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Abstract

In this paper we propose a new minimum total communication distance (TCD) algorithm and an

optimal TCD algorithm for broadcast in a 3-dimensional mesh (3-D mesh). The former generates

a minimum TCD from a given source node, and the latter guarantees a minimum TCD among all

the possible source nodes. These algorithms are based on a divide-and-conquer approach where a

3-D mesh is partitioned into eight submeshes of equal size. The source node sends the broadcast

message to a special node called an eye in each submesh. The above procedure is then recursively

applied in each submesh. These algorithms can be generalized to a d-dimensional mesh or torus.

In addition, the proposed approach can potentially be used to solve optimization problems in other

collective communication operations.

Keywords: Broadcast, communication distance, divide-and-conquer, meshes, optimization prob-

lems, wormhole routing.
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1 Introduction

In a multicomputer system, a collection of processors (also called nodes) work together to solve large

applications. Mesh-connected topology is one of the most thoroughly investigated network topologies

for multicomputer systems. It is important due to its simple structure and its good performance in

practice, and is becoming popular for reliable and high-speed communication switching. Mesh-connected

topologies, also called k-ary d-dimensional meshes, have a d-dimensional grid structure with k nodes

in each dimension such that every node is connected to two other nodes in each dimension by a direct

communication. Mesh-connected topologies include n-dimensional meshes, tori, and hypercubes. These

topologies have desirable properties of regularity, balanced behavior, and a large number of alternative

paths. Machines that use 2-dimensional (2-D) meshes includes the MIT J-machine [2], the Symult 2010

[14], and the Intel Touchstone Delta[7]. The Cray T3E [5] system uses a 3-D torus.

In order to minimize communication latency it is important to design an e�cient implementation

of collective communication operations [11, 12] which include multicast and broadcast. Multicast is

an important system-level communication service [3, 8] in which the same message is delivered from

a source to an arbitrary number of destination nodes. Broadcast [4] is a special case of multicast in

which the same message is delivered to all the nodes. Broadcast is essential in many applications

such as distributed agreement [6], clock synchronization [13], and compute-aggregate-broadcast type of

algorithms [10].

A major source of communication delay for broadcast in a network is the communication time spent

on sending messages from one node to all the other nodes. This communication time is in
uenced by

many factors. One important factor is the tra�c generated during the broadcast process. We measure

such tra�c by a total communication distance (TCD) which is the summation of all the distances

a broadcast message traverses during the broadcast process. Obviously, the overall network tra�c

contention, as well as the communication delay, depends on the TCD. Therefore, minimizing the TCD

is important in designing an e�cient broadcast. A minimum TCD algorithm for broadcast from a given

source node is the one that generates a minimum TCD among all the possible TCDs from the same

source node. An optimal TCD algorithm is the one that generates a minimum TCD among TCDs for

all the possible source nodes, not just for a given source node.

Given a 3-dimensional (3-D) mesh, say an n � n � n mesh with n = 2k, where k is a nonnegative

integer, we only consider broadcast algorithms that can complete a broadcast in log n3 = 3k time steps

in a wormhole-routed system. The wormhole switching technique is becoming the trend in building

multicomputer systems due to its inherent advantages such as low-latency communication and reduced

communication hardware overhead. Under the wormhole switching [2], forwarding a message from one

node to any other node is considered as one time step which is irrelevant to the distance between these

two nodes, provided there is no tra�c contention. We assume that the system under consideration uses

the one-port model, i.e., at each time step a node may do one of the following: sending a message to

one node, receiving a message from one node, or being idle. Note that without the minimum TCD

requirement, time-step optimal broadcasting can be easily achieved through recursive doubling; that

is, the number of nodes that receive a copy of the message doubles after each step. The challenge in

designing a minimum TCD of a time-step optimal broadcast algorithm (for a given source node) is to

generate a routing path that guarantees a minimum TCD without tra�c contention at any time step.
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In general, tra�c contention includes step contention and depth contention. Step contention occurs

when two copies of a message in the same time step contend for a common channel (link). Another

contention is called depth contention which is de�ned as two copies of a message in di�erent time steps

contend for a common channel. This situation occurs if the broadcast message is long or one of the copies

is delayed and transmitted at a later step. Note that in a time-step optimal broadcast algorithm, the

source node sends 3k copies at di�erent steps. Since there are only six adjacent links, depth contention

is unavoidable for k > 2. Therefore, the issue of depth contention-freedom will not be further discussed.

Notice that when each node in a 3-D mesh is synchronized and the broadcast message is relatively short,

step contention-freedom implies depth contention-freedom.

