a novel approach to image 
compression based on three-dimensional Discrete Cosine 
Transformation (DCT). The basic idea is to de-correlate 
similar pixel blocks through three-dimensional DCT 
transformation. A number of adjacent pixel blocks are 
grouped together to form a three-dimensional data cube. 
Each data cube is 3D DCT transformed, quantized, and 
Huffman encoded. Experimental results demonstrate the 
effectiveness of the new approach, specifically for medical 
and space exploration images. 
 
 
1. Introduction 

 
Three-dimensional discrete cosine transformation is 

typically used in video compression because video data 
are naturally three-dimensional. There have been a 
number of video compression algorithms that emp loy 3D 
DCT. These algorithms can be classified into three 
categories based on the DCT transformation: fixed-size 
3D DCT, variable-size 3D DCT, and hybrid 2D/3D DCT.  

In the XYZ video compression algorithm [1] [2], a 
video clip is divided into groups of 8 frames. Each group 
is further divided into data cubes of 8x8x8 pixels. Each 
data cube is then independently 3D-DCT transformed, 
quantized, and entropy encoded.  

The authors in [3] [4] [5] proposed the variable-size 
data cube. The data cubes in [3] [4] can have variable 
temporal lengths, while the data cubes in [5] can have 
both variable temporal lengths and variable spatial sizes. 
Two scene change detectors are utilized in [3] to detect 
the temporal boundary of the two adjacent 3D data cubes.  
They are the Adaptive Block Filter (ABF) method and the 
Mean Absolute Difference (MAD) method. The algorithm 
proposed in [5] adaptively determines the optimal size of 
a video data cube based on the motion analysis. The cube 
sizes for the no-motion, low-motion, and high-motion 
scenarios are 16x16x1, 16x16x8 and 8x8x8 pixels 
respectively. 

The 2D/3D hybrid algorithms were proposed in [6] [7]. 
The algorithm in [6] first estimates motion vectors (MV) 
based on the deformed frame difference (DFD) between 

two frames. If the DFD is less than a threshold value, the 
motion is considered as low-motion. The 2D blocks of 
8x8 pixels in the adjacent frames pointed by low-motion 
MVs are put into one 3D data cube and then transformed 
using 3D-FDCT. The rest of the regions in each frame are 
then transformed using 2D-FDCT. In [7], the neighboring 
blocks that have similar motion vectors and are of the 
same type (boundary or non-boundary blocks) are merged 
into an arbitrary region. Regions are classified into 
motion compliance (MC) regions and motion failure (MF) 
regions. The temporal boundary between two adjacent 
cubes was detected using histograms. The MC regions are 
first coded using 1-D variable -point (2-, 3- or 4-) FDCT 
along the temporal dimension. Then the 2-D wavelet 
packet decomposition is applied to MC regions in the 
same frame. The MF regions are coded using the package 
contour coding method in [8]. 

Considering that small blocks of pixels are often 
correlated in an image, we propose to apply 3D-DCT 
transformation to image compression. To form the three-
dimensional data required for 3D-DCT computation, eight 
two-dimensional pixel blocks are taken sequentially from 
an image and are assembled into a 3D cube. 

The rest of the paper is organized as follows. The 
sequential 3D DCT image compression algorithm is 
presented in Section 2.  We describe the architecture of 
the image codec, the formation of the three-dimensional 
data cube, and the three-dimensional DCT transformation. 
The experimental results are presented in Section 3. The 
conclusion and future work are discussed in Section 4. 

 
2. Sequential 3D DCT Image Compression 
 

This section describes the sequential 3D DCT image 
compression algorithm in detail. We first present the 
architecture of the sequential 3D DCT image encoder and 
decoder. Then, we describe how the three-dimensional 
data cube is constructed from the two-dimensional data 
blocks. Finally, we present the three-dimensional DCT 
transformation and related equations. 

 
 
 
 



  

 
1.1 The Architecture of the Sequential 3D 

DCT  Image Codec 
 

The block diagram of the sequential 3D DCT image 
codec is shown in Figure 1. The image in RGB format is 
first converted to YCbCr format to separate the luminance 
from the chrominance information. After the conversion, 
each color component is partitioned into blocks of 8x8 
pixels.  The intensity values of pixels in each block are 
normalized to [-128, +127]. Each block is then processed 
in the following order. 

 
1) 3D Data Cube Formation 
Starting with the top-left corner of the image, every 

eight adjacent two-dimensional pixel blocks are taken to 
construct a three-dimensional data cube. The details of the 
3D Cube formation are explained in Section 2.2. 

2) 3D FDCT Transformation 
The three-dimensional forward discrete cosine 

transformation is performed on each three-dimensional 
data cube.  The purpose is to reduce the redundancy of 
similar pixel blocks. After the 3D DCT transformation, 
only a small number of low-frequency coefficients are 
significant. Most high-frequency coefficients are near 
zeros. 

3) Quantization 
All DCT coefficients in the same data cube are 

quantized using the following formula: 
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where u, v, and w are the spatial indices; ),,( wvuF  refers 
to the coefficient value before the quantization; 

),,( wvuQ  denotes the element in the quantization table; 
),,( wvu

q
F represents  the quantized coefficient. 

