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Abstract

In this paper, we propose a new minimum total commu-
nication distance (TCD) algorithm and an optimalTCD
algorithm for broadcast in a 2-dimension mesh. The former
generates a minimumTCD from a given source node, and
the latter guarantees a minimumTCD among all the pos-
sible source nodes. These algorithms can be generalized
to ad-dimensional mesh or torus.TCD can potentially be
used as a measurement for other types of collective commu-
nication operations.
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1. Introduction

In a multicomputer system, a collection of processors
(also called nodes) work together to solve large application
problems. The mesh-connected topology is one of the most
thoroughly investigated network topologies. It is of large
importance due to its simple structure and its good perfor-
mance in practice and is becoming popular for reliable and
high-speed communication switching.

In order to minimize communication latency it is im-
portance to design an efficient implementation of collective
communication operations [5] which include multicast and
broadcast. Multicast is an important system-level commu-
nication service [4] in which the same message is delivered
from a source to an arbitrary number of destination nodes.
Broadcast [3] is a special case of multicast in which the
same message is delivered to all the nodes.

A major source of communication delay for broadcast
in a network is the communication time spent on sending
messages from one node to all the other nodes. This com-
munication time is influenced by many factors. One im-
portant factor is the traffic generated during the broadcast
process. We measure such traffic by atotal communication

distance(TCD) which is the summation of all the distances
a broadcast message traverses during the broadcast process.
Obviously, the overall network traffic contention, as well as
the communication delay, depends on theTCD. Therefore,
minimizing theTCD has become an important issue in de-
signing an efficient broadcast. AminimumTCD algorithm
for broadcast in a mesh starting from a given source node
is the one that generates the minimumTCD among all the
possibleTCDs from the same source node. Anoptimal
TCD algorithm is the one that generates a minimumTCD
amongTCDs for all the possible source nodes, not just for
a given source node.

Given a 2-dimensional (2-D) mesh, say ann � n mesh
with n = 2k, wherek is a non-negative integer (k is
used as an integer throughout this paper), we only con-
sider broadcast algorithms that can complete a broadcast in
logn2 = 2k time steps, i.e., a time-step optimal broadcast
algorithm will be simply denoted as a broadcast algorithm.
Under the cut-through switching technique [2], forwarding
a message from one node to any other node is considered
as one time step which is irrelevant to the distance between
these two nodes, provided there is no traffic contention. We
assume that in each time step a node may do one of the fol-
lowing: sending a message to one node, receiving a mes-
sage from one node, or being idle. The challenge in de-
signing a minimumTCD of a time-step optimal broadcast
algorithm (for a given source node) is to generate a rout-
ing path that guarantees a minimumTCD without traffic
contention at any time step.

One related work [6] deals with the simplest case in
which the source node of broadcast is always a corner node
of a given 2-D mesh. This case rarely occurs in real ap-
plications. Therefore, we need to find a minimumTCD
broadcast algorithm for any given source node. In this pa-
per, we identify certain unique nodes calledeyes. If we
start a broadcast from one of these eyes and follow certain
rules defined in this paper, we will obtain an optimalTCD.
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Specifically, we propose: (1) A minimumTCD algorithm
for a given source node in a 2-D mesh. (2) An optimal
TCD algorithm for a 2-D mesh. (3) Expressions of opti-
malTCD and minimumTCD for a given source node. (4)
Extensions of the above results to ad-D mesh and ad-D
torus.

The remainder of the paper is organized as follows. Sec-
tion 2 shows some simple examples and describes the nota-
tion used in the paper. In Section 3, we provide our major
results onTCDs for 2-D meshes. We generalize our results
to d-D meshes in Section 4. In Section 5, we conclude this
paper.

2. Notation and Examples

For a givenn�nmesh withn = 2k, we assume that the
distance between any two adjacent nodes is one. The loca-
tion of a node in a mesh is denoted by a pair of coordinates
(x; y). The origin of the coordinate system is assumed to
be the upper-left corner of the mesh, as shown in Fig.1 (a).
Both x andy are integers(x; y = 0; 1; 2; :::; n � 1). The
node at(x; y) is denoted byN(x; y).
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S(0,0) 1

2 2 2 2
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Figure 1. (a) A mesh with its coordinate sys-
tem. (b) Broadcast in a 2�2 mesh. (c) Broad-
cast in a 4� 4 mesh.

