
On Maintaining Sensor-Actor Connectivity in
Wireless Sensor and Actor Networks

Jie Wu†, Shuhui Yang‡, and Mihaela Cardei†
† Department of Computer Science and Engineering
Florida Atlantic University, Boca Raton, FL 33431

‡ Department of Computer Science
Rensselaer Polytechnic Institute, Troy, NY 12180

Abstract—In wireless sensor and actor networks (WSANs),
a group of sensors and actors are connected by a wireless
medium to perform distributed sensing and acting tasks. Sensors
usually gather information in an event area and pass it on
to actors, which are resource-rich devices that make decisions
and perform necessary actions. Therefore, it is vital to maintain
connections between sensors and actors for effective sensor-
actor coordination. In this paper, we first define several sensor-
actor connection requirements, including weak and strong actor-
connectivity, and then propose several local solutions that put
as many sensors as possible to sleep for energy saving purposes,
while meeting different actor-connectivity requirements. We also
prove the relationship between the proposed actor-connectivity
and the connectivity in regular graphs, which helps with the
implementation of the proposed solutions. Comprehensive per-
formance analysis is conducted through simulations.

I. INTRODUCTION

Recent technological advances have lead to the emergence
of distributed hybrid sensor networks consisting of both
resource-rich sensor devices (called actors) and resource-
impoverished sensor devices (called sensors). It is called
a wireless sensor and actor network (WSAN) [1], [8], as
shown in Figure 1. In this figure, actors are connected among
themselves and to the sink through special channels.

When sensors detect a phenomenon, they either transmit
data to actor nodes (also called actuators) which then initiate
appropriate actions, or route data to the sink which then issues
action commands to actors. We focus on the former approach,
where actors are deployed to perform distributed actuation
tasks upon the environment. For example, a smoke detector
(sensor) reports a fire event to one or several nearest water
sprinklers (actors) instead of the distant central control system
(sink). The water sprinkler(s) then perform an action and report
the event to the central system for further processing.

There are two types of coordinations: actor-actor and actor-
sensor. We focus on the latter one. The number of actors is
relatively small and since they are resource-rich devices with
a long transmission range, their connection to the sink can be
treated in a relatively easy way [14]. For example, a separate
wireless interface can be used to communicate with neigh-
boring actors so they can perform long-range communication
without any involvement from the sensors.

Existing actor-sensor coordination focuses on energy-
efficient connectivity from a sensor to a nearby actor. However,

actor

sink
sensor

sensing field

Fig. 1. A sample data gathering process in a WSAN with circles representing
sensors and triangles representing actors.

none of these existing approaches are localized. In a local
solution unlike the traditional distributed solutions, a decision
at each node is purely based on local information and there is
no information propagation. In this paper, we use a different
approach to construct a self-organizing framework for data
routing from sensors to actors. We first give a formal graph
model for WSANs. We propose several local solutions for
maintaining different versions of sensor-actor connectivity by
putting as many sensors to sleep as possible, while still con-
sidering area coverage and fault-tolerance. In these solutions,
only neighborhood information (neighbor set) is required, and
location/distance information is not used. In addition, other
issues such as sensor energy efficiency and delay sensitivity
of individual routing paths are discussed. More specifically,
instead of finding efficient routes from sensors to actors in
the entire network, we try to reduce the routing space by
putting as many sensors to sleep as possible to limit the energy
consumption subject to the following two requirements:
• Coverage: each sleeping sensor has at least one neighbor

that is either an active sensor or an actor.
• Connectivity: each active sensor is still connected to the

same set of actors as it was before sensors were put to
sleep (called persistent actor-connectivity) or to at least
one actor (called at-least-one actor-connectivity).

The coverage requirement is used to ensure the coverage of
all the sensors which are discrete points. This point coverage
can approximate the area coverage, especially when sensors
are densely deployed [3]. The connectivity requirement en-
sures that information collected by any active sensor can be

delivered to at least one actor in at-least-one actor-connectivity.
In certain situations, connection to one actor is not sufficient.
Multiple actors should be informed in order to make decisions
regarding the most appropriate way to perform actions.

A sufficient degree of connectivity is needed to protect
against the loss of sensors and actors due to failure. To ensure a
certain degree of fault-tolerance, the network should still meet
the coverage and connectivity requirement after removing k−1
arbitrary nodes (sleep sensors, active sensors, or actors). This
property is called k-actor-connectivity. In addition, more active
sensors and a higher connectivity degree help to find a more
efficient route in terms of delay.

We propose several local solutions that put as many sensors
to sleep as possible while meeting different coverage and
connection requirements. Note that we try to minimize the
energy consumption in a single iteration. Network activity is
organized as a sequence of iterations, where a new schedule
is decided at the beginning of each iteration. Sensors can be
scheduled to work in different iterations to balance energy
consumption and to prolong network lifetime. In this paper,
we do not deal with the actual routing protocol which can be
designed on the active sensors derived from our methods.

In summary, we will focus on the following technical issues:
1) We give a formal graph model for WSANs and define

several sensor-actor connections based on the coordina-
tion requirement.

2) We develop two local solutions for the different versions
of sensor-actor connectivity.

3) We prove the relationship between the traditional con-
nectivity in the graph and the newly-defined sensor-actor
connectivity.

4) We extend the sensor-actor connectivity and the corre-
sponding local solutions for fault-tolerant consideration.

5) We conduct performance analysis through simulations
on the proposed algorithms.

II. MODEL

A WSAN is represented as an undirected graph G = (V,E).
V = S ∪A, where S is the sensor set and A is the actor set.
E ⊂ (S × S) ∪ (S × A) is the edge set for sensor-sensor
and sensor-actor connections. There is no direct connection
between any two actors. They are connected indirectly through
other means (such as special channels).

Figure 2 shows several sample WSANs. Each sensor in G1

is connected to one actor while each sensor in G2 and G3

is connected to two actors. A graph G is actor-connected if
each sensor is connected to an actor through nodes in G. Note
that an actor-connected WSAN does not imply that the whole
graph is connected. For example, G = G2 ∪G3 in Figure 2 is
not connected, although it is actor-connected. Now suppose a
subset S

′
of S is put to sleep (for energy saving). We denote

G
′
= G[V − S

′
], i.e., the network after removing S

′
.

