Optimal Triple Modular Redundancy Embeddings in the
Hypercube

Larry Brown and Jic Wu
Department of Computer Science and Enginecring
Florida Atlantic University
Boca Raton, FL 33431

Abstract

To achieve reliability without sacrificing perfor-
mance, the tasks of a computation are redundantly as-
signed to the processors of a hypercube multiprocessor.
The computation is represented by a task interaction
graph in which nodes represent tasks, and edge weights
represent the amount of communication belween fasks.
To provide faull-tolerance, cach node in the graph is
replaced by three nodes that act together as a Triple
Modular Redundancy (TMR) unit. We develop a for-
mula to calculate the number of TMR unils that can
be supporied in an n-dimensional hypercube, and a
Jormula to calculate the distance beiween two TMR
unils. Then we give algorithms for TMR embeddings
of weighted 1-level k-ary trees and unweighted rings in
a hypercube. These algorithms minimize ezpansion,
and are oplimal in that they minimize dilation for a
given expansion.

1 Introduction

The execution time of a computation can be greatly
reduced if it can be divided into parallel units of ex-
ecution or tasks, and each task can be scheduled to
run on a separate processor. Scheduling is the process
of assigning tasks to processors. In a static schedule,
the number of tasks and their characteristics, such as
execution time and the amount of inter-task commu-
nication, is known a priori [2]. If each task is assigned
to a separate processor, there may be more tasks than
available processors, and the amount of processor in-
teraction is large. The goal is to construct an optimal
schedule of tasks to processors, such that some func-
tion of the number of processors used, the amount of
inter-processor communication, and the overall length
of the computation is minimized [16]. This scheduling
probler is NP-complete, so heuristic methods [5], [12]
are often employed to obtain near-optimal schedules.

0-8186-6322-7/94 $04.00 © 1994 IEEE

600

As the number of processors used by a compu-
tation grows, the probabilily of onc of them failing
grows. Hardware redundancy can be used in multi-
processor architectures to improve the rcliabjlity of a
system. This is cspecially important for real-time sys-
tems where temporal based fault-tolerance techniques
such as checkpointing with rollback are not applicable.
A fault-tolerant schedule assigns cach task to multiple
processors in order to take advanlage of hardware re-
dundancy.

A computation is often represented as a task prece-
dence graph. A task precedence graph is a directed
acyclic graph in which each node represents a task,
and the edgces represent precedence constraints among
the tasks. A task precedence graph is typically
a single-entry-node single-exit-node connected (SEC)
graph [14]. Another way to represent a computation
is with a task interaction graph. A task interaction
graph is a weighted graph in which nodes represent
tasks, and cdge weights represent the amount of com-
munication between tasks. Gangadhar [7] has studied
the relationship and possible transformations betwcen
these two representations. The computation must be
cxecuted on some real machine. The architecture of
the machine can also be represented by a graph in
which each node represents a processor, and edges
represent processor inlerconnections. This graph is
known as the host graph.

In order to reduce the number of processors needed
to execute a computation, mulliple tasks can be ex-
ecuted on the same processor. In order to minimize
the tota] execution time of the computation, tasks that
can execute in parallel should be assigned to different
processors. To keep inter-task communication to a
minimum, tasks that communicate should execute on
the same processor. These conflicting goals must be
balanced. A special scheduling process which maps
each node of the task intcraction graph to a unique
node of the host graph is called embedding. The con-

cepts of ezpansion and dilation describe the quality of
an embedding. Expansion is a measure of processor
utilization, and dilation is a measure of communica-
tion cost. An optimal embedding minimizes expansion
or dilation when the other is fixed.

In this paper we consider a system of homogeneous
processors with a hypercube interconnection topol-
ogy. The hypercube is a well-studied structure with
many desirable properties that is capable of embed-
ding many other topologies [15]. It is known that op-
timally embedding an arbitrary graph into a hyper-
cube is NP-complete problem [1}. Most of the liter-
ature therefore attempts to find optimal embeddings
of special graphs such as trees [17], quadtrees [10],
2 — d meshes [3], 3 — d meshes [11], or pyramids {8],
or heuristic algorithms for embedding when optimal
algorithms cannot be found [6]. The graph being em-
bedded is usnally unweighted.