Definition 1: DenoteDk(x; y) as theTCD of a broad-
cast algorithm originated from a source nodeS(x; y) in
a 2k � 2k mesh andMDk(x; y) as the minimumTCD
originated from a source nodeS(x; y) among all the pos-
sible broadcast algorithms. Obviously,MDk(x; y) =
minfDk(x; y)g.

DenoteFD as the communication distance in the first
step of a broadcast,SD as the communication distance in
the second step, andRD as the communication distance in
the remaining steps. Obviously, for a given source node
S(x; y) in a mesh, different algorithms lead to different sets

of FD,SD andRD. Clearly,Dk(x; y) = FD+SD+RD
for a particular broadcast algorithm.

Now let’s look at some simple broadcast examples with
the source node being the upper-left corner node of a given
mesh. A2� 2 mesh(k = 1) is the simplest case. Fig.1 (b)
shows the process of a broadcast starting from nodeS(0; 0).
Arrows 1 and 2 represent the first and second steps of broad-
cast, respectively. TheTCD of this case is calculated by
D1(0; 0) = FD + SD = 1 + 2 = 3. Obviously, starting
from any node in this mesh, we will obtain the same result.
This means thatMD1(x; y) = D1(x; y) = 3, wherex, y =
0 or 1. A 2 � 2 mesh is a basic unit for broadcast and is
called aunit mesh.

In a time-step optimal broadcast, after each step the
number of nodes having received the message must be dou-
bled. As shown in Fig.1 (c), we divide the given4�4 mesh
into four 2 � 2 submeshes. By treating each of these sub-
meshes as avirtual node, we reduce a4� 4 mesh problem
to a 2 � 2 mesh one. Therefore, in the first two steps we
can use the same approach for a2� 2 mesh withFD = 2
andSD = 4. After two steps, all the virtual nodes receive
the message. In the remaining two steps, each of these four
2� 2 submeshes completes the broadcast process within its
submesh withD1(0; 0) = 3, i.e.,RD = 4� 3 = 12. Over-
all,D2(0; 0) = FD+SD+RD = 2+4+12 = 18. This
turns out to be the minimumTCD by comparing it with re-
sults of all the other arrangements; that is,MD2(0; 0) = 18.
It is not difficult to deriveMD2(0; 1) = 16 andMD2(1; 1)
= 15 in the same way.

However, in a8 � 8 mesh, the minimumTCD cannot
be easily determined as in the above two examples. If the
source sends the message to the upper-left corner nodes of
the other three4� 4 submeshes, i.e.,N(4; 0),N(0; 4), and
N(4; 4), in the first two steps, we haveD3(0; 0) = 84, which
is notMD3(0; 0), because there are better results. For ex-
amples, ifN(5; 0) is the destination node of the first step,
N(0; 5), andN(5; 4) are the destination nodes of the sec-
ond step,D3(0; 0) = 80. If N(5; 1) is the destination node
of the first step,N(1; 5) andN(5; 5) are the destination
nodes of the second step,D3(0; 0) = 79. Therefore, to
find the minimumTCD, the first two steps are extremely
important. The selection of the upper-left corner node of
the upper-right submesh in the first step may not generate a
minimum result. The exact location depends on the size of
the given mesh as we will discuss in the next section.

To give some insights on the location(s) of the source
node that can generate an optimalTCD of a given2k � 2k

mesh, we calculate the minimumTCD for each node in the
mesh. Fig.2 (a), (b), and (c) show the minimumTCD for
each node in a4� 4, 8� 8, and16� 16mesh, respectively.
We place results for each mesh in a matrix. Within such
a matrix, the number at a particular position represents the
minimumTCD of the node corresponding to this position



in the corresponding mesh.
Clearly, each mesh has an optimalTCD, which appears

at four different locations (marked with an underline) in the
matrix. These locations are in four different submeshes and
are called eyes of the mesh to be defined in the next section.
For the16 � 16 mesh, we just show the upper-left8 � 8
submatrix, since the matrix is symmetric with respect to the
center of the matrix.
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Figure 2. The minimum TCDs for each node
in (a) a 4� 4 mesh, (b) a 8� 8 mesh, and (c)
a 16� 16 mesh.