Definition 1: Given an actor-connected network G:
• G

′
is persistent actor-connected if it maintains the same

actor-connectivity as G, i.e., if a sensor, sleeping or
active, is connected to an actor through nodes in G, then
it is still connected to the actor through nodes in G

′
.

a

G 1

s 2

s 1

s 3

s 1

1a
2a

s 4s 3s 2

G 2

s 1 s 2

s 3

2a1a

G 3

s 4

1

Fig. 2. Sample WSANs.

• G
′

is at-least-one actor-connected if each sensor, sleeping
or active in G, is connected to at least one actor through
nodes in G

′
.

Note that all of the above conditions imply coverage of
sleeping nodes. That is, each sleeping node has at least
one neighbor that is an active sensor or an actor. Suppose
sensors are densely deployed such that the given area is
fully covered by sensors and actors. We assume each actor
also has sensing capability with the same sensing range as a
sensor. Due to the coverage requirement, each sleeping node
has at least one active neighbor to cover it. Therefore, the
set of active sensors and actors still cover the whole area
approximately. Connectivity varies depending on the required
degree: persistent or at-least-one.

In Figure 2 G2, if S
′

= {s4}, G
′
2 is persistent actor-

connected since all sensors are still connected (through active
nodes) to both actors. If S

′
= {s1, s2, s4}, G

′
2 is no longer

persistent but it is at-least-one actor-connected, since all sen-
sors are connected to at least one actor (e.g., s4 to a2 via
active sensor s3). Note that traditional clustering approaches
[10] can be used to meet the coverage requirement, where
only clusterheads are active. Such approaches, however, are
not localized (there is information propagation).

III. PROPOSED METHODS

A local algorithm [16] relies only on local information, i.e.,
properties of nodes within its vicinity. In addition, there is no
sequential propagation of any partial computation result. The
status of each node depends on its h-hop topology only for
a small constant h, and is usually determined after h rounds
of information exchange among neighbors. Compared with a
global algorithm, the local algorithm consumes less overhead,
but may not achieve the optimal result. Let us assume that each
node is equipped with its h-hop neighborhood information (for
h = 2 or 3). Also, each node s has a priority p(s) and such
a priority is totally ordered within its h-hop neighborhood,
which could be the node ID, node degree, or energy level
based on different applications. Note that we can use node ID
or node energy level or other parameters of the nodes as their
priorities for different applications. In addition, all actors have
the same priority, which is higher than any sensor priority. Let
p(a) be the actor priority. In Figure 2 G3, 1-hop neighborhood
of s1 includes a1, s2, and s3, but no connections among 1-hop
neighbors, the edge between a1 and s3 or the one between s3

and s2. 2-hop neighborhood of s2 cover the whole network.
Let us now consider a WSAN that is initially actor-

connected. With local information only, how can we remove

some sensors (i.e., put them to sleep) while ensuring that
the resultant graph is still at-least-one or persistent actor-
connected? We propose the following two rules:

Local rule for persistent actor-connectivity: The default
status of a sensor is active. A sensor u is in sleep mode if, for
any two of its neighbors w and v, w and v are connected by
a path with all intermediate nodes (sensors or actors if any)
having higher priorities than u.

The above path is called a replacement path for node u. The
intuition behind this rule is that a sensor u can be put to sleep
if any two neighbors can be re-connected through nodes on a
replacement path. Note that nodes on a replacement path can
also be put to sleep. To avoid inconsistencies and a possible
iterative process of putting sensors to sleep, a global priority
is defined on each node. Note that if a sensor does not have
two neighbors, then the replacement path condition is satisfied
and the status of the sensor is sleeping. The neighbor could be
a sensor or an actor. Suppose that in the Figure 2 the priority
of sensors is the following: p(a1) = p(a2) > p(s1) > p(s2) >
p(s3) > p(s4). Using 2-hop neighborhood information, s1 and
s3 are put to sleep in G1 in persistent actor-connectivity; s4

is in sleeping in G2 and s3 and s4 are in sleeping in G3.
Suppose S

′
is the set of sleeping sensors and G

′
is the

subgraph after removing S
′
. V

′
is the vertex set of G

′
.

Theorem 1: Suppose S
′

is the set of sleeping sensors after
applying the local rule for persistent actor-connectivity.
• (Coverage) Each sensor in S

′
has a neighbor in V

′
.

• (Connectivity) G
′

has the same actor-connectivity as G.

Proof: Suppose S(a) is a subset of S connected to actor
a in G. We show that S(a) is still connected to a through
nodes in G

′
. We prove this by contradiction. Suppose W is a

subset of S(a) not connected to a. Note that nodes in W can
be sleeping or active. Let U = N(W) −W be the sleeping
neighbors of W (see Figure 3) that are connected to a. U 6=
0 since W is connected to a in G. Let u be the node in
U with the highest priority. From the assumption, u has two
neighbors, w and v, from W and V − U −W , respectively.
Any replacement path for u must contain at least one node
u
′ ∈ U . That contradicts the assumption that p(u) > p(u

′
).

Therefore, all nodes in S(a) are still connected to a and all
sleeping nodes in W have neighbors that are active sensors or
actors.

To provide a local rule for at-least-one actor-connectivity,
we define an extended replacement path as follows:

1) it is regular replacement path for u connecting two
neighbors w and v, or

2) w and v are each connected to an actor. These two actors
can be distinct and all intermediate nodes in these two
connections have higher priorities than u.

Local rule for at-least-one actor-connectivity: The default
status of a sensor is active. A sensor u is in sleep mode if for
any two of its neighbors w and v, an extended replacement
path for u connecting w and v exists.

vu

u

a

a

replacement path

extended replacement path

WU

w

Fig. 3. Illustration for the proof of Theorems 1 and 2.

The intuition behind the above rule is that sensor u can
be put to sleep as long as any two neighbors can be either
connected through a regular replacement path or each of them
is connected to an actor. In Figure 2, using 2-hop neighborhood
information, s1 and s3 are asleep in G1 for at-least-one actor-
connectivity; s1, s2, and s4 are asleep in G2 and all sensors
are asleep in G3.

Theorem 2: Suppose S
′

is the set of sleeping sensors after
applying the local rule for at-least-one actor-connectivity.
• (Coverage) Each sensor in S

′
has a neighbor in V

′
.