In [9], Kiskis and Shin propose using Triple Mod-
ular Redundancy (TMR) in a hypercube to provide
fault-tolerance. A TMR unit consists of three proces-
sors acting together to perform one task. Toach pro-
cessor executles the same computation, exchanges re-
sults with the other two processors, and uses majorily
voting to determine the correct result (sce Figure 1).
Using this procedure, a TMR unil can detect and re-
cover from a single non-Byzantine fault. Using TMR,
a general purpose hypercube computer can be used to
run applications requiring fault-tolerance without spe-
cial hardware support. The fact that TMR is being
used can be transparcnt to the application program,
and TMR processing can be enabled or disabled for
any particular execution.

Kiskis and Shin [9] prove the correctness ol the
TMR structure for the hypercube, show how to group
processots in the hypcrcube into a set of independent
TMR. units, and show how to convert a task interac-
tion graph into a TMR task interaction graph to toler-
ate single-point faults. In this paper, we extend their
work to show TMR cmbeddings in a hypercube for
two common task interaction graph topologies. The
approach used in this paper differs from the traditional
ecmbedding problem in that we embed a weighted,
rather than an unweighted, graph. This leads to a del-
inition of dilation based on an average, rather than a
maximum, measure. Our embeddings use the minimal
dimension hypercube that can embed the task interac-
tion graph, this minimizes expansion. Given the min-
imal expansion, we then optimize the embedding by
minimizing dilation. Optimal TMR embeddings are
given for weighted 1-level k-ary trees and unweighted
rings. The problem of cmbedding a weighted TMR

601

ring is also discussed.

In the next section we discuss basic notation. We
then review how processors in the hypercube are
grouped into TMR unils, develop a formula to cal-
culate the number of TMR. units that can be sup-
ported in an n-dimensional hypercube, and develop
a formula to calculate the distance between two TMR
units. Then we give embeddings- with examples for
1-level k-ary trees and rings, and present some con-
clusions.

2 Preliminaries

If a problem is prescnted in the form of a task prece-
dence graph, it must. first be scheduled, or transformed
into a task interaction graph [7]. The task interaction
graph, whether derived or given, can now be embed-
ded into the hypercube. An n-dimenstonal hypercube
(Qr) [15] is a network structure consisting of 2" pro-
cessors. Itach processor is distinctly addressed by an
n-bit binary number from 0 to 2® — 1. Two processors
are directly connected by a link il and only if their
binary addresses differ by cxactly one bit.

In tecrms of the embedding problem, the graph rep-
resenting the computation that is to be embedded is
called the guest graph G, =< V,, E, >. The graph
into which the guest graph is being cmbedded called
the host graph, G =< V, I5, >. For a TMR cmbed-
ding, we will group disjoint sets of three processors
in the hypercube into TMR units before embedding
G,. Therefore, each node in our G represents three
processors in the hypercube.

The embedding problem considered here is to find
a function that maps nodces of g onto unique nodes
of Gi. Two measurcs of the quality of an cmbedding
are expansion and dilation. Expansion is the ratio of
the number of nodes in G}, to the number of nodes in

Gg:

The larger the expansion, the more unused nodes (pro-
cessors) in Gy (the machine). Dilation is a measure of
how much G, must be stretched to fit Gy Nodes that
were adjacent in Gy may no longer be adjacent in Gi.
Dilation is given by:

i iy visdis

Zi,j Wiy

where w;; is the weight of the edge between nodes i
and j in Gy, and d;; is the distance between the nodes

p

Figure 1: A TMR unit. P-processor, T-task, V-voter.

of G, onto which nodes i and j from G, were mapped'.
Since the nodes of G}, represent three processors in the
hypercube, the calculation of distances between nodes
is not obvious, see Section 3 for a discussion. Our
objective is to find an embedding with minimum d in
the smallest possible hypercube.

Because processors in a TMR unit exchange results
and vote, the communication costs within a TMR uni.
are higher than between TMR units. Therefore, the
three processors making up a TMR. unit should be
located as close together as possible. In a hypercube,
the closest three processors can get is as three nodes of
a 2-dimensional cube (Q;). Our optimal embeddings
arc based on these assumptions.

