Throughput Improvement Through Dynamic Load Balance

Hemant B. More and Jie Wu
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431

Abstract

Dynamic load balance improves the performance of
a multiprocessor system by reallocating tasks such that
all the processors are evenly loaded. Problems in sev-
eral areas qualify for dynamic load balance. This paper
studies the performance of load balancing while solv-
ing a branch and bound problem using hypercubes. If
the hypercube has link faults, special measures need to
be taken to balance the load. An algorithm for load
balancing in the presence of link faults is described.
Performance improvement obtained with the help of
load balancing using the link-fault-tolerant algorithm
is observed through simulation.

1 Introduction

Improvement in the speed with which computations
can be performed is very desirable. Parallel processing
seeks to do this by employing several processors and
breaking the tasks into smaller subtasks. The proces-
sors co-operate with each other, share information and
complete the tasks while reducing the execution time
by several orders of magnitude. The advances in VLSI
technology have helped in creating cheap, mass pro-
ducible computers featuring hundreds and thousands
of processors.

Although improving the hardware leads to faster
performance, the full exploitation of the power of a
multicomputer system needs optimization in the pro-
cessor usage and task allocation. It is frequently ob-
served in a multiprocessing system that some pro-
cessors are heavily loaded while others are almost
idle. To alleviate these situations, several algorithms
exist which improve system utilization by load bal-
ancing. A survey of such algorithms is found in
[7). Several researchers have studied this problem
(1,2 3,4,6,8,9, 12, 13].

The computational intensity of NP-complete search
problem solutions increases with the number of vari-

0-7803-1797-1/94/$3.00 © 1994 IEEE

ables. Such problems can be solved heuristically. This
paper solves one optimization problem using branch
and bound on simulated hypercubes. The arrange-
ment and properties of hypercube systems are de-
scribed in detail in [5]. The optimization problem is
solved here with and without load balance and the
gain in improvement with load balance is observed.
When the hypercube system has link faults, load can-
not be balanced completely with the help of the di-
mension ezchange algorithm. A modification to this
algorithm is necessary to get a complete balance. We
describe and use a load balance algorithm which toler-
ates link faults in hypercubes. Performance improve-
ment obtained in the branch and bound problem by
using this algorithm is observed.

2 Load Balancing Strategies

Different algorithms can be used to balance load
on a multiprocessing system based on the topology
of the system and other most influencing factors such
communication time, migration decision time, load es-
timation time, number of processors, job arrival rate.
The multiprocessor system is defined to be balanced
when the load on any pair of processors is same or dif-
fers by 1. For hypercube systems, a commonly used
method is termed as dimension exchange.

2.1 Dimension Exchange

The dimension exchange algorithm balances load
on hypercubes by exchanging loads between proces-
sors along each dimension. It takes n rounds of load
exchanges for an n dimensional hypercube.

The algorithm steps can be described as:

1. Repeat the following step for all the dimensions
of the hypercube.

2. Select a dimension d and balance every two neigh-
boring processors a and a? along that dimension.

339

@®)

an, 3 12)

(n/ "°

(91 3

2(3) Exnge (g 2(7)
L) @ L0
(11)4 6 (13) (144 8 (10)
Dimension 1
Exchange

an, ® ® ®

N

® 200 B d-nlxe O] 2 (8)
-——— (14
S, -‘Eb '3 (9) —& T 9)

(12)* € (10) (24 s (12)

Figure 1: Dimension exchange with link faults

Let the processor having the higher load retain
one unit more in case L(a) + L(a%) is odd, where
L(a) is the load of node a.

When the links of a hypercube are broken, the di-
mension exchange algorithm is not very effective. This
can be seen from Figure 1 where the dimension ex-
change is used on a hypercube with 2 link faults. The
numbers next to vertices in Figure 1 are processor
IDs while the load on processors are shown in (and)
brackets. Since the links between processor pairs {0,
4} and {5, 7} are faulty, dimension exchange results
in incomplete balance.

Evidently, dimension exchange is not appropriate
for load balancing in case of link faults. A new al-
gorithm is necessary to tolerate the link faults. If a
hypercube of n dimensions has n link faults, it is pos-
sible to have one processor completely disconnected.
But n — 1 faults ensure that every processor will have
at least one healthy link. If a processor has less than
average load, it is viewed here as a hkole and if it has
excessive load, it is called as peg.

2.2 Link-Fault-Tolerant Algorithm

We first overview a link-fault-tolerant load balanc-
ing algorithm proposed by Wu [11] which can tolerate
upto n — 1 link faults in an n dimensional hypercube.
The complete description and extensions of this algo-
rithm can be found in [11].

Let Q, represent a hypercube, where n specifies its
dimensions. The algorithm is as follows:

340

1. Select a dimension d across which all links are
fault free. Break @, along d into two subcubes,

Qn-1230d Q,_;.