4) Zigzag and Entropy Coding 
Each 2-D block in a 3D cube is zigzagged into a 

vector. The difference between the DC values in the 
adjacent 3D cubes is computed and Huffman encoded. 
The run-length of zero AC coefficients and the non-zero 
AC coefficients in each 2-D block in the same data cube 
are also Huffman encoded. 
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   Figure 2.  Forming a sequential cube of 8x8x8 pixels. 
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Figure 1. The block diagram of the sequential 3-D DCT codec. 
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The decoding procedure is the reverse of the 

encoding procedure. The compressed image is first 
Huffman decoded. All 2-D blocks of quantized 
coefficients in the same data cube are identified and de-
quantized. The 3D inverse DCT is then applied to each 
data cube. At the last stage, the intensity values are shifted 
back to [0,255]. 

 
2.2  3D Data Cube Formation 

 
As illustrated in Figure 2, each 3D data cube is 

formed using a 2x4 adjacent blocks of 8x8 pixels in the 
following manner. An 8x8 block is considered as a unit. 
To form the first data cube, we take the first four blocks 
in the first row of blocks and number them 1, 2, 3 and 4 
respectively. Then, we take the first four blocks in the 
second row and number them 5, 6, 7, and 8 respectively. 
These eight blocks are then assembled into a three-
dimensional data cube of 8x8x8 pixels. The order in 
which a block is placed in the 3D data cube is based on its 
block number.  

The second data cube is constructed by taking the 
next four pixel blocks in the first row of blocks and then 
the next four pixel blocks in the second row of blocks. 
Blocks are numbered and ordered in the same way as in 
the formation of the first data cube. The rest of the image 
is processed in a similar way. 
 
2.3  3D DCT Transformation 

 
The 3D Forward Discrete Cosine Transformation 

used in the proposed 3D DCT image coder is based on the 
following formulas: 
 

∑
=

∑
=

∑
=

=
7

0
cos_),,(

7

0

7

08
)()()(),,(

y
prodzyxf

zx

wCvCuCwvuF
          (2) 

 
where cos_prod and C(u), C(v), and C(w)  are defined as: 
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In the equations (2) – (4), x,y,z are pixel indices in the 

time domain, u,v,w are coefficient indices in the 
frequency domain,  f(x,y,z) denotes a normalized pixel 
intensity value, and F(u,v,w) is a DCT coefficient value. 

The proposed 3D DCT image decoder employs the 
following 3D Inverse Discrete Cosine Transformation: 
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where cos_prod is defined as in the formula (3), C(u), 
C(v), and C(w)  take the same values as in the formula (4), 
and  f(x,y,z) and F(u,v,w) have the same meanings as in 
the formula (2). 
 
3.  Experimental Results 

 
The proposed sequential 3D DCT image compression 

algorithm is benchmarked against the baseline JPEG 
compression algorithm. Different categories of images are 
collected for performance evaluation purpose. These 
categories include medical, texture, art, sculpture, and 
space exploration images.  

The compression efficiency is measured using the 
compression ratio. The quality of an uncompressed image 
is measured using the Peak Signal to Noise Ratio (PSNR). 
The PSNR is computed based on the Mean Square Error 
(MSE). The formulas (6) and (7) define the PSNR and 
MSE, respectively: 
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 (a)  The  original image (b) The reconstructed image using  
3D DCT (PSNR=41.76, BPP=0.67)  

 (c) The reconstructed image using 
JPEG (PSNR=41.58, BPP=0.68) 

 Figure 3.  The experimental results for the image “sonogram.” 
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In formulas (6) and (7), M and N refer to the number of 
pixels in a row and a column respectively, I(x,y) signifies 
the original intensity value of a pixel at spatial location 
(x,y), and ),(ˆ yxI denotes the intensity value of the pixel at 
the same spatial location in the uncompressed image. 

 
The experimental results for a medical image 

sonogram.bmp are shown in Figures 3 and 4. Figure 3(a) 
shows the original image, while Figure 3(b) is the 
reconstructed image using the proposed algorithm when 
the PSNR is 41.76 dB and the BPP is 0.67. Figure 3(c) is the 
reconstructed image using JPEG when the PSNR is 41.58 
dB and the BPP is 0.68. The graphs showing the PSNR as a 
function of bits/pixel are shown in Figure 4.   

 
 
The experimental results demonstrate that the proposed 

approach is slightly better than the JPEG for the specific 
medical image.  

 
4.  Conclusions  and Future Work 
 

In this paper, we proposed an innovative image 
compression algorithm that utilizes three-dimensional 
discrete cosine transformation. The algorithm first divides 
an image into 8x8 blocks. Then eight adjacent blocks are 
taken sequentially and repeatedly to form three-
dimensional data cubes, which are required by the 3D 
DCT transformation. Next, a three-dimensional discrete 
cosine transformation is performed on each data cube. 
The DCT coefficients in the same 3D data cube are then 

quantized and Huffman encoded. The experimental 
results have shown that the new algorithm is better than 
JPEG for some classes of images.  

The sequential 3D DCT image coder, described in 
this paper, uses fixed-size data cubes. It does not group all 
pixel blocks that are similar to each other. We are 
currently experimenting with a similar coder that uses 
variable-length three-dimensional cubes. The adjacent 
8x8 blocks are first compared to each other, and, if there 
is a sufficient pixel similarity between them, they are 
grouped into the same 3D cube. In this case, each cube is 
of a variable length and consists of blocks which are 
similar to each other. The blocks may not be ordered in a 
sequential way. The preliminary results show that the 
variable-length 3D DCT image coder shows better 
performance than the sequential coder for specific classes 
of images. 
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