3. Minimizing TCD of a Time-Step Optimal
Broadcast in a 2-D Mesh

In the following definition, we define special nodes,
called eyes, in a given mesh. We will show later that the
minimumTCD with respect to an eye is the optimalTCD.

Definition 2: There are foureyesin a2k�2k mesh, labeled
asEk(i), i = 1; 2; 3; 4. These eyes are recursively defined
as follows: All four nodes in a2� 2 mesh are eyes,E1(i),
i = 1; 2; 3; 4, as shown in Fig.3 (a). A2k � 2k mesh is
partitioned into four2k�1�2k�1 submeshes, each of which
has four eyes,Ek�1(i). Eyes,Ek(i), i = 1; 2; 3; 4, are
selected from sixteenEk�1(i)s. Specifically, eyesEk(i) are
the fourEk�1(i)s that are the closest to the center of the
2k � 2k mesh, as shown in Fig.3 (c).

For examples, the inner four nodes of a4 � 4 mesh, as
shown in Fig.3 (b), are eyes,E2(i), i = 1; 2; 3; 4. Some-
times, we also useEk to representEk(i) to simplify our
notation, and denotei = 1; 2; 3; 4 as the index of the upper-
left, upper-right, lower-left, and lower-right submesh and
eye, respectively, and we follow this convention throughout
this paper.
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Figure 3. The recursive definition of eyes of
(a) a 2� 2 mesh, (b) a 4� 4 mesh, and (c) a
2k � 2k mesh.

Definition 3: Define the square, formed by four eyesEk(i)
of a 2k � 2k mesh as its four corners, to be theeye-square
of the2k � 2k mesh. Denoteak as the length of the side of
this eye-square.

Based on Definition 2, it is obvious from Fig.3 (c) that
two aks plus twoak�1s equals the length of side of the
2k � 2k mesh plus one, i.e.,2ak +2ak�1 = n = 2k, where
ak�1 is the length of the side of eye-square of a2k�1�2k�1

mesh. This immediately leads to

ak = 2k�1 � ak�1 ; k � 2 ; (1)

anda1 = 1. This recursive formula leads to

ak =
1

3
[2k � (�1)k] ; k � 1 : (2)

Using Eq. (2), we can easily determine locations of all
four eyes of a given2k � 2k mesh.

By taking the advantage of the recursive definition of
eyes, we propose the following broadcast algorithm: If we
start a broadcast from eyeEk(1), it first sends the message
to Ek(2), then these two eyes send the message toEk(3)
andEk(4), respectively. Each of four2k�1 � 2k�1 sub-
meshes will have one node with the message after the above
two steps. According to the definition of eyes, each of these
four nodes is also an eye of the submesh. Repeating the



above procedure, i.e., each of the four submeshes delivers
the message to eyes within its submesh, the message will be
delivered down to submeshes level by level, and the broad-
cast completes when all the nodes obtain the message. Note
thatDk(Ek(i))s ( i = 1; 2; 3; 4 ) are the same, due to the
symmetry of the mesh. Therefore, we can useDk(Ek) to
represent them to simplify the notation. Clearly,Dk(Ek)
can be calculated recursively by the following formula

Dk(Ek) = 3ak + 4Dk�1(Ek�1): (3)

We will show later in Theorem 2 that thisDk(Ek) corre-
sponds to the optimalTCD. Now we consider an algorithm
in which a broadcast starts from any nodeS in the mesh, but
the message are still forwarded to the eyes of the mesh in
the first two steps.

Algorithm 1 : (Minimum TCD broadcast algorithm for a
given source nodeS in a2k � 2k mesh.)

� Divide the given2k � 2k mesh into four2k�1 � 2k�1

submeshes. Rotate the mesh, if necessary, until the
source nodeS is in the upper-left submesh, as shown
in Fig.4.

� The source node sends the message to the upper-right
eyeEk(2) in the first step.