The divide-and-conquer approach is applied to achieve a minimum TCD broadcasting where a given

3-D mesh is partitioned into eight submeshes of equal size. We identify a set of eight special nodes called

eyes in a given 3-D mesh. The source node sends the broadcast message to an eye in each submesh.

The optimization problem is then solved recursively at each submesh (each submesh has its own eight

eyes). Speci�cally, we propose a minimum TCD broadcast algorithm for a given source node and an

optimal TCD broadcast algorithm. If we start a broadcast from a given source node and follow the

minimum TCD algorithm, a minimum TCD from the source is obtained, which is the minimum one

among all the possible TCDs from this given source node. If we start a broadcast from an eye of a

mesh and follow the optimal TCD algorithm, an optimal TCD is obtained, which is the minimum one

among TCDs for all the possible source nodes.

In summary, our approach is surprisingly simple. For any given source node, the time-step optimal

broadcast that achieves a minimum TCD always forwards the broadcast message to several �xed loca-

tions (eyes) in a prede�ned order. This process is independent of the location of the source. When a

given source node is an eye itself, the corresponding broadcast generates an optimal TCD.

There are several related work, but they focus on either broadcasting under the all-port model which

supports simultaneous send and receive to and from all neighbors [17] and [18] or di�erent communica-

tion patterns such as complete exchange [16] or all-to-all personalized exchnage [15]. Most of these work

focus on minimizing time-step since it is no longer a trivial problem without considering minimizing

total communication distance. The only previous work that considers minimizing total communication

distance is the one by Wojciechowska [19], however, the source of broadcasting is restricted to a corner

of a 2-D mesh.

The remainder of the paper is organized as follows. Section 2 introduces necessary notations and

preliminaries, where the concept of eyes in a 2-D mesh is reviewed. Both the minimum TCD broadcast

algorithm and the optimal TCD broadcast algorithm in a 2-D mesh are also reviewed. Section 3 provides

our major results on TCDs for 3-D meshes, where the eyes of a 3-D mesh are de�ned, a minimum TCD

broadcast algorithm and an optimal TCD broadcast algorithm in a 3-D mesh are proposed. A closed

form expression for the optimal TCD in a 3-D mesh is provided. In Section 4, we conclude this paper

and discuss possible future work. The proof of a major result (Theorem 3) is included in the Appendix

of the paper.
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Figure 1: (a) Broadcast in a 2 � 2 mesh. (b) Broadcast in a 4 � 4 mesh. (c) Broadcast in an 8 � 8

mesh.

2 Preliminaries

In this section, we brie
y review the major result in [1], which is about minimizing total communication

distance (TCD) of a time-step optimal broadcast in 2-D meshes. For a given n� n mesh with n = 2k,

we assume that the distance between any two adjacent nodes is one. The location of a node in a mesh

is denoted by a pair of coordinates (x; y), where x; y = 0; 1; 2; :::; n � 1. A node N at (x; y) is denoted

by N(x; y). The origin of the coordinate system is the upper-left corner of the mesh, as shown in Fig.1.

Denote D2
k(x; y) or D2

k(S) as the TCD of a broadcast algorithm originated from a source node

S(x; y) in a 2k � 2k mesh and MD2
k(x; y) or MD2

k(S) as the minimum TCD originated from a source

node S(x; y) among all the possible broadcast algorithms. Obviously, MD2
k(x; y) = minfD2

k(x; y)g.

Denote OD2
k as the optimal TCD in a 2k � 2k mesh. Clearly, OD2

k = minfMD2
k(x; y)g. Denote FD as

the communication distance in the �rst step of a broadcast, SD as the total communication distance in

the second step, and RD as the total communication distance in the remaining steps. Obviously, for a

given source node S(x; y) in a mesh, D2
k(x; y) = FD + SD + RD is the basic formula to calculate the

TCD for a particular broadcast algorithm.

For example, Figs.1(a), (b), and (c) show the processes of broadcast starting from node S(0; 0) in

a 2 � 2 mesh, a 4 � 4 mesh, and an 8 � 8 mesh, respectively. Arrows 1 and 2 represent the �rst and

second steps of broadcast, respectively. In Fig.1(a), the TCD is D2
1(0; 0) = FD+SD = 1+(1+1) = 3.

