1106

(4]

[5]
(6]
(7

(8}
[91
[10}

(1]

[12]

(13]

[14]

(15]

(16]

(17}

[18]

[19]

[20]

{21]

[22]

[23]

[24]

(25]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 10, OCTOBER 1994

F.T. Luk and H. Park, ‘‘Fault-tolerant matrix triangularization on
systolic arrays,”’ IEEE Trans. Comput., vol. 37, pp. 14341438, Nov.
1988.

J.Y. Jou and J.A. Abraham, ‘‘Fault-tolerant FFT networks,”” IEEE
Trans. Comput., vol. 37, pp. 548-561, May 1988.

Y.-H. Choi and M. Malek, ‘‘A fault-tolerant FFT processor,”’ IEEE
Trans. Comput., vol. 37, pp. 617-621, May 1988.

D.L. Tao, C.R.P. Hartman, and Y.S. Chen, ‘A novel concurrent
error detection scheme for FFT networks,”” in Proc. 20th Int. Symp.
Fault-Tolerant Comput., 1990, pp. 114-121.

S.-J. Wang and N. K. Jha, **Algorithm-based fauit tolerance for FFT net-
works,”” in Proc. Int. Symp. on Circuits & Systems, 1992, pp. 141-144.
Y.-H. Choi and M. Malek, ‘‘A fault-tolerant systolic sorter,”” IEEE
Trans. Comput., vol. 37, pp. 621-624, May 1988.

B. Vinnakota and N.K. Jha, “‘A dependence graph-based approach to
the design of algorithm-based fault tolerant systems,”” in Proc. Int. Symp.
Fault Tolerant Comput., 1990, pp. 122-129.

C.J. Anfinson and F.T. Luk, ‘‘A linear algebraic model of algorithm-
based fault tolerance,”’ IEEE Trans. Comput., vol. 37, pp. 1599-1604,
Dec. 1988.

V.S.S. Nair and J. A. Abraham, ‘‘Real-number codes for fault-tolerant
matrix operations on processor arrays,”” IEEE Trans. Comput., vol. 39,
pp. 426-435, Apr. 1990.

J. Rexford and N. K. Jha, ‘‘Algorithm-based fault tolerance for floating-
point operations in massively parallel systems,”” in Proc. Int. Symp. on
Circuits & Systems, 1992, pp. 649-652.

P. Banerjee and J.A. Abraham, ‘‘Bounds on algorithm-based fault
tolerance in multiple processor systems,”’ IEEE Trans. Comput., vol.
C-35, pp. 296-306, Apr. 1986.

V.S.S. Nair and J. A. Abraham, ‘‘A model for the analysis of fault-
tolerant signal processing architectures,”” in Proc. 32nd Int. Tech. Symp.
SPIE, 1988, pp. 246-257.

V.S.S. Nair and J. A. Abraham, ‘‘Probabilistic evaluation of on-line
checks in fault-tolerant multiprocessor systems,”* IEEE Trans. Comput.,
vol. 41, pp. 532-541, May 1992.

D.J. Rosenkrantz and S.S. Ravi, “‘Improved upper bounds for
algorithm-based fault tolerance,” in Proc. 26th Allerton Conf. Comm.,
Control and Computing, 1988, pp. 388-397.

D. Gu, D.J. Rosenkrantz, and S.S. Ravi, ‘‘Design and analysis of test
schemes for algorithm-based fault tolerance,”” in Proc. 20th Int. Symp.
Fault-Tolerant Comput., 1990, pp. 106-113.

V.S8.S. Nair and J. A. Abraham, ‘‘A model for the analysis, design and
comparison of fault-tolerant WSI architectures,’’ in Proc. Workshop on
Wafer Scale Integration, Como, Italy, June 1989.

V.S.S. Nair and J. A. Abraham, ‘‘Hierarchical design and analysis of
fault-tolerant multiprocessor systems using concurrent error detection,’
in Proc. 20th Int. Symp. Fault-Tolerant Comput., 1990, pp. 130-137.
R.K. Sitaraman and N.K. Jha, ‘‘Optimal design of checks for error
detection and location in fault-tolerant multiprocessor systems,”’ IEEE
Trans. Comput., vol. 42, pp. 780-793, July 1993.

B. Vinnakota and N. K. Jha, ‘‘Diagnosability and diagnosis of algorithm-
based fault-tolerant systems,”” IEEE Trans. Comput., vol. 42, pp.
924-937, Aug. 1993.