3 TMR Units in the Hypercube

To make use of the available resources, as many
processors as possible must be grouped into TMR
urits. Consider an n-dimensional hypercube Q,. Any
node can be identified by an a-bit binary address:
GpQp_1-..0201. A Q, can be viewed as a Q,_, with
each node in the Q,_; being a 2-cube. The addresses
of these 2-cubes have the form: apan_;...a4a3 * *,
where * is the don't care symbol. Any two dimen-
sions could have been replaced by . Without loss of
generality, we will always replace the two least signif-
icant bits of the address. The nodes of these 2-cubes
with 00, 01, and 10 as their two least significant bits
can be grouped into TMR wunits. Any three nodes

! When embedding unweighted graphs, dilation is defined to
be the maximum distance between nodes of the host graph onto
which adjacent nodes of the guest graph were mapped.

602

Table 1: TMR unit address in Q5.

TMR unit Address Cube
0 000 * % Q3
1 001%+ O
2 010+ Q
3 O1lxs Qs
4 100 * * Q3
5 101 % Q3
6 110 * @3
7 111 % # Q3
8 O* %L1 (o3
9 1%t [N

of the 2-cube could have been sclected without loss
of generality. Nodes having addresses of the form:
Gn@p_1...04a31] arc unuscd. To group these unused
nodes into TMR units, consider a Q, _4 with addresses
of the form: apan_y...agas**11. This procedure can
be applicd until all dimensions are cxhausted. In gen-
cral, for Q,_; there are n — ¢ bils to the left of ** in
the address, and any bits to the right of +* arc 1s. Fig-
ure 2 shows the TMR. units in Qs and the addresses
of those TMR units are listed in Table 1.

The following theorem shows how to calculate the
number of TMR units that can be formed in an n-
dimensional hypercube.

Theorem 1 The number of TMR unils in aen n-
dimensional hypercube Q,, n > 1, is

L(r=2)/2]

2

k=0

for even n

2n—2[n/2j
for odd n

20 -1

2'2k _{ 3
= -2

3

[igure 2: TMR units in Q5.

Proof. First consider the case for even n. When n
is even, 2*~21*/2) = 1 and can be ignored. As de-
scribed above, @, consists of a series of subcubes,
@a-2y Qn_g, ..., Qo, made up of TMR units. Since
there are 2™ nodes in an m-dimensional hypercube
Qm, the total number of TMR. units in @, is

(n—2)/2
204224 ot pon2 o Z 92k
k=0

For cven n, |(n~2)/2] = (n—2)/2and we have proven
the left hand side of the theorem for even n.

To prove the right hand sidc for even n, we usc the
equality

hd ; T"’+l -1
e
=0 r—1
(n-2)/2 (n=2)/2 .
k=0 k=0 4-1

Mo 2r
3 3

For odd n, we can view @, as consisting of two
Qn—1 hypercubes of cven dimension. The limit of
the summation, [(n — 2)/2], gives the number of
TMR units in Q._; when n is odd. When = is odd,
2"=21n/2l = 3 50 the left hand side gives lwice the

603

nutber of TMR units in Q,_;. Since only one node
in Qu_1, the one with address 1...1, is not a part
of any TMR unit, viewing @, as two @,_1’s does not
leave cnough unused nodes Lo inake another TMR unit
that is not accounted for in the summation.

The right hand side for odd 7 can be derived by

multiplying the right hand side for n — 1 by 2
22" —-1) 2r-2
3 T3

O

If two TMR. units need to communicate, they must
be connected by finding a path hetween them (see Fig-
ure 3). Two TMR units, TATR, and TM R, are con-
nected by a 1-to-1 mapping from processors in TM R,
to processors in TAfR,. That is, therc must be a
path from each processor in TM R, to a unique pro-
cessot in TMR;. Kiskis and Shin [9] show that these
paths, as well as the paths within each TMR. unit are
node disjoint, thus allowing all singlc-point faults to
be masked. For TMR units TM R, and TM R, in the
same cube, @, (** in the same location), the optimal
mapping is straightforward:

a,.a,,_l...O()l...l_—b,,b,,_l...00]...1,
Gnlgey e 011 U= bpbp_y...0U1.. 1,
Antp_y...100.. .1 = b0, .. 10L.. 1.

The distance between the TMR units, Dy g, is the

TMR a

< TMRD

Figure 3: Communication within and between TMR. units.

average Hamming distance, Dy, between the corre-
sponding nodes. For TMR units in the same cube, this
is the llamming distance between any pair of nodes in
the above mapping.

