
An Approach to Image Compression Using Three-Dimensional DCT

Xiuqi Li and Borko Furht
Department of Computer Science and Engineering,
 Florida Atlantic University, Boca Raton, FL 33431

Email:xli@cse.fau.edu, borko@cse.fau.edu

Abstract

In this paper we propose a novel approach to image
compression based on three-dimensional Discrete Cosine
Transformation (DCT). The basic idea is to de-correlate
similar pixel blocks through three-dimensional DCT
transformation. A number of adjacent pixel blocks are
grouped together to form a three-dimensional data cube.
Each data cube is 3D DCT transformed, quantized, and
Huffman encoded. Experimental results demonstrate the
effectiveness of the new approach, specifically for medical
and space exploration images.

1. Introduction

Three-dimensional discrete cosine transformation is

typically used in video compression because video data
are naturally three-dimensional. There have been a
number of video compression algorithms that emp loy 3D
DCT. These algorithms can be classified into three
categories based on the DCT transformation: fixed-size
3D DCT, variable-size 3D DCT, and hybrid 2D/3D DCT.

In the XYZ video compression algorithm [1] [2], a
video clip is divided into groups of 8 frames. Each group
is further divided into data cubes of 8x8x8 pixels. Each
data cube is then independently 3D-DCT transformed,
quantized, and entropy encoded.

The authors in [3] [4] [5] proposed the variable-size
data cube. The data cubes in [3] [4] can have variable
temporal lengths, while the data cubes in [5] can have
both variable temporal lengths and variable spatial sizes.
Two scene change detectors are utilized in [3] to detect
the temporal boundary of the two adjacent 3D data cubes.
They are the Adaptive Block Filter (ABF) method and the
Mean Absolute Difference (MAD) method. The algorithm
proposed in [5] adaptively determines the optimal size of
a video data cube based on the motion analysis. The cube
sizes for the no-motion, low-motion, and high-motion
scenarios are 16x16x1, 16x16x8 and 8x8x8 pixels
respectively.

The 2D/3D hybrid algorithms were proposed in [6] [7].
The algorithm in [6] first estimates motion vectors (MV)
based on the deformed frame difference (DFD) between

two frames. If the DFD is less than a threshold value, the
motion is considered as low-motion. The 2D blocks of
8x8 pixels in the adjacent frames pointed by low-motion
MVs are put into one 3D data cube and then transformed
using 3D-FDCT. The rest of the regions in each frame are
then transformed using 2D-FDCT. In [7], the neighboring
blocks that have similar motion vectors and are of the
same type (boundary or non-boundary blocks) are merged
into an arbitrary region. Regions are classified into
motion compliance (MC) regions and motion failure (MF)
regions. The temporal boundary between two adjacent
cubes was detected using histograms. The MC regions are
first coded using 1-D variable -point (2-, 3- or 4-) FDCT
along the temporal dimension. Then the 2-D wavelet
packet decomposition is applied to MC regions in the
same frame. The MF regions are coded using the package
contour coding method in [8].

Considering that small blocks of pixels are often
correlated in an image, we propose to apply 3D-DCT
transformation to image compression. To form the three-
dimensional data required for 3D-DCT computation, eight
two-dimensional pixel blocks are taken sequentially from
an image and are assembled into a 3D cube.

The rest of the paper is organized as follows. The
sequential 3D DCT image compression algorithm is
presented in Section 2. We describe the architecture of
the image codec, the formation of the three-dimensional
data cube, and the three-dimensional DCT transformation.
The experimental results are presented in Section 3. The
conclusion and future work are discussed in Section 4.

2. Sequential 3D DCT Image Compression

This section describes the sequential 3D DCT image
compression algorithm in detail. We first present the
architecture of the sequential 3D DCT image encoder and
decoder. Then, we describe how the three-dimensional
data cube is constructed from the two-dimensional data
blocks. Finally, we present the three-dimensional DCT
transformation and related equations.

1.1 The Architecture of the Sequential 3D

DCT Image Codec

The block diagram of the sequential 3D DCT image
codec is shown in Figure 1. The image in RGB format is
first converted to YCbCr format to separate the luminance
from the chrominance information. After the conversion,
each color component is partitioned into blocks of 8x8
pixels. The intensity values of pixels in each block are
normalized to [-128, +127]. Each block is then processed
in the following order.

1) 3D Data Cube Formation
Starting with the top-left corner of the image, every

eight adjacent two-dimensional pixel blocks are taken to
construct a three-dimensional data cube. The details of the
3D Cube formation are explained in Section 2.2.