2. Balance load across this dimension d between
Qn-1 and Q;_l. That is, between each proces-
sor a along dimension d and its neighbor a?, find
which processor has more load. Send load units
amounting to half of the difference between the
two processors to the lightly loaded processor.

3. For the subcubes, apply the above steps recur-
sively until balancing has been done along all
dimensions or a fault free dimension cannot be
found.

4. If any subcube Q,_; does not have a fault free
dimension, find the neighboring subcube Q,_,
which is fault free and is balanced. Since the
whole hypercube has only n — 1 faults, Q:,_, can
readily be found.

5. For each processor @ in subcube Q,_, find load
L(a) and load L(a’) on neighboring processor a’
in subcube Q,_,.

6. If L(a) — L(a") > 0, send that load as a peg to

- If L(a) - L(a') < 0, send that quantity as a

hole to a . A hole signifies underloaded condition
while peg symbolizes overload.

7. In subcube Q;_z, balance the pegs and holes us-
ing dimension exchange. While balancing the peg
and holes, move appropriate amount of actual
load among processors.

8. After Q;,_z is balanced, for each processor, send
load to its neighbor in Qn_, if it had sent holes.

3 Problem Description

In this section, we describes application of the pro-
posed method in solving branch and bound (B&B)
problems. The branching of B&B is performed by
building a search tree over the problem space. The
root of the tree represents the complete problem space
while the subspaces are denoted by the children. The
branching is done from the root to the leaves. This
partitions the spaces into smaller subspaces. The
leaves are subspaces that can be exhaustively searched
for solutions. A subproblem P; has an associated ob-
Jjective function f that defines the value of best solu-
tion obtainable from P;. The value is unknown until

the subtree rooted at P; is expanded. Therefore, an-
other function A called as heuristic function is used to
give the lower bound on the estimate of f. In gen-
eral, h can be more easily found as compared to f.
B&B uses selection, branching, elimination and ter-
mination tests as its steps. The heuristic A performs
selection of order in which subproblems are expanded.
Branching is used to break the current subproblem in
small sized subproblems. The elimination step termi-
nates the newly created subproblems which will not
find better solutions than the currently found ones.
A subproblem is deleted if its lower bound is greater
than or equal to that of the best feasible solution.

A B&B problem solving strategy for solving the
0-1 ILP problem described in [5] is considered here.
This optimization problem minimizes the values of an
objective function f(zi,zs...,z,) subject to a set of
constraints. The variables (z;, z3..., 2,) can only take
values 0 or 1. The problem is stated as:

Minimize n
f= Z C;Z;
j=1
with the restriction

m

E a;;z; > b

i=1
where 1 < i < m,z; € {0,1}and 1 <j<n¢ >
0. The values in matrices a and b can be positive or
negative.

The solution is to find such a sequence for z; which
would make the cross product of z and ¢ a minimum
quantity while also satisfying that cross product of =
with all a; is at least equal to or greater than b;. This
entails finding all combinations for the sequence of z
and trying out which ones satisfy all the restrictions.
The satisfying sequences would then be tested to get
the minimum value for product with ¢. Using B&B,
this solution reduces the number of computations by
keeping track of the current minimum. Whenever a
particular product between a chosen z and ¢ is more
than the current minimum, the choice of z is aban-
doned. Secondly, whenever any one of the restriction
is not satisfied, the further testing of restriction com-
pliance is stopped.

This problem can be solved by multiple processor
system like a hypercube with each processor getting
some sequences of z to test. There can be a central
processor giving test sequences to each processor and
then later probing them for results. Another way is
to link the choices of £ to a processor number:. For
example, if there are 16 processors and 64 choices i.e.

341

the = sequence is 6 bit long, each processor will take 4
test sequences. Node 0 takes 000000, 010000, 100000,
110000. The last four bits reflect the processor num-
ber while first two bits vary in order to produce all
combinations. In this manner, all processors can de-
termine their test sequence. The test sequence of z
comprises of the load for a processor. For each opera-
tion like multiplication, addition and comparison, the
processor will take finite amount of time. Using B& B,
a processor might finish all its inputs if they get elim-
inated or pursuing a sequence is of no interest. Such a
processor will be idle while other processors might be
busy. Load balancing can play a role here to prevent
load imbalances.

4 Implementation

To solve the above problem, a simulation program is
implemented. For a hypercube system, the simulation
program generates the matrices a and 4. The number
of rows and columns of the matrices can be changed.
The processors of the hypercube are assigned the test
sequences. The global minimum is accessible to each
processor (through a broadcast originated from the
node that holds this number). Each processor first
checks whether the product of its sequence with the
¢ matrix produces a result less than the current mini-
mum. Then it systematically tests whether the prod-
uct of its sequence with each of the rows in ¢ matrix
is greater than or equal to the corresponding value in
b matrix. Whenever the product is unsatisfactory, the
whole sequence is abandoned. This reduces the load
on that processor.