� In the second step, the source node sends the message
to either the lower-left eyeEk(3) orEk�1(1) depend-
ing on which one is closer to the source node, and
Ek(2) sends the message to the lower-right eyeEk(4),
as shown in Fig.4.

� In the remaining steps, the four submeshes deliver the
message within their own submeshes of the next level
following the above procedure. In this way the mes-
sage is delivered down to submeshes level by level un-
til reaching the unit meshes,2�2meshes, and all these
unit meshes complete the broadcast within themselves
in two steps.

Based on the definition of eyes, each node in a given
mesh is an eye of exactly one submesh (including the given
mesh). Each eye will be visited exactly once in Algo-
rithm 1.

To calculateDk(S), the TCD obtained from Algo-
rithm 1, we use a new set of relative coordinate systems.
For a2k � 2k mesh, we set up auk � vk coordinate system
with the origin being onEk(1), as shown in Fig.4. Each of
the four2k�1�2k�1 submeshes has its own coordinate sys-
tem. For example, theuk�1(i)�vk�1(i) coordinate system
is for theith submesh (see Fig.5).

Now assume thatS is uk andvk away fromEk(1) in
theuk andvk direction respectively, as shown in Fig.4, i.e.,
the coordinates ofS are(uk; vk). Also S is in the upper-
left submesh, because we can always do so by rotating the
mesh.

Ek(1) Ek

EkEk

(2)

(4)(3)

a -1

a

k

k

Ek-1(1)

k

k

0

( k )S u v,k

v

u

Figure 4. The uk � vk coordinate system in a
2k � 2k mesh and calculation of the first two
steps of Dk(S).

The expression forDk(S) varies based on different loca-
tions ofS(uk; vk) in the upper-left submesh. For examples,
if 0 < uk � ak�1=2, and0 < vk � 2k�1 � 1 � ak=2, as
shown in Fig.4 and region(iv) in Fig.6,FD = ak+uk+vk,
SD = (ak + uk + vk) + ak, andRD = Dk�1(S) +
3Dk�1(Ek�1). So theDk(S) in this case is

Dk(S) = 2uk + 2vk + 3ak +Dk�1(S) + 3Dk�1(Ek�1):

If �ak=2 < uk � 0 and0 < vk � 2k�1 � 1 � ak=2,
the region(ii) in Fig.6,FD = ak + uk + vk, SD = (ak �
uk + vk) + ak, andRD = Dk�1(S) + 3Dk�1(Ek�1). So
theDk(S) in this case is

Dk(S) = 2vk + 3ak +Dk�1(S) + 3Dk�1(Ek�1):

There are totally six different expressions forDk(S) cor-
responding to six different locations ofS. To simplify our
discussion, we introduce a functionfk(uk; vk) (or simply
fk(S)) so that we can representDk(S) with a general ex-
pression.

Lemma 1: Dk(S) can always be expressed by a general
form:

Dk(S) = fk(uk; vk)+[3ak+Dk�1(S)+3Dk�1(Ek�1)]; (4)

wherek � 2, and

fk(uk; vk) =

8>>>>><
>>>>>:

0 (i)
2vk (ii)
2uk (iii)
2uk + 2vk (iv)
uk + juk � ak�1j (v)
uk + juk � ak�1j+ 2vk (vi)

(5)
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where(i) to (vi) represent six regions in the upper-left sub-
mesh where the source node locates (see Fig.6):

(i) : (�ak=2 < uk � 0) ^ (�ak=2 < vk � 0)

(ii) : (�ak=2 < uk � 0) ^ (0 < vk � 2k�1 � 1� ak=2)
(iii) : (0 < uk � ak�1=2) ^ (�ak=2 < vk � 0)

(iv) : (0 < uk � ak�1=2) ^ (0 < vk � 2k�1 � 1� ak=2)
(v) : (ak�1=2 < uk � 2k�1 � 1� ak=2)^

(�ak=2 < vk � 0)
(vi) : (ak�1=2 < uk � 2k�1 � 1� ak=2)^

(0 < vk � 2k�1 � 1� ak=2)

In the second step of Algorithm 1, if the source node is
in (v) or (vi), it sends the message toEk�1(1); otherwise,
it sends toEk(3).