F.P. Preparata, G. Metze, and R. T. Chien, ‘‘On the connection assign-
ment problem of diagnosable systems,’’ IEEE Trans. Electron. Comput.,
vol. EC-16, pp. 848-857, Dec. 1967.

A.T. Dahbura and G.M. Masson, ‘“An O(n2-5)-fault identification
algorithm for diagnosable systems,”” JEEE Trans. Comput., vol. C-33,
pp. 486-492, June 1984,

N.H. Vaidya and D.K. Pradhan, ‘‘System-level diagnosis: Combining
detection and location,”” in Proc. 21st Int. Symp. Fault-Tolerant Comput.,
1991, pp. 488-495.

Using Petri Nets for the Design of Conversation
Boundaries in Fault-Tolerant Software

Jie Wu and Eduardo B. Fernandez

Abstract—Only a few mechanisms have been proposed for the design
of fault-tolerant software. One of these is the conversation, which, though
it has some drawbacks, is a potentially promising structure. One of the
probiems with conversations is that they must be defined and verified
by the user. In this short note, a systematic method for generating the
boundaries of conversations directly from the specification is proposed.
This method can also be used to verify conversations selected by the user.
The specification is described by a high-level modified Petri net, which
can easily be transformed into a state model called an action-ordered
tree. The conversation boundaries are then determined from this tree. It
is proved that the method proposed is complete in the sense that all of the
possible boundaries can be determined, and it has the merit of simplicity.
A robot arm control system is used to illustrate the idea. The proposed
method can serve as the basis of a tool to assist in conversation designs.

Index Terms— Concurrent software, conversation, fault-tolerant soft-
ware, interprocess communication, Petri nets, software specification

I. INTRODUCTION

As parallel processing takes in more and increasingly critical tasks
such as air traffic control systems and mission critical systems, the re-
liability [18] of these systems becomes essential. Fault prevention and
fault tolerance are two different strategies for achieving reliability. A
fault-tolerant system is one that can continue to correctly perform
its specified tasks in the presence of hardware or software faults.
One way of achieving software fault tolerance is through redundant
versions coupled with appropriate recovery. Two complementary ap-
proaches to recovery, known as forward error recovery and backward
error recovery have been proposed [13]. Among the backward error
recovery methods, the conversation scheme proposed by Randell [21]
is one of the potentially promising methods for designing reliable
concurrent software.

The conversation is a language construct that is a generalization
to concurrent systems of the recovery block [21], used in sequential
software, and defines an atomic action for a set of communicating
processes. A conversation involves two or more processes and
constitutes an atomic action enclosed by a set of boundaries. The
boundaries of a conversation consist of a recovery line, a test line,
and two side walls. A recovery line is a set of recovery points that
are established before any process communication. A test line is the
correlated set of the acceptance tests of the interacting processes.
Processes within a conversation must be prevented from interacting
with processes outside the conversation; that is, we must enforce
two logical side walls. A conversation is successful only if all of
the interacting processes pass their acceptance tests at the test line.
If any of the acceptance tests fail, all of the processes within the
conversation go back to the recovery line, recover to the previous
state from the recovery points, and retry with their alternate try
blocks.

The possible practical value of conversations was shown in a three-
year experiment conducted at the University of Newcastle during

Manuscript received February 1993; revised February 20, 1994. This work
was supported in part by the Florida High Technology and Industry Council.

The authors are with the Department of Computer Science and Engineering,
Florida Atlantic University, Boca Raton, FL 33431 USA.

IEEE Log Number 9403074.

1045-9219/94$04.00 © 1994 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 10, OCTOBER 1994

1982-1984 [3]. A syntax and semantics to implement conversations
in the context of programming language concepts were developed
in [15] and [22). Ways to improve conversation performance were
discussed in [17] and [28]. A generalized architecture, able to
support conversations (as well as other fault-tolerance constructs)
was presented in [1], and some details of its implementation in an
architecture using protection rings were described in [19]. Several
variations of conversations were studied in [2] and [11]. A good
survey of the possibilities and limitations of conversations was given
in [9]. Further study of conversations is motivated because, together
with the concept of Programmer Transparent Coordination [16], they
are the only fault-tolerant mechanisms for concurrent processes, no
convenient way to extend multiversion programming [5] to concurrent
environments has been proposed. Although conversations have been
studied extensively, there are still important practical problems that
remain to be solved. One of these problems is the determination of
the conversation boundaries.

