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ABSTRACT

A king v in a tournament is a player who beats (—) any other player v directly or
indirectly. That is, either u — v or there exists a third player w such that v — w
and w — v. A sorting sequence of kings in a tournament of n players is a sequence
of players, S = (uy, uz, ..., ), such that w; — w41 and w; in a king in the sub-
tournament T, induced by w;, wit1,...,u, for © = 1,2,...,n — 1. The existence of a
sorting sequence of kings in any tournament is shown [3] where a sorting algorithm
with a complexity of ©(r?) is given. In this paper, we present a constructive proof for
the existence of a sorting sequence of kings of a tournament and propose an efficient
algorithm with a complexity of ©(n?).

Keywords: King, sorting algorithm, tournament, median order, local median
order.



A directed graph with a complete underlying graph is called a tournament [1],
representing a tournament of n (> 1) players where every two players compete to
decide the winner (and the loser) between them. A king v in a tournament is a player
who beats (—) any other player v directly or indirectly. That is, either u — v or there
exists a third player w such that v — w and w — v. A sorting sequence of kings [3]
in a tournament of n players is a sequence of players, S = (uy, uz, ..., uy,), such that
Ui = Uit and u; in a king in the sub-tournament 7, induced by Uiy Uig 1y -eey Uy foOT
1 = 1,2,...,n — 1. The existence of a sorting sequence of kings in any tournament
is shown [3] where a sorting algorithm with a complexity of ©(n?) is given. In this
paper, we present a constructive proof for the existence of a sorting sequence of kings
of a tournament and propose an efficient algorithm with a complexity of ©(n?).

Lemma 1: ([2]) FEvery tournament has a king.

Lemma 2: If u is a king for some tournament T' and let S Cin(u) ={v eT :v —
u}, then u is still a king in the sub-tournament induced by T — S.

Proof: We only need to consider the vertex v € T'— S such that u beats v indirectly

in T, i.e., u = w and w — v. Clearly, w ¢ 5. Therefore, u still beats v indirectly in
T-5. |

Theorem 1: Sorting sequence of kings exists in any tournament T of n players.

Proof: We prove the theorem by induction on n. Clearly, it is true for n = 1. Assume
that the statement is true for n — 1, we will show for the case of n. By Lemma 1
we can pick a king of T say u, and by induction hypothesis, we can also assume
that S = (uq,uz, -, u,—1) is a sorting sequence of kings of sub-tournament 7" — {u}.
We shall show that u can be inserted into sequence S without changing any relative
position of the vertices in S.

Suppose p (1 < p < n—1) is the first index such that v — u, (such u, always exists
because u is a king of 1'). We shall show that 5" = (uy, ug, - -+, Up_1, Uy Up, Ups1, - Up_1)
is the sorting sequence of kings in T". Let T,,(S”) be the sub-tournament of T" induced
by v and all the vertices in S’ that follow v. We need to show that

v is a king in T,,(97) for all v € {ug, ug, -, Up_1, U, Up, Upg1, -+, Up—1} (1)

Clearly, condition (1) is true for all v € {u,, upy1,---,uy—1}. By Lemma 2, con-
dition (1) is also true for v = u. Now, we consider v = u; € {uy,ug,...,u,—1}.
By induction hypothesis, u; is a king of the sub-tournament induced by T,,(5) =
{Uiy e Uty Upy oy U 1} together with w; — wu, u; is still a king of the sub-
fournament induced by T, (S) U{u} = Ty, (5.

|

Based on Theorem 1, we can easily derive an algorithm that successively inserts
a vertex to a partial sorting sequence of kings. The key is to find a king in each
sub-tournament. The following theorem provides an efficient way to determine such
a king.

Theorem 2: Let u be a vertex with the maximum out-degree in a tournament T' =

(V,A). Then u is a king.



Proof: Suppose u is not a king. Then there is a vertex v such that (v,u) € A and
that (v,w) € A for every vertex w € out(u) = {v € T,u — v}. This implies that
lout(v)| > |out(u)], a contradiction. u

We follow closely the proofs of Theorem 2 and Theorem 1 to generate a king
sequence and a sorting sequence of kings in a tournament, respectively. The algorithm
consists of three modules applied in sequence: OUT-DEGREE, KING-SEQUENCE,
and KING-SORT. OUT-DEGREE computes the out degree of each vertex u and
stores it in O(u). KING-SEQUENCE generates a king sequence stored in an array B
such that Bli] is a king of sub-tournament { B[], Bli + 1], ..., B[n]} for i = 1,2, ....n.
KING-SORT successively inserts B[i] into a sorting sub-sequence of kings (B[i +
1, Bli +2],...,B[n]) for i = n—1,n—2,...;1. Assume that T' = (V, A) is a given

tournament such that |V| = n.

OUT-DEGREE
1 O(u) «— 0, for each u € V
2 for each ¢ = (u,v) € A
3 do O(u) «— O(u) + 1

KING-SEQUENCE

1 fori=1ton

2 do BJi] +— king, where O(king) = max,ev{O(v)}
3 O(king) +— —1

4 for each ¢ = (u, king) € A

5 do O(u) «— O(u) — 1

KING-SORT
1 for:=n—1downto 1
2 do for j=:1ton—1
3 do if B[j + 1] — B[]
4 then exchange B[j| +— B[j + 1]
5 else return

Theorem 3: The overall complexity of the algorithm is O(|V|?).

Proof: The complexity of OUT-DEGREE is O(|A]). In KING-SEQUENCE, the
cost of decrementing O(u) is O(|A]). The cost of searching for new kings in |V/| sub-
tournaments is O(|V]?). Note that at each round only one king is selected although
several kings may exist. The complexity of KING-SORT is O(|V|*). Therefore, the
overall complexity is O(|V]* + |A]) = O(|V]?). n

Consider a sample tournament of six players {uy, wug, uz, w4, us, ue}. Figure 1
shows the graph representation of the tournament. Applying the OUT-DEGREE
algorithmv we have (O(ul)v O(”?)v O(”S)v O(ul)v O(”?)v O(u?))) = (47 17 47 37 27 1) A
step by step application of KING-SEQUENCE to generate BJ[1...6] is shown as follows:



u3 u2

Figure 1: A sample example

(4,1,4,3,2,1) e (—=1,1,3,3,2,1) L (—=1,1,-1,2,2,1) 4y
(-1,1,-1,-1,1,1) = (~1,-1,—-1,-1,1,0) = (~1,-1,—1,—1,-1,0) =%

Therefore, the resultant king sequence is B[1...6] = [uy, u3, ug, ug, us, ug). A step

by step application of KING-SORT to B[l...6] is shown as follows:

1. Uyp, U3, Ug, Uz, Us — Us

2. Uy, U3, Ug, Ug —> Us —> Ug

3. Uy, U3, Ug —> Uy — Us — Ug

4. Uy, Uy —> Uz — Uy —> Us —> Ug

. Uy —> Uy —> U3 —> Uy — Uy —> Ug

The final sorting sequence of kings is uy — wqy — ug — uy — us — ug. Note that
in general the sorting sequence of kings is not unique. For example, us — u; — uy —

Uz — us — ug is another sorting sequence of kings for Figure 1.
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