• (Connectivity) Each node in G
′

is connected to at least
one actor.

Proof: We use a similar proof as in Theorem 1. In our
model, each node in S is connected to at least one actor. We
show that each node in S is still connected to an actor through
nodes in G

′
. We prove by contradiction. Suppose W is the

subset of S not connected to any actor. Let U = N(W)−W
be the sleep neighbors of W that are connected to an actor.
Let u be the node in U with the highest priority. From the
assumption, u has two neighbors, w and v, from W and V −
U−W , respectively. Any replacement path for u must contain
at least one node u

′ ∈ U . Such a replacement path connects
w via u

′
to either v or an actor directly as shown in Figure 3.

That contradicts the assumption that p(u) > p(u
′
). Therefore,

all nodes in S are connected to actors and all sleeping nodes
in W have neighbors that are active sensors or actors.

IV. EXTENSIONS

In this section we introduce two new notions of connectivity.
Definition 2: A WSAN, G, is called weak k-actor-connected

if each sensor is connected to k actors. A WSAN, G, is called
strong k-actor-connected if each sensor is connected to at least
one actor after removing any k− 1 nodes (sensors or actors)
from G.

Based on Definition 2, strong k-actor-connectivity implies
weak k-actor-connectivity, i.e., connection to k actors. The
k-actor-connectivity is used for reliability. Weak k-actor-
connectivity can tolerate k − 1 actor failures, while strong
k-actor-connectivity can tolerate k − 1 failures of any nodes,
sensors and actors. Figure 2 shows several sample WSANs.
G1 is 1-actor-connected, although each node has two node-
disjoint paths to actor a1. G2 is weak 2-actor-connected but

A

GG

S A

Fig. 4. A k-connected graph G ∪ Ḡ.

not strong 2-actor-connected. G3 is strong 2-actor-connected.
To simplify the notation, we use k-actor-connected for strong
k-actor-connected.

We now consider maintaining k-actor-connectivity while
putting some sensors to sleep. Let G be a k-actor-connected
network and G

′
= G[V −S

′
] (S

′
is a set of sleeping sensors).

Definition 3: Given a k-actor-connected network G,
• G

′
is persistent k-actor-connected if it maintains the same

actor-connectivity as G after removing any k − 1 nodes
(sensors or actors).

• G
′

is at-least-one k-actor-connected if each sensor, sleep-
ing or active, in G is connected to at least one actor
through nodes in G

′
after removing any k − 1 nodes.

Here, “the same actor-connectivity” means that if a sensor
in G is connected to an actor through nodes in G, then this
sensor (which might be sleeping) is still connected to the actor
through nodes in G

′
. At-least-one k-actor-connected is the

regular k-actor-connected (and hence it is simply called k-
actor-connected), while persistent k-actor-connected requires a
stronger condition. Here we use the general case of removing
k − 1 nodes, which includes both sensors and actors. In this
case, the persistent connectivity means the existence of a path
from G

′
to a previously connected actor (before the removal

of k − 1 nodes) even if that actor has been removed. Next,
we give local rules that ensure k-actor-connectivity. Two paths
are called node-disjoint if they do not share any intermediate
nodes.

Local rule for persistent k-actor-connectivity: The default
status of a sensor is active. A sensor u is in sleep mode if for
any two of its neighbors w and v, k node-disjoint replacement
paths for u connecting w and v exist.

The at-least-one version of k-actor-connectivity uses the
extended replacement path, a less restrictive condition than
the regular replacement path.

Local rule for at-least-one k-actor-connectivity: The de-
fault status of a sensor is active. A sensor u is in sleep mode if
for any two of its neighbors w and v, k node-disjoint extended
replacement paths for u connecting w and v exist.

Note that both w and v can be actors and in this case, there
is no intermediate node. Also, the actor cannot be shared in
two extended replacement paths. In Figure 2 G3, s4 is put to
sleep based on local rules for persistent 2-actor-connectivity.
That is, even if a node is removed arbitrarily from G3, all
sensors are still connected to both actors. For example, when
s3 is removed, s4 is connected to a1 via a2. Sensors s3 and
s4 are put to sleep from G3 for 2-actor-connectivity. In this
case, s1 and s2 in G3 are both 2-actor-connected after making
s3 and s4 sleep. s3 is put to sleep by checking all neighbor
pairs, for which each has 2 node-disjoint paths. For example,
for neighbors s1 and s2 of s3, one path is from s1 to s2 and
the other is from s1 to a1 and from s2 to a2.

V. PROPERTIES

We first construct a k-connected graph by treating all actors
in A as regular nodes. These actors are connected by a
complete bipartite graph Ḡ with node set A ∪ A

′
, where

|A| = |A′ | and each node in A is connected to each node
in A

′
. There is no direct connection among nodes in A (and

among nodes in A
′
). Note that A

′
is a set of virtual nodes. Now

we first show that G∪ Ḡ (shown in Figure 4) is k-connected.

Theorem 3: If G is k-actor-connected, then G ∪ Ḡ is k-
connected.

Proof: Based on the definition of k-actor-connectivity, we
can see that |A| ≥ k. We arbitrarily select two nodes s and d
from G ∪ Ḡ, and we have the following three cases:

1) If both s and d are in A∪A
′
, they are clearly connected

after removing k − 1 nodes, since Ḡ is a complete
bipartite graph with |A| = |A′ | ≥ k.

2) If one is in S and the other in A ∪ A
′
, based on

the definition of k-actor-connectivity, the one in S is
connected to at least one node in A after removing k−1
nodes from G ∪ Ḡ, which in turn is connected to any
node in A ∪A

′
, including d.

3) If both are in S, suppose one is connected to a node a
in A and the other is connected to a node a

′
in A after

removing any k − 1 nodes from G ∪ Ḡ. Based on the
construction of Ḡ, nodes a and a

′
are still connected.

Therefore, based on the definition, G ∪ Ḡ is k-connected.

Now we show that the two local rules in the previous section
preserve k-actor connectivity.

Theorem 4: Given a k-actor-connected graph G, the graph
G
′

derived using the local rule for (persistent) k-actor-
connectivity is (persistent) k-actor-connected.