We define the distance between two cubes, D¢, to
be the Hamming distance between two cubes where
neither cube address is *.

Definition 1 The distance between two cubes, Dg,

132 Z

Vita £+ b+

Do = (2 ®bi)
where ai,b; for 1 < i< n are the cube addresses, and
@ 13 the exclusive or operation.

The following thecorems show how to calculate the
distance between TMR units in the same and different
cubes.

Theorem 2 The distance between TMR units in the
same cube (+* in same locations), is Dryp = Do

Proof. Follows from the above discussion and the
definition of D¢.
a

Theorem 3 The distance between TMR units in dif-
ferent cubes (x* in different locations), is

Dy (e, 00)

Dryr =24 Do + 3

where a is the 2 bits of the higher dimensional cube
address where the lower dimensional cube address is
*x,

604

Proof. Al the bit positions where neither address is =,
cach bit where the addresses are different contributes
onc to the distance between the TMR units, this is
De.

Consider the two bits where the higher dimensional
cube address is **. The lower dimensional cube ad-
dress at these bit positions is 11. The node mappings
at these two bit positions are 00-11, 01-11, 10-11,
with corresponding Dy =241+ 1=4.

Jonsider the two bits where the lower dimensional
cube address is **. Let the higher dimensional cube
address at these bit positions be & = 00. The node
mappings at thesc two bit positions are 00-00, 01-00,
10-00, with corresponding Dy = 04141 =2 1If
a=0lora=10then Dy =3 and il & = 11 then
Dy = 4. At these bit positions, the TMR units are at
least distance 2 apart, plus additional distance il the
higher dimensional cube address is not 00. So at these
two bit positions Dy = 2 + Dy (a, 00).

At the bit positions wherce cither address is *, we are
adding the distances between threc nodes. To obtain
the average distance between the individual nodes of
each TMR unit, we must divide by 3. Adding the
above distances togcther gives

4+2+D 00 D 00
Do+ HEEZN(000) gy e 4 Du(:00)

a

Corollary 1 The minimum distance between TMR
unsts in different cubes 1s 2.

For consistency in this paper, we always select
nodes with addresses 00, 01, and 10 in the 2-cube to
make up the TMR units. However, any three nodes

could be chosen. If another choice is made, the dis-
tance formula given above changes slightly. The 00
in the term Dy (a,00) is the complement of the un-
used address. For example, il addresses 00, 01, and
11 where chosen to make up the TMR. units, address
10 would be unused, its complement is 01. Therefore,
the term in the above formula would be Dy (e, 01).

For example, consider TM R, with address 0(*—2) x4
in Qn_3, and TM R, with address 0* =9 411 in Q,_4
(0™ is a string of n 0's). While some nodes in TM R,
are only distance 1 from nodes in TM Ry, other nodes
are distance 3 from each other. There is no way to
connect the two TMR. units so the average distance
between corresponding nodes is less than 2. One pos-
sible connection yields a distance 2 belween all cor-
responding nodes (0*~200 - 0(*="0011, 0>~y -
0*=N0111, 0210 - 0*~91011). This connection
pattern may be desirable because of its symmetry,
but the paths between nodes are not node disjoint.
The connection (0C"~200 - 0{*~90111, 0=~2p1 -
0t=11011, 0~V 10 - 0(*=D0011) yields node dis-
joint paths, but the distances between nodes are 3,2, 1
In this example, Dg = 0, a = 00,
and Dryr 2. As another example, using Theo-
rem 3, the distancc bewteen TMR. units 0110100 * *
and 101+ %11111is 244+ } =64,

respectively.

4 Optimal Embedding of 1-level k-ary
Trees

In a compute-aggregate-broadcast style of program-
ming {13}, G, can be a 1-level k-ary tree. During each
round of computation, the leaves compute a value and
send it to the root node. The root node might then dis-
tribute values to the leaves for further rounds of com-
putation. The amount of communication with each
leal might be different, so the edges might not have
equal weights.

The following algorithm assigns each node in G to
a TMR unit in a hypercube. The algorithm is optimal
in that it minimizes expansion and dilation. First, a
total ordering of the nodes of G, based on their dis-
tance from the root of Gy is found. Then a total or-
dering of the TMR units in @, based on their distance
from TMR unit 0*=2 x is found by using binomial
spanning trees for each cube. These two total order-
ings are then used to assign nodes in G, to a TMR
units in the hypercube.