2) 3D FDCT Transformation
The three-dimensional forward discrete cosine

transformation is performed on each three-dimensional
data cube. The purpose is to reduce the redundancy of
similar pixel blocks. After the 3D DCT transformation,
only a small number of low-frequency coefficients are
significant. Most high-frequency coefficients are near
zeros.

3) Quantization
All DCT coefficients in the same data cube are

quantized using the following formula:









=
),,(

),,(
),,(

wvuQ

wvuF
roundwvuqF (1)

where u, v, and w are the spatial indices;),,(wvuF refers
to the coefficient value before the quantization;

),,(wvuQ denotes the element in the quantization table;
),,(wvu

q
F represents the quantized coefficient.

4) Zigzag and Entropy Coding
Each 2-D block in a 3D cube is zigzagged into a

vector. The difference between the DC values in the
adjacent 3D cubes is computed and Huffman encoded.
The run-length of zero AC coefficients and the non-zero
AC coefficients in each 2-D block in the same data cube
are also Huffman encoded.

 Image

1 2 3 4

5 6 7 8

 8x8x8
 Cube

 Figure 2. Forming a sequential cube of 8x8x8 pixels.

Reconstructed
Image

Sequential 3D DCT Decoder

Sequential 3D DCT Encoder

Compressed
Image

Figure 1. The block diagram of the sequential 3-D DCT codec.

Original
Image

3D Forward
DCT

3D
Quantization

Entropy
Coding

3D Quantization
Tables

Huffman Table
Specification

Compressed
Image

3D Inverse
DCT

3D
Dequantization

Entropy
Decoding

3D Quantization
Tables

Huffman Table
Specification

3D Cube
Formation

3D Cube
Extraction

The decoding procedure is the reverse of the

encoding procedure. The compressed image is first
Huffman decoded. All 2-D blocks of quantized
coefficients in the same data cube are identified and de-
quantized. The 3D inverse DCT is then applied to each
data cube. At the last stage, the intensity values are shifted
back to [0,255].

2.2 3D Data Cube Formation

As illustrated in Figure 2, each 3D data cube is

formed using a 2x4 adjacent blocks of 8x8 pixels in the
following manner. An 8x8 block is considered as a unit.
To form the first data cube, we take the first four blocks
in the first row of blocks and number them 1, 2, 3 and 4
respectively. Then, we take the first four blocks in the
second row and number them 5, 6, 7, and 8 respectively.
These eight blocks are then assembled into a three-
dimensional data cube of 8x8x8 pixels. The order in
which a block is placed in the 3D data cube is based on its
block number.

The second data cube is constructed by taking the
next four pixel blocks in the first row of blocks and then
the next four pixel blocks in the second row of blocks.
Blocks are numbered and ordered in the same way as in
the formation of the first data cube. The rest of the image
is processed in a similar way.

2.3 3D DCT Transformation

The 3D Forward Discrete Cosine Transformation

used in the proposed 3D DCT image coder is based on the
following formulas:

∑
=

∑
=

∑
=

=
7

0
cos_),,(

7

0

7

08
)()()(),,(

y
prodzyxf

zx

wCvCuCwvuF
 (2)

where cos_prod and C(u), C(v), and C(w) are defined as:

16

)12(
cos

16

)12(
cos

16

)12(
coscos_

πππ wzvyux
prod

+++
= (3)

},,{ ;0i ,1)(;0i ,
2

1
)(wvuiifiCifiC ∈>=== (4)

In the equations (2) – (4), x,y,z are pixel indices in the

time domain, u,v,w are coefficient indices in the
frequency domain, f(x,y,z) denotes a normalized pixel
intensity value, and F(u,v,w) is a DCT coefficient value.

The proposed 3D DCT image decoder employs the
following 3D Inverse Discrete Cosine Transformation:









∑
=

∑
=

∑
=

= prodwvuFwcvcuc
wvu

zyxf cos_),,()()()(
7

0

7

0

7

08
1),,(

 (5)

where cos_prod is defined as in the formula (3), C(u),
C(v), and C(w) take the same values as in the formula (4),
and f(x,y,z) and F(u,v,w) have the same meanings as in
the formula (2).

3. Experimental Results

The proposed sequential 3D DCT image compression

algorithm is benchmarked against the baseline JPEG
compression algorithm. Different categories of images are
collected for performance evaluation purpose. These
categories include medical, texture, art, sculpture, and
space exploration images.