Proof: Suppose G is the original k-actor-connected graph.
Now we arbitrarily remove k−1 nodes from G and obtain GF .
By relating k-actor-connectivity to k-connectivity (Theorem 3)
to generate GT ∪ ḠT as in Figure 4, and then apply the
Menger’s theorem [7] on connectivity to GT ∪ḠT , it is easy to
derive that GF still preserves the same actor-connectivity as G.
Based on these two rules for k-actor-connectivity, each sleep-
ing node in G has k node-disjoint replacement or extended
replacement paths for any pair of neighbors. Removing any

k − 1 nodes will leave at least one replacement or extended
replacement path. That is, a sleeping node using rules for k-
actor-connectivity in G will still be a sleeping node using
corresponding rules for actor-connectivity in GF . That is, G

′

(obtained by applying local rules for k-actor-connectivity on
G) has at least the same degree of actor-connectivity as (GF)

′

(obtained by applying the corresponding local rules for actor-
connectivity on GF). The rest of the proof follows by applying
Theorems 1 and 2 to (GF)

′
, which shows the relevant actor-

connectivity.
The following are two more properties: one relates k-actor-

connectivity to node-disjoint paths to k actors, and the other
to node-disjoint paths to actors after applying local rules.

Property 1: If G is k-actor-connected, then each node in S
has node-disjoint paths to at least k nodes in A.

We can use the following argument to prove this property.
Suppose we have a sensor s in S and the other node d in
A
′
. Menger’s theorem states that in a k-connected graph there

are k node-disjoint paths between any two nodes. Using this
property, we have k node-disjoint paths between s and d.
Among these paths, all neighbors of d are distinct actors in A.
Therefore, any node in S has node-disjoint paths to at least k
distinct actors.

Suppose S
′

is the subset of S that is removed (put to
sleep) after applying the local rule for (persistent) k-actor-
connectivity and again G

′
= G[V − S

′
]. We have:

Property 2: G
′ ∪ Ḡ is still k-connected, and each node in

S − S
′

has node-disjoint paths to at least k nodes in A.
Based on Theorem 4, the local rule for (persistent) k-actor-

connectivity ensures that G
′

is still k-actor-connected. Based
on Theorem 3, we have G

′ ∪ Ḡ as a k-connected graph. The
second part follows directly from Theorem V. Therefore, the
above property holds.

VI. IMPLEMENTATION ISSUES

A. Selection of priority

We assume that node priorities within h-hops are distinct. In
the actual implementation, this condition can be relaxed. That
is, nodes within h-hops can have the same priority. This will
not cause errors because a node can go to sleep only if any
two neighbors are connected by other k paths with “higher”
priorities. However, it will affect the efficiency of the algo-
rithm, e.g., two nodes can cover each other’s neighbors, but
neither can go to sleep due to their identical priority. A natural
choice for node priority is node ID, although other metrics can
be used, such as energy level, where sensors can rotate their
roles (active/sleeping) to balance energy consumption.

B. Controlling the path length

In some real-time applications, it is vital for a detecting
event to reach the corresponding actor(s) within certain time
frames. To avoid generating a large path ratio, defined as the
ratio of the length of a routing path in G′ to that in G, we can
restrict the length of each replacement path for each sleeping
sensor. For example, we can set each replacement path to be

bounded by h hops, then globally, the shortest path “stretch”
of each sensor to an actor can be controlled.

C. Static vs. dynamic implementation

Local rules can be implemented in a static or dynamic way.
In static implementation, each node determines its status based
on its h-hop information. In dynamic implementation, each
node acts on a message originated from an actor. In such
a message, the actor ID or even path information from the
original actor to the current node can be piggybacked to assist
the status determination of each node. The actor ID indicates
the connectivity of a neighbor to a particular actor, even though
the actor might be outside the h-hop neighborhood. Likewise,
path information to an actor can be used for the local rule
for k-actor-connectivity. Efficient reduction of active nodes is
possible by judiciously selecting an appropriate time-out after
receiving the first message at each sensor to gather more path
information from actors.

If we allow propagation of node status, an active node can
be treated as an actor which is useful for at-least-one actor-
connectivity. Note that dynamic implementation resembles
distributed implementation, which has several simple imple-
mentations for at-least-one and persistent actor-connectivity.

D. Actor-initiated dynamic implementation

We use actor-initiated dynamic implementation for two
simple cases: at-least-one and persistent actor-connectivity.
The direct distributed implementation for at-least-one and
persistent k-actor-connectivity are much more involved, since
path information needs to be propagated. All dynamic imple-
mentations are not strictly local solutions with information
propagation. However, they are used as baseline cases for
comparison.

At-least-one actor-connectivity: (1) Each actor sends out
an invitation message. (2) Each sensor responds to the first
invitation only and forwards the invitation to its neighbors.
(3) Sensors receiving responses are active, and sensors not
receiving responses are put to sleep.

Although at-least-one actor-connectivity is simple, it does
need some form of information propagation (in this case, an
invitation). The number of invitation messages is equivalent
to the number of sensors. The distributed implementation for
persistent actor-connectivity is much more involved in terms
of message complexity: it is the total number of actor-sensor
connectivity.

Persistent actor-connectivity: (1) Each actor sends out an
invitation message with its ID. (2) Each sensor responds to
the first invitation for each ID and forwards the invitation to
its neighbors. (3) Sensors receiving responses are active and
sensors not receiving responses are put to sleep.

Maintaining k-actor-connectivity is much more involved
since each active sensor needs to ensure the existence of
node-disjoint paths to k distinct actors. The complete path
information needs to be propagated in the network, generating
excessive traffic. Hence, we will not discuss this further.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