Functionfk(S) is a function of the location of the source
nodeS. It is always greater than or equal to zero, i.e.,

fk(uk; vk) � 0: (6)

By comparing Eq. (3) and (4), it is easy to see that

Dk(S)�Dk(Ek) = fk(S) +Dk�1(S)�Dk�1(Ek�1):

Repeatly substitutingDk�1(S) andDk�1(Ek�1) in the
above equation by Eq. (3) and (4), respectively, we have

Dk(S) =

kX
i=2

fi(S) +Dk(Ek): (7)

Because eachfi(S) � 0 in Eq. (7) is greater than 0, we
immediately have

Dk(S) � Dk(Ek);

where the equal sign is taken only whenS = Ek. This
result leads to the following theorem.
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Figure 6. Six different regions of the source
node S(uk; vk) in the upper-left submesh of a
2k � 2k mesh.

Theorem 1: If the source node is an eye of the mesh, the
TCD obtained by Algorithm 1 is the minimum among all the
possible source nodes that also use Algorithm 1.

The following theorem shows that the Algorithm 1 is the
best possible broadcast algorithm.

Theorem 2: TheTCD obtained from Algorithm 1 is the
minimumTCD for a given source node.

The proof of Theorem 2 is in Appendix. One special
application of the minimumTCD algorithm is when the
source node is a corner node of a given mesh. In this
case, the source node doesn’t need to compareEk(3) and
Ek�1(1) in the second step of the algorithm. It just sends
the message toEk�1(1). Clearly, our result here is a gen-
eralization of the one in [6], where the source node is re-
stricted to a corner node.

In fact, the minimumTCD for S(0; 0), the upper-left
corner node, can be calculated by

MDk(0; 0) = 5� 2k�1 � 2� 2ak�1 +MDk�1(0; 0) +

3MDk�1(Ek�1); k � 2; (8)

andMD1(0; 0) = 3. The following is the exact expression
for Eq. (8),

MDk(0; 0) =
6

5
� 22k +

4

3
� 2k� 2k�

1

30
� (�1)k�

5

2
; (9)

where k � 1. For examples,MD2(0; 0) = 18,
MD3(0; 0) = 79, and MD4(0; 0) = 318. These
MDk(0; 0)s match the results of the previous examples in
Section 2. The detailed derivation of Eq. (9) can be found
in [1].



Definition 4: In ann�nmesh (n = 2k), the optimalTCD
is defined asminfMDk(x; y)g, where1 � x; y � n� 1.

From Theorems 1 and 2, we immediately have the fol-
lowing corollary.

Corollary 1 : If we start a broadcast from an eye of a mesh
and follow Algorithm 1, theTCD obtained is an optimal
TCD, i.e.,MDk(Ek) = minfMDk(x; y)g.

The optimalTCD broadcast for a2k � 2k mesh is just
a special case of Algorithm 1, in which the broadcast orig-
inates from an eye of a mesh. In this case, the source node
sends the message to eyeEk(3) in the second step, since
the source node is in region(i) (see Fig.6).

The recursive formula forMDk(Ek) is the same as
Eq. (3). The exact expression can be derived as follows:

MDk(Ek) =
1

5
[3� 22k+1 � (�1)k]� 2k; k � 1 : (10)

For examples, MD1(E1) = 3, MD2(E2) = 15,
MD3(E3) = 69 andMD4(E4) = 291. TheseMDk(Ek)s
match the results of the previous examples in Section 2. The
detailed derivation of Eq. (10) can be found in [1].

4. Minimizing TCD of a Time-Step Optimal
Broadcast in ad-D Mesh

A

dz }| {
2k � 2k � : : :� 2k mesh is also called ad-D 2k mesh,

or simply ad-D 2k mesh. The definition of an eye in such
a mesh is defined as follows:

Definition 5: There are2d eyesin a d-D 2k mesh, labeled
asEd

k(i), 0 � i � 2d � 1. These eyes are recursively de-
fined as follows: All2d nodes of ad-D 21 mesh are eyes,
Ed
1 (i). A d-D 2k mesh is partitioned into2d d-D 2k�1 sub-

meshes, each of which has2d eyes,Ed
k�1(i). EyesEd

k(i)

are selected from22d Ed
k�1(i)s. Specifically, eyesEd

k(i)

are the2d Ed
k�1(i)s that are the closest to the center of the

d-D 2k mesh.