Algorithm 1 Tree Embedding

Inputs: G4, a weighted 1-level k-ary tree.

605

@n, an n-dimensional hypercube where n is
the minimum dimension that will yield
enough TMR units to embed G,.

Outputs: An optimal TMR embedding of Gy in Q..

1. Order the nodes of G4 by decreasing distance
{weight) from the root of G,4. In the case of nodes
with equal distances, choose an arbitrary order-

ing.

2. Organize Q,, into TMR units as discussed in Sec-
tion 3.

3. Form=n-2,n-4,...,0, construct a binomial
trce rooted at 00™) x4 1(*~™=2) that spans Q,, and
order the TMR. units in Q,, by increasing distance
from the root node of the binomial spanning tree.
For TMR. units with equal distances, choose an
arbitrary ordering,.

4. Construct an ordering of the root TMR units of
the binomial spanning trces constructed above
based on increasing distance from TMR. unit
0"=2 x +, Tics may be broken arbitrarily.

5. Using the ordering of TMR units within each Q,p,,
and the ordering of root TMR units, construct
an ordering of all TMR units based on increasing
distance from TMR. unit 0(*~2) « %, Ties may be
broken arbitrarily.

6. Remove the first node from the {otal ordering of
nodes of Gy, and remove the first TMR unit from
the total ordering of TMR units in Q,. Assign
the nodc chosen from G, to the TMR. unit cho-
sen from Q.. Continuc until all nodes of G4 are
assigned to a TMR. unit.

The ordering of TMR. units based on increasing dis-
tance from TMR. unit 0¢*~2) x % could be found by di-
rect application of Theorem 3 to each TMR unit. Us-
ing binomial spanning trees requires that Theorem 3
be used only for the root of the binomial spanning
trees. It can be scen that the root of the binomial
spanning tree of @, 4 is distance 2 from the root of the
binomial spanning tree of @, _2, the root of the bino-
mial spanning tree of Q,_¢ is distance 4 from the root
of the binomial spanning trce of @, _», etc. The root of
the binomial spanning trec for Q,,, 0(™) & x1(r=m=2),
is chosen to be closer to 0*~2 % than any other TMR
unit in Q.

The two total orderings are used (o map the nodes
of G4 to the TMR units of Q, as follows. The
first node in the G, total ordering, the root node, is

mapped to TMR unit 0(*~2) x %, The next node in the
G, total ordering gives the leaf that is the greatest dis-
tance (greatest weight) from the root node. This node
should be mapped to the TMR unit closest to TMR
unit 0(*~2) 4 «. The next TMR wunit in the TMR unit
total ordering gives such a TMR. unit. The node from
G, is assigned to this TMR unit. As nodes and TMR
units are selected, they are removed from their respec-
tive total orderings and the process is repeated until
all nodes are assigned to TMR. units. Algorithm 1 is
optimal in that it minimizes expansion by using the
smallest @, that can cmbed Gy, and given that cx-
pansion, it minimizes dilation by associating large w;;
with small d;;. If expansion is increased, dilation can
be reduced.

IFigure 4 shows a [-level 9-ary tree and the bino-
mial spanning trees of the Qs of Figure 2 used by Al-
gorithm 1. Figure 4 shows a 1-level 9-ary tree and its
TMR embedding into the 5-cube of Figure 2. The to-
tal ordering of the nodes in the 9-ary irec of Figure 4 is:
a,b,h,e,j,9,f,¢,4d. The total ordering of the TMR
units in the 5-cube, based on the binomial spanning
trees of Migure 4, is: 0,1,2,4,3,5,6,8,7,9. The em-
bedding of nodes to TMR units bascd on these to-
tal orderings is (a,0), (b,1), (h, 2), (e,4), (5,3), (g, 5),
(1,6), (1), (i), (,9).

5 Optimal Embedding of Unweighted
Rings

Another common process interaction graph is the
ring and its variation, the lincar order. Processors ar-
ranged in a lincar order can be used to process data
in a pipelined f{ashion. In a ring, nodes only exchange
information with a left and right neighbor, and the
graph forms a closed loop. Since pairs of nodes may
exchange diflerent amounts of information, the cdges
may have unequal weights, however we will first con-
sider unweighted rings.