u
u

u

u

1

27

1

28

28 2
12

2

15

2

20

2

24

3

20

3

27

3

28

3

32

4

5

4

13

4

18

4

21

4

30

4

33

5

21

5

33

6

7

6

9

6

10

6

14

6

16

6

17

6

22

6

25

6

31

7

9

7

10

7

23

7

25

7

31

8
12

8

14

8

15

8

17

8

20

8

24

8

32

9

10

9

14

9

17

9

25

9

34

10

14

10

17

10

22

10

25

10

34

11

18

11

22

11

25

11

28

11

29

11
30

11

32

12

14

12

15

12

17

12

20

12

22

12

24

12

32

13

18

13

21

13

33

14

17

14

22

14

24

14

25

14

32

14

34
15

20

15

24

16

19

16

23

16

25

16

26

16

29

16

30

16

31

17

22

17

25

17

31

17

32

17

34

18

21

18

28

18

29

18

30

18

33

19

21

19

23

19
26

19

29

19
30

19

31

20

24

21

26

21

30

21

33

22
25

22

29

22

30

2231 22

32

23

26

23

31
25

29

25

30

25
31

25

32

26

29

26 3026

31

26

33

27

28

29

30

29

31

29

33

30

33

1

(a) AID-per, k = 1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

u
u

u

u

1

27

1

28

28 2
12

2

15

2

20

2

24

3

20

3

27

3

28

3

32

4

5

4

13

4

18

4

21

4

30

4

33

5

21

5

33

6

7

6

9

6

10

6

14

6

16

6

17

6

22

6

25

6

31

7

9

7

10

7

23

7

25

7

31

8
12

8

14

8

15

8

17

8

20

8

24

8

32

9

10

9

14

9

17

9

25

9

34

10

14

10

17

10

22

10

25

10

34

11

18

11

22

11

25

11

28

11

29

11
30

11

32

12

14

12

15

12

17

12

20

12

22

12

24

12

32

13

18

13

21

13

33

14

17

14

22

14

24

14

25

14

32

14

34
15

20

15

24

16

19

16

23

16

25

16

26

16

29

16

30

16

31

17

22

17

25

17

31

17

32

17

34

18

21

18

28

18

29

18

30

18

33

19

21

19

23

19
26

19

29

19
30

19

31

20

24

21

26

21

30

21

33

22
25

22

29

22

30

2231 22

32

23

26

23

31
25

29

25

30

25
31

25

32

26

29

26 3026

31

26

33

27

28

29

30

29

31

29

33

30

33

1

(b) AID-one, k = 1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

u
u

u

u

1

27

1

28

28 2
12

2

15

2

20

2

24

3

20

3

27

3

28

3

32

4

5

4

13

4

18

4

21

4

30

4

33

5

21

5

33

6

7

6

9

6

10

6

14

6

16

6

17

6

22

6

25

6

31

7

9

7

10

7

23

7

25

7

31

8
12

8

14

8

15

8

17

8

20

8

24

8

32

9

10

9

14

9

17

9

25

9

34

10

14

10

17

10

22

10

25

10

34

11

18

11

22

11

25

11

28

11

29

11
30

11

32

12

14

12

15

12

17

12

20

12

22

12

24

12

32

13

18

13

21

13

33

14

17

14

22

14

24

14

25

14

32

14

34
15

20

15

24

16

19

16

23

16

25

16

26

16

29

16

30

16

31

17

22

17

25

17

31

17

32

17

34

18

21

18

28

18

29

18

30

18

33

19

21

19

23

19
26

19

29

19
30

19

31

20

24

21

26

21

30

21

33

22
25

22

29

22

30

2231 22

32

23

26

23

31
25

29

25

30

25
31

25

32

26

29

26 3026

31

26

33

27

28

29

30

29

31

29

33

30

33

1

(c) LR-per, k = 1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

u
u

u

u

1

27

1

28

28 2
12

2

15

2

20

2

24

3

20

3

27

3

28

3

32

4

5

4

13

4

18

4

21

4

30

4

33

5

21

5

33

6

7

6

9

6

10

6

14

6

16

6

17

6

22

6

25

6

31

7

9

7

10

7

23

7

25

7

31

8
12

8

14

8

15

8

17

8

20

8

24

8

32

9

10

9

14

9

17

9

25

9

34

10

14

10

17

10

22

10

25

10

34

11

18

11

22

11

25

11

28

11

29

11
30

11

32

12

14

12

15

12

17

12

20

12

22

12

24

12

32

13

18

13

21

13

33

14

17

14

22

14

24

14

25

14

32

14

34
15

20

15

24

16

19

16

23

16

25

16

26

16

29

16

30

16

31

17

22

17

25

17

31

17

32

17

34

18

21

18

28

18

29

18

30

18

33

19

21

19

23

19
26

19

29

19
30

19

31

20

24

21

26

21

30

21

33

22
25

22

29

22

30

2231 22

32

23

26

23

31
25

29

25

30

25
31

25

32

26

29

26 3026

31

26

33

27

28

29

30

29

31

29

33

30

33

1

(d) LR-one, k = 1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

u
u

u

u

1

27

1

28

28 2
12

2

15

2

20

2

24

3

20

3

27

3

28

3

32

4

5

4

13

4

18

4

21

4

30

4

33

5

21

5

33

6

7

6

9

6

10

6

14

6

16

6

17

6

22

6

25

6

31

7

9

7

10

7

23

7

25

7

31

8
12

8

14

8

15

8

17

8

20

8

24

8

32

9

10

9

14

9

17

9

25

9

34

10

14

10

17

10

22

10

25

10

34

11

18

11

22

11

25

11

28

11

29

11
30

11

32

12

14

12

15

12

17

12

20

12

22

12

24

12

32

13

18

13

21

13

33

14

17

14

22

14

24

14

25

14

32

14

34
15

20

15

24

16

19

16

23

16

25

16

26

16

29

16

30

16

31

17

22

17

25

17

31

17

32

17

34

18

21

18

28

18

29

18

30

18

33

19

21

19

23

19
26

19

29

19
30

19

31

20

24

21

26

21

30

21

33

22
25

22

29

22

30

2231 22

32

23

26

23

31
25

29

25

30

25
31

25

32

26

29

26 3026

31

26

33

27

28

29

30

29

31

29

33

30

33

1

(e) LR-per, k = 2

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

u
u

u

u

1

27

1

28

28 2
12

2

15

2

20

2

24

3

20

3

27

3

28

3

32

4

5

4

13

4

18

4

21

4

30

4

33

5

21

5

33

6

7

6

9

6

10

6

14

6

16

6

17

6

22

6

25

6

31

7

9

7

10

7

23

7

25

7

31

8
12

8

14

8

15

8

17

8

20

8

24

8

32

9

10

9

14

9

17

9

25

9

34

10

14

10

17

10

22

10

25

10

34

11

18

11

22

11

25

11

28

11

29

11
30

11

32

12

14

12

15

12

17

12

20

12

22

12

24

12

32

13

18

13

21

13

33

14

17

14

22

14

24

14

25

14

32

14

34
15

20

15

24

16

19

16

23

16

25

16

26

16

29

16

30

16

31

17

22

17

25

17

31

17

32

17

34

18

21

18

28

18

29

18

30

18

33

19

21

19

23

19
26

19

29

19
30

19

31

20

24

21

26

21

30

21

33

22
25

22

29

22

30

2231 22

32

23

26

23

31
25

29

25

30

25
31

25

32

26

29

26 3026

31

26

33

27

28

29

30

29

31

29

33

30

33

1

(f) LR-one, k = 2

Fig. 5. Examples of AID-per, AID-one, LR-per, and LR-one.