For example, ad-D 22 mesh consists of2d d-D 21 sub-
meshes, each of which has2d Ed

1 (i)s, 0 � i � 2d � 1.
Among all these22d Ed

1 (i)s, the inner2d ones, which are
the closest to the center of thed-D 22 mesh, are the eyes
of thed-D 22 mesh,Ed

2 (i). Sometimes, we useEd
k to rep-

resentEd
k(i) to simplify our notation. Here we restrict our

attention only to the cases where the source node is an eye
of ad-D mesh.

Definition 6: DenoteMDd
k(Ek) as the minimumTCD

for a d-D 2k mesh to complete a broadcast from an eye.
Let’s look at some examples of 3-D meshes. A2� 2�

2 mesh is 3-D unit mesh. Fig.7 (b) shows the process of
a broadcast in a2 � 2 � 2 mesh. The optimalTCD is

2

S

2

1

3 3

3 3

0

z

x

y
1

2 2

3 3

33

s

(c)

(a)

(b)

Figure 7. (a) and (c) Broadcast in a 4� 4� 4
mesh. (b) Broadcast in a 2� 2� 2 mesh.

MD3
1(E1) = FD+SD+TD = 20+21+22 = 7, where

TD is denoted as the total distance of the third step . It
takes three steps to complete the broadcast with each step
responsible for one dimension and the number of the nodes
to be delivered doubles in each step. Using the same way
for a d-D unit mesh, we immediately deduce that it takes
d steps to complete a broadcast in ad-D unit mesh. The
optimalTCD is

MDd
1(E1) =

d�1X
i=0

2i = 2d � 1: (11)

Fig.7 (a) and (c) show the process of a broadcast in a
4�4�4mesh from an eye. Fig.7 (a) shows that the4�4�4
mesh consists of eight2 � 2 � 2 submeshes (unit meshes)
and Fig.7 (c) shows a partition of the4�4�4mesh into four
4 � 4 submeshes along dimensionz. During the first three
steps, the message is delivered to eight eyes including the
source. All these eyes are located in different2�2�2 sub-
meshes. In the remaining three steps, eight submeshes com-
plete delivering the message within themselves following
the same process as shown in Fig.7 (b). The optimalTCD
is MD3

2(E2) = (20 + 21 + 22)a2 + 23MD3
1(E1) = 63.

In the same way, it is easy to obtain the optimalTCD for
a 8 � 8 � 8 mesh,MD3

3(E3) = (20 + 21 + 22)a3 +
23MD3

2(E2) = 525.
We can extend our optimalTCD algorithm for a 2-D

mesh to ad-D mesh. In ad-D 2k mesh, it needs totally
lognd = dk steps to complete a broadcast. We divide these
dk steps intok phases, each of which consists ofd steps. In
the first phase, the firstd steps are for the broadcast among



all the2d eyes ofd-D 2k meshes. In the second phase, the
nextd steps are for the broadcast among all the22d eyes of
2d d-D 2k�1 submeshes. In the last phase (thekth phase),
the lastd steps are for the broadcast among all the2kd eyes
of 2(k�1)d d-D 21 submeshes (unit meshes). If we start a
broadcast from an eye of ad-D mesh and follow the above
extended algorithm, we will obtain an optimalTCD (see
[1] for details). Also, by extending our minimumTCD
algorithm for a 2-D mesh to ad-D mesh, we can obtain the
minimumTCD for a given source node.