A ring can easily be embedded in a conventional
hypercube using the Gray code [4]. Since a @, can
be viewed as a concatenation of Qn_9, Qn_4, ..., il
follows that a ring of 2"~2 TMR units can be embed-
ded in the @,_2, a ring of 2"~* TMR units can be
embedded in the @,_4, ectc. We describe two meth-
ods for joining these rings together into onc ring. In
the first method, each of the rings formed by the
Qm(m < n —2) cubes are inserted between two nodes
of the ring formed by the Q,_5 cube. In the sccond
method, the rings are nested one inside the other by
inserting the Q,_4 ring between two TMR units of the

606

Q-2 ring, inserting the Q,_¢ ring between two TMR
units of the @Q,_4 ring, etc.

The distance between TMR unils in each ring is
one. If the rings are joined at an arbitrary point, the
distance at the jump between rings could be large.
To allow an optimal embedding, the rings should be
joined so the distance between them is minimized. Us-
ing Theorem 3, we can minitnize the distance belween
TMR. units where the rings join by sciting the bits in
Qm to 0 wherc the bits in @, _; arc **, and by keep-
ing the other bits equal as much as possible. Even so,
by Corollary 1 the distance between nodes where rings
Join is at lcast two.

To illustrate our first method, consider that within
a @y, TMR units can be labeled by their binary digits
to the left of the *x bils. For example, TMR unit
0010 * *11 can be labeled as TMR unit 2 in Q4. A
ring can always be cmbedded in a @,,, such that TMR
units 0 and 1 are adjacent. The link betwecen TMR
units 0 and 1 in Q,, can be deleted, and Q,, can be
inserted belween two TMR unils of @,_3. The two
TMR units of Q,_, must be chosen Lo winimize the
distance between the rings as discussed above. Table 2
and Table 3 show which TMR units are selected to
join rings lor Qg and ;. Figure 5 shows how a ring
is embedded in Qg

Again, we always sclect nodes with addresses 00,
01, and 10 in the 2-cube to make up the TMR. units.
Il another choice is made, the above scheme should
be adjusted to minimize the distance as discussed for
Theorem 3.

When joining the Q,, ring to the Q,_5 ring, TMR
unit 0 of @y, is joined to TMR unit 7 of @,_, where

._ [0 fm=n-1

I = Z?___—OM-S 2¢ otherwise

and TMR unit 1 of @, is joined to TMR unit k of
Qa2 where

n—4 fm=0
n—m — 2 otherwisc

k=j7+2, wherel = {

The formula for ; accounts for the 1’s in the @Qn_»
TMR unit address that match up with the 1's to the
right of the ** bits in the address of TMR unit 0 of
Qum - l'or the special case when m = n — 4, there is no
room to match up 1’s, so TMR unit 0 in @, is used.

The formula for k accounts for the 1 in the Q,_2
TMR unit address that wmatches up with the 1 to the
left of the *% bits in the address of TMR unit 1 of
Q@m- When n is even, the lowest dimensional ring is
Qo which consists of only a single node. This lcads to
the need toset { =n — 4 when m = 0.

Binomial tree spanning Q3

b)

9
Binomial tree spanning QI

Figure 4: a) A 1-level 9-ary trec. b) Binomial spanning trecs of the §-cube of Figure 2.

Table 2: Joining rings in Qg.

TMR unit Cube Address Joins to TMR unit Cube Address Distance
0 Qe 000000 * « — 0 Q4 0000 » =11 2
4 Qs 000100 * * s 1 Q4 0001 * %11 2
3 Qs 000011%% 0 Qy 00%x1111 2
19 Qs 010011++ s 1 Qs Olxxl1t11 2
15 Qe 001111 * % — 0 Qo wx 111111 2
31 Qs O11111*% — 0 Qo xx 111111 21
Table 3: Joining rings in Q7.
TMR unit Cube Address Joins to TMR unit Cube Address Distance
0 Qs 00000 * * — 0 Q3 000 % %11 2
1 Qs 00100++ «— 1 Qs 001+ +t1 2
3 Qs 00011 * % —s 0 (o N} Oxxi1]11 2
19 Qs 10011** s 1 Q1 1xxllt] 2

607

Figure 5: Embedding a ring in Q.