VII. RELATED WORK

The traditional WSNs usually contain only a single sink
and perform the sensing in a distributed way. However, the
management is centralized at the sink. WSANs contain actors
in addition to a sink and perform both distributed sensing
and management. WSANs [1] can be used as an integral part
of some novel, low-cost, high-performance systems, and can
provide the infrastructure of various applications [1]. In [11],
it is shown that in a WSAN, the network capacity is increased
compared with the pure ad hoc or sensor networks.

Energy-efficient routing protocols are a major research
issue for energy constrained WSNs. WSANs have two unique
coordinations compared with WSNs [1]: actor-actor and actor-
sensor coordinations. Therefore, routing protocols designed
for WSANs should be both energy-efficient and coordination-
sensitive. Additionally, the actor-related distributed coordi-

TABLE I
SIMULATION PARAMETERS.

Network Area 100× 100
Transmission Range 25
Node Degree 12
Number of Sensors n, 50 to 300
Number of Actors m, 2 to 8
Number of Hops h, 2 to 4
Connectivity Requirement k, 1 to 6
Number of Trials 100

nation raises a new research issue. Most of the existing
works focus on the design of a self-organizing framework for
connecting sensors and actors. The existing solutions under
this framework, however, are distributed but not localized.

Some approaches [12], [13], [14] construct tree-structures
rooted at each actor in a distributed way. They can be
viewed as a many (sensor)-to-one (actor) connection. The tree-
structure rooted at each sensor [9], [15] is also developed,
which forms the many-to-many connection. Some other issues
in WSANs are also discussed. For example, [5], [8] discuss
control engineering problems and existing technologies in
WSANs. In [6], [13], actor-actor coordination is addressed. [2]
solves the topology control problem in WSANs considering
both energy-efficiency and reliability.

The work proposed in this paper aims at minimizing the
entire routing space instead of finding the exact routes from
sensors to actors. Our work differs from the other works by
considering a qualified minimal forwarding set for all the
sensors, which meets the efficiency and reliability require-
ments. Note that in our paper we measure the routing energy
consumption in terms of hop counts as opposed to distance.
In the proposed algorithms, neither location nor distance
information is needed. Only neighborhood information by
exchanging “Hello” messages is necessary.

k-connectivity has also been studied in the context of con-
nected dominating set (CDS) which meets both the coverage
and connectivity conditions in this paper. [17] studies the k-
connected coverage set problem. The objective is to find a
small subset C of the node set V , such that (1) each node in
V is dominated (i.e., covered) by at least k different nodes in
C, and (2) the nodes in C are connected. [4] extends the result
of [17] by considering an extra connectivity condition: nodes
in C are still connected after removing any k − 1 nodes in
C. Three localized algorithms are proposed in [4] based on a
deterministic, a probabilistic, and a hybrid of deterministic and
probabilistic approaches. The model considered in this paper
further extends the notion of coverage and presents two types
of connectivity preservation (to actors).

VIII. SIMULATIONS

We evaluate the two proposed algorithms, Local Rule for
persistent k-actor-connectivity (LR-per) and Local Rule for at-
least-one k-actor-connectivity (LR-one) with different system
parameters. We also simulate the Actor-Initiated Dynamic
implementation for persistent actor-connectivity (AID-per) and
at-least-one actor-connectivity (AID-one) to compare with the
proposed local algorithms.

 10

 20

 30

 40

 50

 60

 70

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

AID-per
AID-one

LR-per
LR-one

(a) Active nodes (m = 2)

 0

 20

 40

 60

 80

 100

 120

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

AID-per
AID-one

LR-per
LR-one

(b) Active nodes (m = 6)

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

AID-per
AID-one

LR-per
LR-one

(c) Path ratio (m = 2)

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

AID-per
AID-one

LR-per
LR-one

(d) Path ratio (m = 6)

Fig. 6. Comparison of AID-per, AID-one, LR-per, and LR-one (k = 1).

A. Simulation Environment

All simulations are conducted in randomly generated, static
networks. To generate a network, n sensors and m actors are
randomly placed in a 100 × 100 area. Networks that cannot
form a k-actor-connected graph are discarded. The tunable
parameters are as follows. (1) The number of sensors n.
We vary n from 50 to 300 to check the scalability of the
algorithms. (2) The number of actors m. We vary m from 2
to 8. (3) The connectivity requirement k. We use 1 to 6 as
the value of k. In each simulation, k ≤ m. (4) The number
of hops, h. The local algorithms use 2-hop neighborhood
information in most of the simulations. We also increase h
to 3 and 4 to see the effect. When a node collects h hops
worth of information, it gets the network topology within its
h-hops neighborhood except for the links between any two
h-hop away nodes. Table I lists the simulation parameters. (5)
The transmission range r. We use 25 as the value of r in most
of the simulations. (6) The average node degree d. We fix d
to 12 in the last simulation for the sensitivity analysis.

The following performance metrics are evaluated. (1) Active
nodes. The number of active sensors, which represents the
energy consumption. (2) Path ratio. The ratio of the average
length of the routing paths in G′ to that in G, which represents
the routing latency of the system.

Figure 5 shows the selected active node set in a sample
network. There are n = 30 sensors (shown as circles) and
m = 4 actors (triangles), the active sensors are shown by bold
circles, and the numbers in the sensors are the IDs. (a) and (b)
are the results of AID-per and AID-one, with k = 1. There are
28 and 9 active nodes, respectively. (c) and (d) are of LR-per
and LR-one when k = 1. There are 14 and 9 active nodes,
respectively. (e) and (f) are of LR-per and LR-one when k = 2.
There are 26 and 21 active nodes, respectively.