The recursive formula for optimalTCD of a d-D 2k

mesh is

MDd
k(Ek) =

d�1X
i=0

2iak + 2dMDd
k�1(Ek�1)

= (2d � 1)ak + 2dMDd
k�1(Ek�1); (12)

wherek � 2 andMDd
1(E1) is given by Eq. (11). The

exact expression is

MDd
k(Ek) = 2d�1

3(2d+1)(2d�1�1)
[3� 2d(k+1)�1 �

(�1)k(2d�1 � 1)� 2k(2d + 1)]; (13)

wherek; d � 1. The detailed derivations can be found
in [1]. For example, whend = 2, Eq. (13) leads to the
minimumTCD expression for a 2-D mesh which is exactly
the same as Eq. (10). Whend = 3, Eq. (13) leads to the
minimumTCD expression for a 3-D mesh.

MD3
k(Ek) =

7

27
[23k+2 � (�1)k � 3� 2k]; k � 1 : (14)

5. Conclusion

In this paper we have identified a set of special nodes
called eyes in a given mesh. Both the minimumTCD
broadcast algorithm from a given source and the optimal
TCD broadcast algorithm (which is the minimum one
amongTCDs for all the possible source nodes) are based
on the idea of eyes. If we start a broadcast from a given
source node and follow the minimumTCD algorithm, a
minimumTCD from the source is obtained, which is the
minimum one among all the possibleTCDs from this given
source node. If we start a broadcast from an eye of a mesh
and follow the minimumTCD algorithm, an optimalTCD
is obtained.

Our results can be easily extended to a torus, which is a
special mesh in which the nodes at the periphery are con-
nected by wraparound connections. This means that each
node in the torus is equivalent to each other, i.e., each node
in a torus is an eye in the corresponding mesh. Therefore,
no matter where a broadcast in the torus is initiated, we can
always use the proposed minimumTCD algorithm and ob-
tain an optimalTCD.
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Appendix

(Proof of Theorem 2)

We prove this theorem using the induction on k. Assume
that the source node is represented byS. Theorem 2 can be
proved by showing

D0

l(S)�Dl(S) � 0 (15)

to be true for any integerl, whereDl(S) is theTCD ob-
tained from Algorithm 1 andD0

l(S) is theTCD obtained
from an arbitrarily selected broadcast algorithm.

For l = 1, it is a 2 � 2 mesh. Algorithm 1 is the only
possible approach and henceD0

1(S) = D1(S). For l = 2,
it is a 4 � 4 mesh. WhenS = (0; 0), D2(0; 0) = 18, all
the other possibleD2(0; 0)s are greater than or equal to 18.
WhenS = (1; 0) or (0; 1), D2(1; 0) = D2(0; 1) = 17, all
the other possibleD0

2(1; 0)s orD0

2(0; 1)s are greater than or
equal to 17. WhenS = (1; 1), D2(1; 1) = 15, all the other
possibleD0

2(1; 1)s are greater than 15. Therefore,D2(S) =
MD2(S), i.e., Eq. (15) is true. Forl = k � 1, assume that
up to this level Theorem 2 is true, i.e.,D0

l(S)�Dl(S) � 0,
1 � l � k � 1, andDk�1(s) =MDk�1(S).

For l = k, in order to proveD0

k(S) � Dk(S) � 0,
we need to determineD0

k(S), which is theTCD obtained



from an arbitrarily selected broadcast algorithm. We denote
the three destination nodes of the first two steps asN2,N3,
andN4, respectively. Their coordinates(uk�1(i); vk�1(i)),
i = 2; 3; 4, are indicated in Fig.5. Note that the coordinate
system of each2k�1 � 2k�1 submesh is set up according
to the convention in Fig.4. Following Algorithm 1, the first
step is fromS(uk; vk) toN2(uk�1(2); vk�1(2)),

FD = ak + uk � vk�1(2) + jvk + uk�1(2)j:

The second step is fromS to N3(uk�1(3); vk�1(3)) and
fromN2(uk�1(2); vk�1(2)) toN4(uk�1(4); vk�1(4)),

SD = ak + vk � uk�1(3) + juk + vk�1(3)j+ ak

�uk�1(2)� vk�1(4) + jvk�1(2)� uk�1(4)j:

The remaining step,RD, is calculated by

RD =

4X
i=1

MDk�1(Ni);

whereMDk�1(S = N1), MDk�1(N2), MDk�1(N3),
andMDk�1(N4) can be obtained from Eq. (7), i.e.,