The method of joining rings just described leads to
a two level structure where all the Q,, (m < n — 2)
rings arc inserted between TMR units of the Q,_»
ring. [Finding a ring embedding for @._, with all the
pairs of 7, kK TMR units selected by the above formu-
las adjacent in the ring can be difficult. A straight
forward application of a Gray code will not work.

Another way to join the rings into one ring is to
insert the Q,_4 ring between two TMR units of the
Qn-2 ring, inscrl the Qn_¢ ring between two TMR
units of the Q,_4 ring, etc. This forms a hicrarchical
structure of rings. Jumps to lower dimeusional rings
can always be made from TMR. unit 0 in Q,,, to TMR
unit 0 in @m,m_2. Jumps to higher dimensional rings
can be made from TMR unit 1in Q.2 to TMR unit
4 in Q,, when m > 2. When m = 2, @y has only
one TMR unit, and the shortest jump is from TMR
unit 0 in Q¢ to TMR unit 2 in Q5. The individual
ring embeddings must have TMR units 1, 0, and 4
adjacent. Such cmbeddings are easier to find than
the ring embedding for Q,_7 in the one level scheme
described above. I'igure 6 shows the hierarchical ring
embedding for Q.

Both ring embedding schemes are optimal in that
the distance betwecen TMR units is minimized. Within
each Q,, ring, the distance between TMR units is one.
Where rings from different cubes are joined, the dis-
tance is two (which is minimal by Corollary 1), except

608

when joining Qa which, because it has only one node,
has distance 2%. The two methods can be combined
with some rings being nested more than two levels
deep as in the second mcthod, and multiple tings be-
ing inscried at each level as in the first mcthod.

The following algorithm gives an optimal TMR em-
bedding of an unweighted TMR. ring, G, into a hyper-
cube.

Algorithm 2 Ring Embedding

Inputs: G4, an unweighted ring.
Rr, an n-dimensional hypcrcube where 7 is
the minimum dimension that will yield

enough TMR. units to embed G,.
Oulputs: An optimal TMR embedding of G, in Q..

1. Arrange the TMR units in cach subcube into one
logical ring using one of the methods described
above. If there are more TMR units than nodes
in Gy, the ring in the cube(s) with the lowest
dimension can be shortened or eliminated.

2. Select any node, n, from G4 and assign it to any
TMR. unit, #, in the ring formned from Q,.

3. Set m = successor(n) and u = successor(u) and
assign n to u. Repeat until all nodes from G, are
assigned to TMR units.

0

Figure 6: Hierarchical ring cimbedding for Qg.

Algorithm 2 is optimal in that it minimizes dilation
given the minimal expansion. Expansion is minimized
by using the smallest Q,, that can erabed G- Dilation
is minimized because G, is unweighted and one of the
two optimal methods described above is used to join
the Qn_2, Qn-4... rings together.

When G, is a weighted ring, the jumps between
TMR units in cubes with different dimensions must
correspond to edges in G, with small weights. Once
one node from G, is mapped to a TMR unit in @Q,,
all other node to TMR unit mappings are determined.
Thus making a good choice when jumping between two
rings may lead to a bad choice when jumping between
two other rings. All combinations must be considered,
making this an NP-complete optimization problem.

6 Conclusions

In this paper we have discussed optimal TMR
embeddings of special classes of process interaction
graphs in a hypercube (o provide fault-iolerance. The
goal of our TMR embeddings is to minimize dilation
given the minimum expansion. We developed a for-
mula to determine how many TMR units a hypercube
of a given dimension can support. For an odd dimen-
sional hypercube, the formula doubles the result of the
next smallest even dimensional hypercube. We also

609

developed a formwla for the distance between TMR
units in differenl subcubes. The distance is the aver-
age IHamming distance between corresponding nodes
in the two TMR uuils.