The atomicity of the conversation makes it able to guarantee
consistent recovery without exhibiting domino effect problems where
a recovering process triggers a chain of process recoveries [21].
However, in a complex concurrent system, it is usually a difficult
and tedious job for the user to define convenient boundaries for
potential conversations. Tyrrell and Holding [24] proposed a method
based on Petri nets that are used to describe system states. The
dynamic behavior of the system was characterized by a state-change
table derived from the state reachability tree. Functional attributes
of the system states are then used to reduce the system state-
change table to a table that includes only those states that are
changed by interfunction actions. This method was later simplified
in [26] by noting that these changes can occur only as the result of
specific actions. These methods are applied to implementations of a
concurrent system in some specific language and make use of one
of the possible execution orders of the Petri net that describes the
concurrent software. Therefore, these methods cannot generate all of
the possible conversations.

We propose here a method to determine all of the conversation
boundaries of an application directly from its specification. This
method can also be used to verify the conversation boundaries
selected by a user. The specification language used is a high-level
modified Petri net. No features of the implementation language
are shown in the specification; that is, the specification is general
enough to allow different languages, especially different interprocess
communication mechanisms, for implementation.'

Compared to the earlier methods, the proposed method has the
following unique properties.

* Generality: The approach can assist the user in determining a
potential conversation and to validate a conversation designed
by the user.

* Simplicity: The approach uses a simple algorithm to determine
or verify conversation boundaries.

* Completeness: This is the first approach that can systematically
determine or verify all of the conversation boundaries.

Although the conversation design is a semantically driven process,
we believe that the proposed method can be used to free the user
from tedious design and verification details. In general, this method
provides syntactic analysis while the user provides semantics analysis.
We illustrate the proposed method as a definition tool in the text.
Its use as a verification tool can be derived straightforwardly in the
following way. Because the proposed method can determine all of

"To be more precise, the specification used here could be seen as a type
of high-level implementation. Because the distinction between these two
concepts is vague, we do not pt to further distinguish them.

1107

the (correct) conversation boundaries, it can check whether a user-
proposed conversation boundary is correct. If it is not, the generated
conversations can be used as hints for the user to define better
conversations.

This short note is organized as follows. First, we briefly describe
Petri nets and their use as a specification language. A modified Petri
net that shows only the process interactions is proposed to specify
the concurrent software at a high level, and the state model of a
Petri net is represented by an action-ordered tree. Using this tree, we
develop a method to find all the possible conversation boundaries.
The method is illustrated by applying it to the design of a robot arm
controller. Finally, some conclusions are presented. More details and
proofs can be found in [27].

II. PETRI NETS AS A SPECIFICATION L ANGUAGE

There are numerous specification techniques for concurrent systems
[8], [25], which can be either model-oriented or property-oriented. In
the model-oriented approach, specification and design are explicit
system models constructed out of abstract or concrete primitives. In
the property-oriented approach, no explicit model is formulated; spec-
ifications are given in terms of axioms that define the relationships of
operations to each other. Before selecting a specification technigue,
we should examine the features in the specification that are required
to determine a conversation boundary.

To decide the conversation boundary, at least the following infor-
mation is required:

1) the number of processes used (a process is a thread of control);

2) interprocess communication distribution (not necessarily the

specific mechanisms for communication); and

3) execution order inside each process.

It is clear that property-oriented specification methods cannot be
used to decide a conversation boundary, because they fail to provide
the information listed above. Among the methods categorized as
model-oriented, Petri nets {20] appear as a suitable specification
language, although other models, such as the UCLA Graph Model
of Behavior (GMB) [10], could be used. A Petri net is a bipartite
directed graph. The two types of nodes in a Petri net are called
places and transitions. Places are marked with tokens. A Petri
net is characterized by an initial marking of places and a firing
rule.

The concurrent software specification considered here can be
organized hierarchically into several levels. We discuss here only
the highest level of specification. In that level, only the necessary
information required for conversation boundary determination, such
as interactions among different processes, is shown. This specification
can be represented by a modified Petri net, as described later. The
actions inside each process are represented at a lower level of specifi-
cation. The lower level of specification can be described by replacing
each place in the specification with a more detailed Petri net through
a refinement process. To facilitate comprehension, we concentrate
on only the aspects that are related to determining conversation
boundaries by showing only functional behavior of specification;
nonfunctional behavior aspects [25], such as performance and timing
[12], are not included.