The compression efficiency is measured using the
compression ratio. The quality of an uncompressed image
is measured using the Peak Signal to Noise Ratio (PSNR).
The PSNR is computed based on the Mean Square Error
(MSE). The formulas (6) and (7) define the PSNR and
MSE, respectively:









=

MSE
PSNR

2
255

 10log10 (6)

 (a) The original image (b) The reconstructed image using
3D DCT (PSNR=41.76, BPP=0.67)

 (c) The reconstructed image using
JPEG (PSNR=41.58, BPP=0.68)

 Figure 3. The experimental results for the image “sonogram.”

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
28

30

32

34

36

38

40

42

44

46

BPP

P
S

N
R

Performance Comparison on Image: sonogram

base-line JPEG
sequential 3d-dct

∑
=

−∑
=

=
N

y
yxIyxI

M

xMN
MSE

0
2)),(ˆ),((

0

1
 (7)

In formulas (6) and (7), M and N refer to the number of
pixels in a row and a column respectively, I(x,y) signifies
the original intensity value of a pixel at spatial location
(x,y), and),(ˆ yxI denotes the intensity value of the pixel at
the same spatial location in the uncompressed image.

The experimental results for a medical image

sonogram.bmp are shown in Figures 3 and 4. Figure 3(a)
shows the original image, while Figure 3(b) is the
reconstructed image using the proposed algorithm when
the PSNR is 41.76 dB and the BPP is 0.67. Figure 3(c) is the
reconstructed image using JPEG when the PSNR is 41.58
dB and the BPP is 0.68. The graphs showing the PSNR as a
function of bits/pixel are shown in Figure 4.

The experimental results demonstrate that the proposed

approach is slightly better than the JPEG for the specific
medical image.

4. Conclusions and Future Work

In this paper, we proposed an innovative image
compression algorithm that utilizes three-dimensional
discrete cosine transformation. The algorithm first divides
an image into 8x8 blocks. Then eight adjacent blocks are
taken sequentially and repeatedly to form three-
dimensional data cubes, which are required by the 3D
DCT transformation. Next, a three-dimensional discrete
cosine transformation is performed on each data cube.
The DCT coefficients in the same 3D data cube are then

quantized and Huffman encoded. The experimental
results have shown that the new algorithm is better than
JPEG for some classes of images.

The sequential 3D DCT image coder, described in
this paper, uses fixed-size data cubes. It does not group all
pixel blocks that are similar to each other. We are
currently experimenting with a similar coder that uses
variable-length three-dimensional cubes. The adjacent
8x8 blocks are first compared to each other, and, if there
is a sufficient pixel similarity between them, they are
grouped into the same 3D cube. In this case, each cube is
of a variable length and consists of blocks which are
similar to each other. The blocks may not be ordered in a
sequential way. The preliminary results show that the
variable-length 3D DCT image coder shows better
performance than the sequential coder for specific classes
of images.

5. References

[1] B. Furht, “Video Presentation and Compression,” in
Handbook of Multimedia Computing, CRC Press, Boca
Raton, FL, 1999.
[2] R. Westwater and B. Furht “The XYZ Algorithm for
Real-Time Compression of Full-Motion Video,” Journal
of Real-Time Imaging, Vol. 2, No. 1, February 1996, pp.
19-34.
[3] Y.-L. Chan and W.-C. Siu, “Variable Temporal-
Length 3-D Discrete Cosine Transform Coding,” IEEE
Transactions on Image Processing, Vol. 6, No. 5, May
1997, pp. 758-763.
[4] Y.-L. Chan and W.-C. Siu, “Efficient Interframe
Transform Coding Using Temporal Context ,”
Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS 96), 1996, pp. 786-789.
[5] B. Furht, K. Gustafson, H. Hesong, and O. Marques,
“An Adaptive Three-Dimensional DCT Compression
Based on Motion Analysis ,” Proceedings of the ACM
Symposium on Applied Computing, 2003.
[6] I. Kiyohisa, T. Yoshida, and I.Y. Nishihara, “2D/3D
Hybrid Video Coding Based on Motion Compensation,”
Proceedings of the International Conference on Image
Processing, 1999.
[7] G.H. Lee, J.H. Song, and R.-H. Park, “Three-
Dimensional DCT/WT Compression Using Motion
Vector Segmentation for Low Bit -Rate Video Coding,”
Proceedings of the International Conference on Image
Processing, 1997, pp. 456-459.
[8] J.J. Chae, S.B. Chae, W.Y. Choi, and R.-H. Park,
“Effective Contour Coding Techniques Using 2x2
Blocks,” Proceedings of the International Symposium on
Information and its Applications, 1990.

 Figure 4. The PSNR as a function of bits/pixels.