While finding optimal cmbeddings for general
graphs is an NP-complete problem, we have consid-
ercd two special types of graphs. An algorithm that
produces an optimal TMR embedding for weighted 1-
level k-ary trees was given. This embedding was based
on finding a total ordering of nodes of the guest graph
based on edge weight, and a corresponding total order-
ing of TMR units in the hypercube based on distance
from TMR unit 0*=2) 4 &,

An algorithm that produces an optimal TMR em-
bedding for an unweighted ring was also given. This
algorithm was based on joining rings cmbedded in the
individual subcubes, Qn_2, @a_4 ..., into one ring so
the distance between TMR. units where the rings are
joined is minimized. Tt was nolcd that the problem of
constructing a TMR embedding of a weighted ring is
NP-complete.

Optimal TMR cmbeddings were found only for sim-
ple graphs. Additional work is nceded (o derive opti-
mal embeddings for other graphs, and to develop ef-
ficient heuristics when the embedding problem is NP-
complete.

References

{1] S. N. Bhatt, F. Chung, T. Leighton, and A. Rosen-
berg. Optimal simulation of tree machines. In Pro-
ceedings of the 27th Annual JEEE Symposium on
the Foundations of Computer Science, pages 272—
282, 1986.

[2] T. L. Casavant and J. G. Kuhl. A taxonomy of
scheduling in general-purpose distributed comput-
ing systems. IEEE Trans. Softw. Eng., 14(2):141-
154, Feb. 1988.

[3] M. Y. Chan and F. Y. L. Chin. On cmbedding rect-
angular grids in hypercubes. [EFE Trans. Com-
pul., 37(10):1285-1288, Oct. 1988.

[1] M.S. Chen and K. G. Shin. Processor allocation in
an n-cube multiprocessor using Gray codes. ITEEE
Trans. Comput., C-36(12):1396-1407, Dec. 1987.

[5] W. W. Chu, L. I. Holloway, M.-T. Lan, and
K. Efe. Task allocation in distributed data pro-
cessing. IEEE Computer, 13(11):57-69, Nov. 1980.

6

—

Y.-C. Chung and S. Ranka. Mapping finite cle-
ment graphs on hypercubes. Third Symposium on
the Ironliers of Massively Parallel Computation,
pages 135-144, 1990.

[7] M. Gangadhar. Fault tolcrant scheduling schemes.
Master’s thesis, Florida Atlantic Universily, De-
partment of Computer Scicnce and Computer En-
gineering, Aug. 1992.

[8] C. T. Ho and S. L. Johnsson. Dilation d embed-
ding of a hyper-pyramid into a hypercube. In Pro-
ceedings of the Supercomputing '89, pages 294--303,
Nov. 1999.

[9] D. L. Kiskis and K. G. Shin. Embedding triple-
modular redundancy into a hypercube architec-
ture. In G. Fox, editor, The Third Conference on
Ilypercube and Concurrent Computers and Apph-
calions, pages 337-345, Pasadena, CA, 1988. Jet
Propulsion Laboratory, Association for Comput-
ing Machinery.

[10] N. Krishnakumar, V. Hegde, and S. S. Iyengar.
Fault tolerant based embeddings of quadtrees into
hypercubes. In 1991 International Conference on
Parallel Processing, pages 244-249, 1991.

[t1] H. Liu and S. H. Huang. Dilation-6 embeddings
of 3-dimensional grids onto optimal hypercubes.
In 1991 International Conference on Parallel Pro-
cessing, pages 250-254, 1991.

610

{12] V. M. Lo. Heuristic algorithms for task assign-
ment in distributed systems. IEEE Trans. Com-
put., 37(11):1384-1397, Nov. 1988.

[13] P. A. Nelson and L. Snyder. Programming
paradigms for nomsharcd memory parallel com-
puters. In The Characterisiics of Parallel Algo-
rithms, pages 3-20. The MIT Press, Cambridge,
MA, 1987.

[14] C. V. Ramamoorthy, K. M. Chandy, and M. J.
Gonzalez, Jr. Optimal scheduling stategies in a
multiprocessor system. IEEE Trans. Comput., C-
21(2):137-146, Feb. 1972.

[15] Y. Saad and M. H. Schultz. Topological prop-
erties of hypercubes. IEEE Trans. Comput.,
37(7):867-872, July 1988.

[16] H. S. Stone. Multiprocessor scheduling with the
aid of network flow algovithms. IELEEL Trans.
Softw. Eng., 3(1):85-93, Jan. 1977.

[17}] A. Y. Wu. Embedding of tree networks into hy-
percubes. J. Parallel Disi. Comput., 2:238-249,

1985.