The longest time taken by any of the processors
determines the effective time to solve the problem.
Each problem is solved on hypercubes with 0 ton —1
link faults. The same problem is then solved using
load balancing using the link-fault-tolerant algorithm.
Load is balanced by sending parts of the problem to
other processors. The length of the problem is deter-
mined by the number of rows in the a matrix. While
migrating loads, the destination gets a new load with
the description of starting and ending rows for a given
test sequence. This migration results in some proces-
sors having to solve partial rows for a given sequence.
If the processor is solving a partial sequence, it first
tests whether that sequence was abandoned by some
other processors working on another part of rows for
the sequence. The status of the sequence is appro-
priately updated so that other processors working on
the parts can know whether to pursue the partial se-
quence. The longest time to solve the problems using

such load balancing is measured.

5 Observations

The following parameters were systematically
changed in the experiments: (a) The dimension of the
hypercube. (b) The number of link faults on the hy-
percube. (c) The number of rows in the matrices b
and c. (d) The number of columns in the matrices ¢
and a.

A problem satisfying the parameters was generated
each time and mapped on the hypercube with link
faults. Then it was solved using the link-fault-tolerant
algorithm. The longest time taken by any processor
was regarded as the time taken to solve that problem.
The speedup achieved over the case not using load
balancing was measured for each setting of parame-
ters. For each configuration of parameters, 100 differ-
ent problems were executed and the average speedup
was determined. The observations were gathered for
problem rows varying between 10 and 50, columns be-
tween 1 and 9, link faults between 0 and n — 1. The
points to be noted from these experiments are: (1)
Every problem was speeded up with load balancing
regardless of the number of rows, columns or proces-
sor faults. (2) The value of speedup increases with
the increase in hypercube dimension, if the other at-
tributes of the problem are kept the same. (3) A sharp
rise in speedup is obtained with load balancing for
any dimension of hypercube when the number of rows
and number of faults are constant but the number of
columns for the problems is increased.

6 Conclusions

This paper shows with a practical example how load
balancing can be applied to a problem. Speedup in
the performance is clearly obtained with load balanc-
ing. Use of the link-fault-tolerant algorithm provides
speedup over the no load balance case in the presence
of 0 to n — 1 link faults. The amount of speedup ob-
tained varies with the hypercube dimension, problem
type and size. The algorithm designer has to deter-
mine whether the problem is amenable to be solved in
parallel and how to implement it on the multiprocess-
ing system employed.

References

[1] M. S. Chen and K. G. Shin, “Subcube alloca-

342

tion and task migration in hypercube multipro-
cessors”, IEEE Transactions on Computers, Vol.
39, No.9, pp. 1146-1155, Sept 1991.

[2] T. C. K. Chou and J. A. Abraham, “Load Bal-
ancing in distributed systems”, JEEE Transac-
tions on Software Engineering, Vol. SE-8, No.4,
pp- 401-412, July 1982.

[3] G. Cybenko, “Dynamic load balancing for dis-
tributed memory multiprocessors”, Journal of
parallel and distributed computing, Vol. 7, No.2,
pp- 279-301, Oct 1989.

[4] D. Eager, E. Lozowska and J. Zahorjan, “Adap-
tive load sharing in homogenous distributed sys-
tems”, JEEE Transactions on Software Engineer-
ing, Vol. SE-12, No.5, pp. 662-675, May 1986.

[5] J.P. Hayes and T. Mudge, “Hypercube Supercom-
puters”, Proceedings of the IEEE, Vol. 77, No.12,
pp. 1829-1841, Dec 1989.

{6] R. Mirchandaney, D. Towsley and J. A.
Stankovic, “Adaptive load sharing in heteroge-
neous distributed systems”, Journal of Parallel
and Distributed Computing, Vol. 9, No .4, pp. 331-
346, Aug 1990.

[7] H. B. More and J. Wu, “Load balancing on mul-
tiprocessor systems”, Florida Atlantic University
TR-CSE-92-35, Nov 1992.

[8] D. M. Nicol, “Communication efficient global
load balancing”, Proceedings of Scalable High
Performance Computing Conference SHPCC-92,
pp. 292-209, Apr 1992.

9] N. G. Shivratri, P. Krueger and M. Singhal,
”Load Distributing for locally distributed sys-
tems”, Computer, pp 33-44, December 1992.

{10] C. L. Seitz, ”The cosmic cube”, Communications
of the ACM, Vol. 28, pp. 22-33, Jan 1985.

[11] J. Wu, “Dimension exchange based load balanc-
ing in injured hypercubes”, Florida Atlantic Uni-
versity TR-CSE-93-31, June 1993.

[12] S. M. Yuan, “An efficient periodically exchanged
dynamic load balancing algorithm, International

journal of mini and microcomputers, Vol. 12,
No.1, 1990.

[13] S. Zhou, “A trace driven simulation study of dy-
namic load balancing”, IEEE Transactions on
Software Engineering, Vol. 14, No. 9, pp. 1327-
1341, Sept 88.