In the highest level, we use a special notation to represent inter-
process communication, because it plays an important role in the
conversation boundary decision. The mechanization of interprocess
communication should not be explicit in the specification. The
only restriction to communication is that it be unidirectional and
point-to-point. The method used here can easily be changed to
accommodate the non-point-to-point cases. The Petri net specification
of interprocess communication is shown in Fig. 1. Each of the sender

1108

Process i Process j

(sender) (receiver)
Pk | P’;;-
|
|
L
|
|
1
@) : O
] Ph

Fig. 1. Petri net specification of interprocess communication.

and receiver has a state before communication and a state after
communication. States from different processes are separated by a
dotted line. A thick bar is used to represent Petri nets with special
firing rules in contrast with the thin bar used commonly in Petri
nets. The firing rules depend on the implementation of interprocess
communication, and there are three possible implementations [4]:
synchronous, asynchronous, and buffered. The corresponding Petri
net descriptions are shown in [27]. Our method of conversation
boundary decision is independent of these implementations.

In the highest-level specification, we define for each process one
place between every two interprocess communications. Two places
are used to represent the initial and final state for each process.
Another important feature of this Petri net specification (and also of
the lower-level specifications) is that it is loop-free. To avoid loops
in Petri nets, we need to examine three control structures: sequential,
selective, and iterative. However, only iterative structures may cause
loops. As discussed in [27], the way to avoid loops is to unfold
them.

III. STATE MODELS OF PETRI NETS

We define each place in the Petri net specification graph as a state
in a process. The state of the complete system, P, at a given time is
defined as a vector (p1,- - -,p2), where pY is the local state of process
y in global state z (1 < y < 2), and z is the total number of
processes. The local states of the processes over time define a partial
order on the Petri net specification graph. For example, the partial
order defined by the local states in Fig. 2 is p}, < i, pfC < p{;,
Pl < pi, Pl < P, P} = pl, and pi = pi,, where “=" denotes
two local states that have the same level. Repeated states (as those
in unfolded loops) are not considered in the partial order.

With this definition, the system can be represented by a sequence
of global process states as follows:

Po -t—lv P1 —t2—> P2 .-+ where P:c < Pz+1.
If the following is true:
P = (Pi» Pi’ "'7p::) and Pry; = (Pi+1,P£+1,---»Pi+1)v

then we have the following equation:

Pr < Peri & Vy [0 < plyy) V (02 = ply,)]
A 31/[?2 < P§+1] 1<y<2),

[T -

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 10, OCTOBER 1994

Each t; is an interprocess communication transition, and P, is the
global state before interprocess communication ¢;. This sequence of
global process states is called an action-ordered tree.

In an action-ordered tree, a state is derived from its “parent” state,
either through a transition or through multiple transitions. For the case
of multiple transitions, the new states are a summary of the possible
states that can occur if only one transition fires at a time. The action-
ordered tree is similar to the state reachability tree in [24], with
the difference that only interprocess communications are involved.
Therefore, the number of states used is drastically reduced in the
action-ordered tree. The state-explosion problem, a typical problem
in graph-based models, is thus alleviated.

IV. CONVERSATION BOUNDARY DECISION

Conversation boundaries should be selected to ensure that the
conversation is an atomic action; that is, a process participating
in an atomic action (conversation) may exchange information only
with other processes in that atomic action. In the case where sev-
eral conversations are defined, the relationship between each pair
of conversations should be either independence or proper nesting
[21}.

A. Test Line and Recovery Line Decision

The test line and the recovery line can be selected from the
global states in the action-ordered tree. Note that the state for each
process in the test line represents the state just after all interprocess
communication has finished, whereas the state for each process in
the recovery line represents the state just before any interprocess
communication has happened. In order to find all of the possible test
lines and recovery lines, we can view the lines selected from the
action-ordered tree as a virtual recovery line and a virtual test line.
The actual recovery line and actual test line can be easily derived
by replacing each process state (local state) by a state in the subnet
after a refinement of that local state. The refinement of a local state
(a place in the Petri net) is performed by replacing that state by
another subnet beginning and ending with a place. The actual state
(place) is then chosen from among the totally ordered places in that
subnet. By enumerating all of the possible refinements and selections
of actual states for each refinement, we can get all of the possible
test lines and recovery lines. In summary, the decisions for test lines
and recovery lines usually require two steps, defined by Algorithm
1 below.

Algorithm 1:

1) Select virtual recovery and test lines (two ordered sets of states)
from the action-ordered tree.

2) Select actual test and recovery lines from possible refinement
subnets of each process state (local state) in the test and
recovery lines.