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

k=1
k=2
k=3
k=6

(a) Active nodes in LR-per

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

k=1
k=2
k=3
k=6

(b) Active nodes in LR-one

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

k=1
k=2
k=3
k=6

(c) Path ratio in LR-per

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

k=1
k=2
k=3
k=6

(d) Path ratio in LR-one

Fig. 7. Performance of LR-per/LR-one with different k (m = 6, h = 2).

B. Simulation Results

Figure 6 shows the comparison of AID and LR (k = 1).
(a) and (c) are the results of the number of active nodes and
ratio of length of the routing paths with m = 2, respectively.
(b) and (d) show the results for m = 6. In (a) we can see that
methods for persistent connectivity have larger numbers of
active nodes than those for at-least-one connectivity. AID-per
selects more active nodes than LR-per. AID-one has less active
nodes than LR-one only when the number of sensors is very
small (smaller than 75). In (b), when m = 6, the comparison
results of the four algorithms remain the same with those in
(a). However, AID-per has more active nodes with larger m,
while the other three tend to have fewer active nodes. This is
because in AID-per, each node needs to keep a shortest path
to every actor with all the nodes on the path being active. In
AID-one, a shortest path to an actor is needed for each node,
and more actors help to reduce the length of this shortest path.
Thus, fewer active nodes are necessary. For the LR-per and
LR-one, since actors are viewed as nodes with the highest
priorities, more actors lead to higher probability of (extended)
replacement paths and hence of non-active nodes. Therefore,
fewer active nodes are selected. In (a) and (b), more sensor
nodes lead to an increased number of active nodes. However,
the increasing tends to stop when the node density reaches a
certain degree in AID-one, LR-per, and LR-one.

(c) and (d) are the ratio of the length of the routing path in
original graph to that in the resultant graph (via only active
nodes). The routing path is the shortest path from a sensor to
a nearest actor, and the length is in terms of hop count. Since
AID-per and AID-one always keep the nodes on the shortest
path from a sensor to a nearest actor, the ratio is always 1.
LR-per has smaller ratio than LR-one due to its larger active
node set. Comparing (c) with (d) we can see that a larger m
results in a smaller ratio. Both in (c) and (d), more deployed

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6

P
er

ce
nt

ag
e

Values of k

Percentage of active nodes
Percentage of increasing path ratio

(a) LR-per

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6

P
er

ce
nt

ag
e

Values of k

Percentage of active nodes
Percentage of increasing path ratio

(b) LR-one

Fig. 8. Percentages of active nodes and the increasing of path ratio with
different k (n = 300, m = 6, h = 2).

sensor nodes lead to an increased ratio. The increasing tends
to stop when the node density reaches a certain degree.

Figure 7 shows the performance analysis of LR-per and LR-
one in terms of parameter k (m = 6). (a) and (b) are the sizes
of the resultant active node sets of LR-per and LR-one. (c) and
(d) are their corresponding path ratios. k is increased from 1 to
6 in these figures. We can see that when k is larger, more active
nodes are necessary to achieve higher connectivity. However,
compared with that of the deployed sensors, the increasing of
the number of active nodes is slight. Also, LR-one needs fewer
active nodes than LR-per, which is consistent with the previous
simulation results. (c) and (d) show that a larger k helps with
a smaller path ratio due to more active nodes. However, this
decrease of path ratio tends to stop when k is large enough.
We can see that when k is 6, the ratio is slightly larger than 1
(less than 1.05). There is little room to further reduce the ratio
by increasing k. When n is 50, the original graph is hardly
6-actor-connected, thus there are no simulation results in the
figures when n is 50 and k is 6.

Figure 8 is generated from Figure 7 to show the percentages
of active nodes and the increasing of path ratio in LR-per
and LR-one with the increasing of k. We can see that when
the value of k decreases, fewer active nodes are needed in
both LR-per and LR-one, and the path ratios are increased as
well. However, the increasing of the path ratio is insignificant
compared to the decreasing of the number of active nodes until
k is small enough, that is, k is decreased to 1. Therefore, most
of the time, the decrease of the number of the active nodes
will not lead to the significant increase of the path ratio.

Figure 9 shows the results of LR-per and LR-one with
different numbers of actors where k is fixed as 2. (a) and (c)
are the number of active nodes and path ratio in LR-per and
(b) and (d) are those of LR-one. From (a) and (b) we can see
that a larger m results in a smaller number of active nodes.
A decreasing of the number of active nodes caused by the
increasing of the value of m is more significant in LR-one than
in LR-per. This is because in LR-per, although more actors do
provide higher probability for (extended) replacement path and
hence non-active node status, it also leads to the requirement of
increased connectivity. (c) and (d) show that more actors result
in a smaller path ratio. The path ratio of LR-per is smaller than
that of LR-one due to its larger size of active nodes.

Figure 10 shows the performance of LR-per and LR-one

 34

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

m=2
m=4
m=6
m=8

(a) Active nodes in LR-per

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

m=2
m=4
m=6
m=8

(b) Active nodes in LR-one

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

m=2
m=4
m=6
m=8

(c) Path ratio in LR-per

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

m=2
m=4
m=6
m=8

(d) Path ratio in LR-one

Fig. 9. Performance of LR-per/LR-one with different m (k = 2, h = 2).

with different h. (a) and (b) are the numbers of active nodes
in these two algorithms, and (c) and (d) are the path ratios of
them. We can see that with more neighborhood information,
fewer active nodes are necessary in both algorithms. However,
this increase is relatively slight. When h is 4, a node can
achieve almost the entire network topology, the performance
can not be increased significantly. Therefore, in application a
small value of h is sufficient. The path ratios are decreased
with the growth of the value of h as in (c) and (d). However,
the increase of the performance is not significant.

Figure 11 is for the sensitivity analysis. When the average
node degree of the network is fixed, more deployed nodes lead
to a smaller adjusted transmission ranges. Therefore, when
the number of nodes increases, we can see the scalability
performance of the algorithms. (a) and (b) are the selected
active nodes in LR-per and LR-one, and (c) and (d) are the
path ratios of them. We can see that the number of active
nodes increases as the network scale grows in both LR-per
and LR-one. However, the path ratios of them are relatively
stable.

Simulation results can be summarized as follows:
1) LR-per has fewer active nodes than AID-per; AID-one

has smaller number of active nodes than LR-one. But
AID-per and AID-one are not localized.