MDk�1(Ni) = MDk�1(Ek�1) +

k�1X
j=2

fj(Ni);

wherei = 1; 2; 3; 4. Therefore,

D0

k(S) = uk � uk�1(2)� uk�1(3) + vk � vk�1(2)� vk�1(4)

+jvk + uk�1(2)j+ juk + vk�1(3)j+ jvk�1(2)� uk�1(4)j

+3ak + 4MDk�1(Ek�1) +

4X
i=1

k�1X
j=2

fj(Ni) (16)

From Eq. (3) and (7), we have

Dk(S) = 3ak + 4MDk�1(Ek�1) +MDk(Ek) +

kX
j=2

fj(S) :

Subtracting Eq. (16) by above equation, we have

D0

k(S)�Dk(S) = �1 +�2 +�3 +�4 +�5; (17)

where

�1 = uk + vk � fk(S) + juk + vk�1(3)j+ jvk + uk�1(2)j

�2 = �uk�1(2)� vk�1(2) +
Pk�1

j=2
fj(N2)

�3 = �uk�1(3) +
Pk�1

j=2
fj(N3)

�4 = �vk�1(4) +
Pk�1

j=2
fj(N4)

�5 = jvk�1(2) � uk�1(4)j:

It is obvious that�5 � 0. In �2,
Pk�1

j=2 fi(N2) is al-
ways positive (see Eq. (6)). Whenuk�1(2), vk�1(2) �
0, �2 � 0 automatically. Whenuk; vk � 0,
fk�1(uk�1(2); vk�1(2)) is either2vk�1(2) + uk�1(2) +
juk�1(2) � ak�2j or 2vk�1(2) + 2uk�1(2) (see Eq. (5)),
which makes�2 � 0. Therefore,�2 � 0 is always posi-
tive. In the same way, we can show that both�3 and�4 are
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Figure 8. Calculation of fk�2(N3).

always positive. Specificly,�3 > �uk�1(3)+fk�1(N3) >
0, and�4 > �vk�1(4) + fk�1(N4) > 0.

�1 in Eq. (17) is rather complex becausefk(S) has six
different expressions corresponding to six different loca-
tions of S. Further more, it depends on the locations of
N2 andN3. Here we just consider one case (region(iv)
in Fig.6). The remaining cases can be treated similarly
[1]. For the case of0 < uk � ak�1=2, and0 < vk �
2k�1 � ak=2, fk(S) = 2uk + 2vk. Thus,

�1 = �uk � vk + juk + vk�1(3)j+ jvk + uk�1(2)j:

When bothuk�1(2) > 0 andvk�1(3) > 0, �1 is obvi-
ously greater than zero. But when bothuk�1(2) < 0 and
vk�1(3) < 0, �1 is less than zero. We have to find other
terms to nullify this negative term. Actually, there are many
positive terms in both�2 and�3. For example,fk�2(N3)
hasn’t been used when we showed that�3 > 0. There-
fore, we can usefk�2(N3) to nullify the negative value of
�1. Specifically, whenvk�1(3) < 0, as shown in Fig.8,
vk�2(3) = �vk�1(3) > 0. Thusfk�2(N3) � 2jvk�1(3)j.
We also use a term from�2 to nullify the negative value of
�1. It can be seen that�2 > juk�1(2)jwhenuk�1(2) < 0.
Therefore, Eq. (17) can be written as

D0

k(S)�Dk(S) > �1 +�2 +�3

> �1 + juk�1(2)j+ 2jvk�1(3)j

= (�jukj+ juk + vk�1(3)j+ 2jvk�1(3)j) +

(�jvkj+ jvk + uk�1(2)j+ juk�1(2)j):

It is not difficult to see that�jukj + juk + vk�1(3)j +
2jvk�1(3)j > 0 and�jvkj+jvk+uk�1(2)j+juk�1(2)j > 0.
Therefore,D0

k(S)�Dk(S) > 0.
We can show thatD0

k(S) �Dk(S) > 0 is also true for
all the other cases (corresponding to other five regions in
Fig.6). Therefore, Eq. (15) is true forl = k. In summary,
Eq. (15) is true for alll, i.e., Theorem 2 is valid. 2