Proposition 1: All of the possible recovery lines and test lines

can be derived from Algorithm 1.

B. Side Wall Decision

As stated earlier, the side walls are defined by the specific set of
process participating in the conversation. Two special cases should be
considered, which we illustrate with the example of Fig. 2. In the first
case, process PRy does not communicate with the other processes.
Therefore, process PR4 should not be included in the conversation.
In terms of the action-ordered tree, this can be expressed as follows:
These processes where the recovery state is the same as the test
state should not be included in the conversation. For the second case,
although PR; and PR», as well as PR3 and PR4, communicate with

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO

PR, PR, PRs PR, PR, PR; PRy PR,

|- L]

v 4 v y v : v
Case | Case 2

Fig. 2. Two special cases in deciding side walls.

each other, they do not communicate with the other pair. It is better
here to build two conversations. In terms of action-ordered trees, we
use the method of Algorithm 2 below.

Algorithm 2:

1) The virtual test line and the virtual recovery line are first
determined.

2) Consider the states between the test line and the recovery line
(include these two lines). If process PR; communicates with
process PR; in these states, then we say that PR; and PR; have
relation R, which can be written as (PR;, PR;) € R. These
pairs can be directly derived from the action-ordered tree.

3) Define R to be an equivalence relation (reflexive, symmetric,
transitive).

4) Delete all the equivalence classes that consist of only one
process, and each of the remaining classes will constitute a
conversation.

C. Determination of the Boundaries of Multiple Conversations

For a pair of conversations C;, C;, denote their virtual recovery
and test lines as P, Pyr; and Py,, Po:;, respectively. The actual
recovery lines are P, Far; and Fui;, Pat;, respectively. Case 1,
including two subcases separated by conjunction (V), indicates that
conversation C; happens before conversation C;. In Case 2, C; is
nested within C;. Four subcases are identified in Case 2, Subcase
1 denotes that two conversations have no common virtual test or
recovery lines. Subcase 2 indicates that two conversations share a
common virtual recovery line, but no common actual recovery line.
Subcase 3 is the same as Subcase 2 by interchanging the recovery and
test lines. Subcase 4 represents two conversations that have common
virtual test and recovery lines, but not common actual test or recovery
lines. Two more cases can be obtained by exchanging the roles of
7 and j.

D) (Pot; < Potj) V [(Por; = Pot;) A (Par, < Pyr)]
2) [(Por; < Pur;) A (Po, < Pu)| V[(Por; = Por;)
A (Par]v < Parz) A (Pvtz < -Pzrtj)] V[(Pur] < Pvri)
A (Pvt] = tvti)/\(Pat, < Palj)]v[(Pvr, = PurJ)
A (Par; < Par;) A (P, = vtj) A(Pay; < Paz_,)]

Proposition 2: If there is a set of conversations where, for ev-
ery pair of conversations, one of the two cases above is satisfied
and the side walls for each conversation are decided by Algo-
rithm 2, then these conversations are properly defined. That is,
the two arbitrary conversations are either independent or properly
nested.

The method to determine the boundaries for several conversations
at the same time can be recursively defined as follows. Suppose
that we have defined a set of conversations. One more conversation
can be added to that set if every pair of conversations made up by

3

. 10, OCTOBER 1994 1109

stop, position(x,y.2)

position(x.y,2)
continue,

Fig. 3. Cooperating processes for robot controller.

the additional conversation and a conversation from the original set
satisfies one of the two cases above.

D. Conversation Design
The proposed set of algorithms can be used in one of two ways:

1) as a definition tool to assist the designer to structure conversa-
tions from a given specification, or

2) as a verification tool to check the conversations selected by the
designer.

In general, these tools should be used interactively, with the tool
providing syntactic analysis and the designer providing semantic
analysis. The use of the proposed method in conversation boundary
decision can be described as follows.

1) The designer identifies those parts of the specification that have
high criticality (semantic analysis).

2) The tool determines a set of conversations in the neighborhood
of those parts (syntactic analysis).

3) The designer selects, based on certain criteria, a subset of
the conversations offered by the tool. Criteria for selection
could be, e.g., how easy it is to find appropriate acceptance
tests, performance, and sections with possible catastrophic
faults.

If multiple conversations are selected, these will be verified by
the tool to ensure independence and proper nesting. This process
will continue until a subset is selected that passes both syntactic and
semantic analysis. Also, if necessary, the interaction should continue
to refine the boundaries.