2) Although the path ratios of LR-per and LR-one is not 1
(as in AID-per and AID-one), they are not significantly
higher than 1, and can be controlled by the value of m.

3) When m is fixed, larger k leads to larger active node set
and smaller path ratio in LR-per and LR-one.

4) When k is fixed, larger m helps to reduce the number of
active nodes and also path ratio. However, in LR-per the
decreasing of number of active nodes by the increasing
of the value of m is insignificant.

5) The increase of the length of routing path in both LR-per
and LR-one is insignificantly. Selecting only a subset of

 32

 34

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

h=2
h=3
h=4

(a) Active nodes in LR-per

 28

 30

 32

 34

 36

 38

 40

 42

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

h=2
h=3
h=4

(b) Active nodes in LR-one

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

h=2
h=3
h=4

(c) Path ratio in LR-per

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 1.1

 1.11

 1.12

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

h=2
h=3
h=4

(d) Path ratio in LR-one

Fig. 10. Performance of LR-per/LR-one with different h (k = 2, m = 2).

nodes to be active introduces little data routing latency.
6) More local neighborhood information results in better

performance in terms of both the number of active nodes
and path ratio for both algorithms. However, a relatively
small value, say 3, of h is enough to avoid overhead.

7) Under all circumstances, with the growth of the number
of deployed nodes, the number of active nodes increases,
but the path ratio tends to be stable. Therefore, all the
proposed algorithms scale well.

IX. CONCLUSION

We defined several sensor-actor connection requirements in
wireless sensor and actor networks, proposed several local
solutions to ensure different connection requirements, where
each node makes its decision (regarding its active and sleep-
ing mode) purely based on local information, and there is
no information propagation during the decision process. We
looked at several fault-tolerance extensions, the persistent
and at-least-one k-actor connectivity, in which the network
connectivity is still ensured in the presence of sensor or actor
failures. We also proved the relationship between the regular k
vertex connectivity in graph theory and the proposed k-actor
connectivity in the WSANs. Simulation results showed that
LR-per and LR-one can both generate an efficient active node
set, saving energy consumption by putting other nodes into
sleep state without introducing much routing delay.

ACKNOWLEDGEMENT

This work was supported in part by NSF grants CCR
0329741, CNS 0422762, CNS 0434533, CNS 0531410, CCF
0545488, and CNS 0626240. Email: jie@cse.fau.edu.

REFERENCES

[1] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor networks:
research challenges. Ad Hoc Networks Journal (Elsevier), (4):351–367,
2004.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 100 150 200 250 300 350 400 450 500

A
ct

iv
e

N
od

es

Number of Nodes

h=2
h=3
h=4

(a) Active nodes in LR-per

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 100 150 200 250 300 350 400 450 500

A
ct

iv
e

N
od

es

Number of Nodes

h=2
h=3
h=4

(b) Active nodes in LR-one

 1.02

 1.025

 1.03

 1.035

 1.04

 1.045

 1.05

 100 150 200 250 300 350 400 450 500

P
at

h
R

at
io

Number of Nodes

h=2
h=3
h=4

(c) Path ratio in LR-per

 1.03

 1.035

 1.04

 1.045

 1.05

 1.055

 1.06

 1.065

 1.07

 100 150 200 250 300 350 400 450 500

P
at

h
R

at
io

Number of Nodes

h=2
h=3
h=4

(d) Path ratio in LR-one

Fig. 11. Performance of LR-per/LR-one with different h when d is fixed
(k = 2, m = 2).

[2] M. Cardei, S. Yang, and J. Wu. Fault-tolerant topology control
algorithms for heterogeneous wireless sensor networks. In Proc. of IEEE
MASS, 2007.

[3] J. Carle and D. Simplot-Ryl. Energy efficient area monitoring by sensor
networks. IEEE Computer, (2):40–46, 2004.

[4] F. Dai and J. Wu. Constructing k-connected k-dominating set in wireless
networks. In Proc. of IEEE IPDPS, 2005.

[5] F. Dressler. Bio-inspired network-centric operation and control for sen-
sor/actuator networks. Transactions on Computational Systems Biology
(TCSB), pages 1–13, 2007.

[6] B. P. Gerkey and M. J. Mataric. A market-based formulation of sensor-
actuator network coordination. In Proc. of the AAAI Spring Symposium
on Intelligent Embedded and Distributed Systems, 2002.

[7] A. Gibbons. Algorithmic graph theory. Cambridge University Press,
1985.

[8] M. Haenggi. Mobile sensor-actuator networks: opportunities and chal-
lenges. In Proc. of the 7th IEEE International Workshop on Cellular
Neural Networks and their Applications, 2002.

[9] W. Hu, N. Bulusu, and S. Jha. A communication paradigm for hybrid
sensor-actuator networks. International Journal of Wireless Information
Networks, (1):47–59, 2005.

[10] C. Lin and M. Gerla. Adaptive clustering for mobile wireless networks.
IEEE Journal on Selected Areas in Communications, (1):151–162, 1999.

[11] B. Liu, Z. Liu, and D. Towsley. On the capacity of hybrid wireless
networks. In Proc. of IEEE INFOCOM, 2003.

[12] T. Melodia, D. Pompili, V. C. Gungor, and I. F. Akyildiz. Communi-
cation and coordination in wireless sensor and actor networks. IEEE
Transactions on Mobile Computing, (10):1116–1129, 2007.

[13] T. Melodia, D. Popili, V. C. Gungor, and I. F. Akyildiz. A distributed
coordination framework for wireless sensor and actor networks. In Proc.
of IEEE MobiHoc, 2005.

[14] M. F. Munir and F. Filali. A novel self organizing framework for
SANETs. In Proc. of the 12th EW Conference, 2006.

[15] V. Paruchuri and A. Durresi. Delay-energy aware routing protocol for
sensor and actor networks. In Proc. of IEEE ICPADS, 2005.

[16] J. Wu and H. Li. On calculating connected dominating sets for efficient
routing in ad hoc wireless networks. In Proc. of ACM DIALM, 1999.

[17] S. Yang, F. Dai, M. Cardei, and J. Wu. On multiple point coverage in
wireless sensor networks. International Journal of Wireless Information
Networks, (4):289–301, 2006.