The use of the proposed method in verification could be con-
structed in a similar way. There may be several possibilities for
conversations in an application. The user must select the most
convenient conversation based on his knowledge of the application
and the criticalness of each component of the application, and keeping
in mind that large conversations reduce possible parallelism and
have a deleterious effect on performance. Also, the feasibility of
developing suitable acceptance tests must be considered. This process
can be outlined as follows. The user selects a conversation based
on his understanding of the application, and this method can then
be used to build an action-ordered tree from the code to verify

1110

CcP

X-MP

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 10, OCTOBER 1994

Y-MP Z-MP

Fig. 4(a). Robot arm control specification.

that the selected conversation (or set of conversations) is a proper
one.

V. EXAMPLE: A ROBOT ARM CONTROLLER

We use here a robot arm controller to illustrate the method proposed
above. Its specifications are similar to those described in [14]. The
user inputs two types of commands: position, which orders the robot
to move to a specific point (given by coordinates , y, z), and stop,
which stops every action. This system is designed to control a three-
degree-of-freedom robot arm. A possible high-level specification can
use five processes as follows. An operator process (OP), a control
process (CP), and three motor processes for each z,y, z axis (X-
MP, Y-MP, and Z-MP) (Fig. 3). The operator process receives the

stop or position command from the keyboard. If it is a position
command, this process also receives the coordinates of the desired
position, and then transfers these values to the control process. The
operator process also sends continue or stop signals to the motor
processes. The control process calculates the relative directions and
distances of the new coordinates, and then distributes these values to
the three motor processes. The motor process will move the robot to
the desired axial position. Fig. 4 shows a Petri net specification for
the controller. A set of actions and a set of conditions are identified
following the conventional Petri net modeling method. An action is
represented by a transition and a condition (or state) is described by
a place.

Fig. 4(b) describes a simplified notation used for Fig. 4(a), and
the meaning of each state in Fig. 4(a) is shown in Table 1. The

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 10, OCTOBER 1994

A= £
o Ry

Fig. 4(b). The meaning of the simplified notation.

TABLE 1
THE MEANING OF EACH STATE
OP: operator process CP: control processMPs: X,Y,Z motor processes
.18 OP receives from the keybourd the stop or continue commund und the
commund is sent Lo CP und the three MPs
P’ Pa° P4t P8¢ initiul stutes for CP und the three MPs respectively
e the stute for OP ufter CP und the three MPs ul! huve received continue
signuly, und OF receives three new values for such uxis, then OP pusses
these vulues o CP
PT Py P P10 the sute for euch CP, MP after recviving the continue signul lrum OP
P11 OP stute ulter sending the-new velues tu CP
(Y] CP stute ulter receiving the new values from OP, culculuting the new
courdinutey , und then sending these values to the currespunding MP
Pa CP stute after sending the new values to MPs and then waiting for euch
mator to linivh moving
P1aPIS Pis euch MP receives the new value from CP und then moves its inutor
Pi? CP stute ulter eachM P finishes moving its mutor und then signuls to (N?
P OP wtute ulter CP und the three MPs receive the stop command und U1
stops
P19 P20 P21 P22 CP und such MI* huve received the ytop commund from OP und they stop

action-ordered tree for the robot arm example is shown in Fig. 5(a).
This is obtained by summarizing the states after several transitions
as described in Section III. In multiple transitions, each transition
is associated with a pair of process ID’s which indicate the two
processes that participate in the communication. The numbers in
parentheses indicate the processes associated with each communi-
cation. The superscript ¢ in the first global state represents a loop
condition. The second occurrence of the first global state is not
really part of the partial order, it is used just to indicate a program
loop.

When the proposed method is used as a definition tool, a possible
scenario of user interaction is as follows.

1) The designer identifies the section that starts from receiv-
ing a new command at CP and ends at carrying out this
command at each motor process as the critical one for this
application.

2) The tool offers all the possible conversations, that is, from state
(s, P7, P8, P9, P10) 1o state (pi,p5,p5,ps,ps) in the action-
ordered tree. Since any combination of two states constitutes
a recovery line and a test line for a conversation, and since
there are five states (see Fig. 5(a)), a total of 10 potential
conversations are offered.

A subset of conversations is selected by the designer where
each conversation is represented by recovery and test lines.
Suppose the recovery line and test line of two conversa-

3

~

[

1111

(P1® P2* Pa® P’ ps°)

b b, ty, tg 83, tie, s, tig

(12) (13) (14) (15) (12) (13) (14) (15)

(Ps P71 P8 P9 P10) (P18 P19 Py, P21 P22)

t5

1

(p11 P12 Ps Py P10)

te, t7, tg
(23) (24) (25)
y

(P11 P13 P14 P15 P16)

ta, tio, t1y

(23) (24) (25)

|

(P11 P17 P3° P ps°)

tiz

(1€ P2 ps° po° ps)
(a)
refinement E
(b)
Fig. 5. (a) Action-ordered tree of robot arm control system. (b) Refinement

of pe used in Fig. 4(a).

tions, convl and conv2, are selected (Fig. 4(a)): {(ps, p7,
Ps, P9, P10), (p1,P5,P5,P4,p5)} and: {(p11,p12,Ps,Ps,P10),
(p11, P13, P14, P15, P16) }, TEspectively.

4) Conversations convl and conv2 pass the feasibility check for
multiple conversations and their boundaries (including side
walls) could be completed as follows. By applying Algorithm
2 to convl, only one equivalence class exists. Therefore, all of
these processes should participate in this conversation. Because
the operator process belongs to a class with only one element,
it should not participate in conv2. If convl is denoted as C;
and conv2 is denoted as Cj, then C;, C; satisfies Case 4.
Based on Proposition 2, these two conversations are properly
defined. In fact, conv2 is nested within convl (as shown in
Fig. 4(a)).

1112

In convl if (pe, p7, ps, Pe, P10) is considered as a virtual recovery
line, or a recovery state other than a state at interprocess commu-
nication is desired, then a necessary refinement can be applied. For
example, a refinement of pe is shown in Fig. 5(b). In this figure, tg
represents the action of receiving the command from the keyboard.
State ¢ can then be replaced either by states pg or ps to get the
actual local state. Note that in this case, another round of interaction
is necessary.

VI. CONCLUSIONS

We have proposed a systematic way of determining or verifying
conversation boundaries. A robot arm control system was used to
illustrate the method. This approach not only has the advantage of
being more complete and simpler than other methods but also has the
merit of allowing a designer to make boundary decisions directly from
specification. The specification used here is a high-level modified
Petri net, which is organized in a hierarchical manner to narrow the
cognitive gap between user and specifier. It is also a way to keep
the specification concise and to show only the parts relevant to the
boundary decision.

The proposed approach can also be used as a tool in an interactive
software development environment. The user can specify which parts
of the application he wishes to protect by conversations, and the
environment would provide a set of well-formed conversations using
the algorithms presented here. User selection would then be based
on the issues mentioned above. As indicated above, the user could
alternatively define the conversations, and the environment would
verify that these are well-formed conversations.

Note that Petri nets are not the only tool that can be used to
determine conversation boundaries. In general, the proposed method
can be extended to be used by any model-oriented specification tool
that can specify process communication and order of actions within
a process, for example timed Petri nets [6] or communicating real-
time state machines [23], to consider the effect on performance of the
selected conversations, or the use of the GMB model, as suggested
in [7].

ACKNOWLEDGMENT

We thank the anonymous referees for their valuable comments,
suggestions, and corrections.

REFERENCES

[1] M. Ancona, G. Dodero, V. Gianuzzi, A. Clematis, and E. B. Fernandez,
“A system architecture for fault tolerance in concurrent software,”
Comput., vol. 23, pp. 23-32, Oct. 1990.

[2} T. Anderson and J.C. Knight, “A framework for software fault tolerance
in real time systems,” IEEE Trans. Software Eng., vol. 9, no. 3, pp.
355-364, May 1983.

[3] T. Anderson, P. A. Barrett, D.N. Halliwell, and M. R. Moulding, “Soft-
ware fault tolerance: An evaluation,” IEEE Trans. Software Eng., vol.
11, no. 12, pp. 1502-1510, Dec. 1985.

[4] G.R. Andrews and F.B. Schneider, “Concepts and notations for con-

current programming,” Computing Surv., vol. 15, no. 1, pp. 343, Mar.

1983.

A. Avizienis and J.P.J. Kelly, “Fault tolerance by design diversity:

Concepts and experiments,” Comput., vol. 17, no. 8, pp. 67-80, Aug.

1984.

[6] B. Berthomieu and M. Diaz, “Modeling and verification of time depen-
dent systems using timed Petri nets,” IEEE Trans. Software Eng., vol.
17, pp. 259-273, Mar. 1991.

[7] G.F. Carpenter and A.M. Tyrrell, “The use of GMB in the design of

robust software for distributed systems,” Software Eng. J., pp. 268-282,

Sept. 1989.

B. Cohen, The Specification of Complex Systems. Reading, MA:

Addison-Wesley, 1986.

5

[8

et

91

(10]

(11

[12]

{13]

[14]

[15]

[16]

[17)

[18]

(191

[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 10, OCTOBER 1994

F. Di Giandomenico and L. Strigini, “Implementations and extensions
of the conversation concept,” Proc. 5th GVITG/GMA Int. Conf. Fault-
Tolerant Comput. Syst., Niirnberg, Germany, 1991.

G. Estrin, R. S. Fenchel, R.R. Razouk, and M. K. Vernon, “SARA, Sys-
tem architect’s apprentice: Modeling, analysis, and simulation support
for design of concurrent systems,” JEEE Trans. Software Eng., vol. 12,
no. 2, pp. 293-311, Dec. 1986.

S.T. Gregory and J. C. Knight, “A new linguistic approach to backward
error recovery,” Proc. 15th Int. Symp. Fault Tolerant Comput., 1985, pp.
404-409.

H. Hecht and M. Hecht, “Fault tolerant software,” in D.K. Pradhan, Ed.,
Fault Tolerant Computing: Theory and Techniques. Englewood Cliffs,
NI: Prentice-Hall, 1986, pp. 658-696.

P. Jalote and R. H. Campbell, “Atomic actions for fault tolerance using
CSP,” IEEE Trans. Software Eng., vol. 12, no. 1, pp. 59-68, Jan. 1986.
J.M. Kerridge and D. Simpson, “Three solutions for a robot arm
controller using Pascal-Plus, Occam, and Edison,” Software Practice
and Experience, vol. 14, no. 1, pp. 3-15, Jan. 1984.

K. H. Kim, “Approaches to mechanization of the conversation scheme
based on monitors,” IEEE Trans. Software Eng., vol. 8, pp. 189-197,
May 1982.

—, “Programmer-transparent coordination of recovering concurrent
processes: Philosophy and rules for efficient implementation,” IEEE
Trans. Software Eng., vol. 14, pp. 810-821, June 1988.

K. H. Kim and S.M. Yang, “Performance impact of look-ahead execu-
tion on the conversation scheme,” IEEE Trans. Comput., vol. 38, pp.
1188-1202, Aug. 1989.

J.C. Laprie, “Dependability: A unifying concept for reliable computing
an fault tolerance,” in T. Anderson, Ed., Dependability of Resilient
Computers. New York: BSP, 1989, pp. 1-28.

B.M. Ozaki, E. B. Fernandez, and E. Gudes, “Software fault tolerance
in architectures with hierarchical protection levels,” IEEE Micro, vol. 8,
pp. 3043, Aug. 1988.

J.L. Peterson, Petri Net Theory and the Modeling of Systems.
wood Cliffs, NJ: Prentice-Hall, 1981.

B. Randell, “System structure for software fault tolerance,” IEEE Trans.
Software Eng., vol. 1, no. 2, pp. 220-232, June 1975.

D.L. Russell and M. 1. Tiedeman, “Multiprocess recovery using conver-
sations,” Proc. 9th Int. Conf. Fault-Tolerant Comput., 1979, pp. 106-109.
A.C. Shaw, “Communicating real-time state machines,” IEEE Trans.
Software Eng., vol. 18, no. 9, pp. 805-816, Sept. 1982.

A.H. Tyrrell and D.J. Holding, “Design of reliable software in dis-
tributed systems using the conversation scheme,” IEEE Trans. Software
Eng., vol. 12, no. 9, pp. 921-928, Sept. 1986.

J.M. Wing, “A specifier’s introduction to formal methods,” Comput.,
vol. 23, pp. 8-24, Sept. 1990.

J. Wu and E.B. Fernandez, “A simplification of a conversation design
scheme using Petri nets,” IEEE Trans. Software Eng., vol. 15, pp.
658-660, May 1989.

, “Using Petri nets for fault tolerance in concurrent software,” Tech.
Rep. TR-CE-90-4, Dept. of Comput. Sci. and Eng., Florida Atlantic
Univ., Boca Raton, FL, USA, 1990.

S.M. Yang and K. H. Kim, “Implementation of the conversation scheme
in message-based distributed computer systems,” IEEE Trans. Parallel
Distrib. Syst., vol. 3, pp. 555-572, Sept. 1992.

Engle-