Obviously, the same result will be obtained wherever the broadcast starts in this mesh. This means

that OD2
1 =MD2

1(x; y) = D2
1(x; y) = 3, where x, y = 0 or 1. In Fig.1(b), FD = 2, SD = 2+2 = 4, and

RD = 3+3+3+3 = 12. Therefore, the TCD is D2
2(0; 0) = FD+SD+RD = 2+4+12 = 18. D2

2(0; 0) =

18 turns out to be the minimum TCD by comparing it with results of all the other arrangements; that

is,MD2
2(0; 0) = 18. The minimum TCDs for other nodes in the 4�4 mesh can be easily obtained in the

same way, MD2
2(1; 0) = 1+(2+2)+(3+3+3+3) = 17, MD2

2(0; 1) = 2+(1+1)+(3+3+3+3) = 16,

and MD2
2(1; 1) = 1 + (1 + 1) + (3 + 3 + 3 + 3) = 15. Obviously, when the source node is at (1; 1),

OD2
2 =MD2

2(1; 1) = 15. In Fig.1(c), FD = 7, SD = 6+3 = 9, and RD =MD2
2(0; 0)+3�MD2

2(1; 1) =
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Figure 2: The recursive de�nition of eyes of (a) a 2 � 2 mesh, (b) a 4 � 4 mesh, (c) an 8 � 8 mesh,

and (d) a 2k � 2k mesh.

18+3� 15 = 63. Therefore, the TCD is D2
3(0; 0) = FD+SD+RD = 7+9+63 = 79. This is actually

the best solution for a corner node, i.e., MD2
3(0; 0) = 79. It is not di�cult to determine that the optimal

TCD for an 8� 8 mesh is 69 when the source node is at (2; 2), i.e., OD2
3 =MD2

3(2; 2) = 69.

2.1 Eyes of a 2-D mesh

De�nition 1[1]: There are four eyes in a 2k � 2k mesh, labeled as E2
k(i), i = 1; 2; 3; 4. These eyes are

recursively de�ned as follows: All four nodes in a 2 � 2 mesh are eyes, E2
1(i), i = 1; 2; 3; 4, as shown

in Fig.2(a). A 2k � 2k mesh is partitioned into four 2k�1 � 2k�1 submeshes, each of which has four

eyes, E(i)2k�1(j), i; j = 1; 2; 3; 4. Eyes, E2
k(i), are selected from sixteen E(i)2k�1(j)s. Speci�cally, E

2
k(i),

i = 1; 2; 3; 4, belong to the upper-left, upper-right, lower-left, and lower-right submesh, respectively, and

they are the four E(i)2k�1(j)s that are the closest to the center of the 2k � 2k mesh among the sixteen

E(i)2k�1(j)s, as shown in Fig.2(d).

For example, the inner four nodes of a 4� 4 mesh as shown in Fig.2(b) are eyes, E2
2(i), i = 1; 2; 3; 4.

Fig.2(c) shows four eyes of an 8 � 8 mesh, E2
3(i), i = 1; 2; 3; 4. We denote i = 1; 2; 3; 4 as the indices

of the upper-left, upper-right, lower-left, and lower-right submeshes and eyes, respectively. We also use

E2
k to represent E2

k(i) to simplify our notation when there is no need to distinguish these four eyes.

De�ne the square, formed by four eyes E2
k(i) of a 2

k � 2k mesh as its four corners, as the eye-square

of the 2k � 2k mesh. Denote ak as the length of the side of this eye-square. Denote (xk(i); yk(i)), as the

coordinates of E2
k(i), i = 1; 2; 3; 4, respectively. ak is calculated by

ak =
1

3
[2k � (�1)k] ; k � 1 : (1)
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For example, a1 = 1, a2 = 1, a3 = 3, a4 = 5, and a5 = 11, etc. Using Eq.(1), we can easily determine

locations of four eyes of a given 2k � 2k mesh. Speci�cally,

xk(1; 3) =
1
6 [2

k+1 + (�1)k]� 1
2 ; yk(1; 2) = xk(1);

xk(2; 4) =
1
6 [2

k+2 � (�1)k]� 1
2 ; yk(3; 4) = xk(2) :

For example, the coordinates of four eyes of a 2 � 2 mesh are (0; 0), (1; 0), (0; 1), and (1; 1). The

coordinates of four eyes of a 4� 4 mesh are (1; 1), (2; 1), (1; 2), and (2; 2). The coordinates of four eyes

of an 8� 8 mesh are (2; 2), (5; 2), (2; 5), and (5; 5).

2.2 Minimum TCD broadcast algorithm in a 2-D mesh

Algorithm 1: (Minimum TCD broadcast algorithm for a given source node S in a 2k � 2k mesh)

1. Divide the given 2k � 2k mesh into four 2k�1 � 2k�1 submeshes. Rotate the mesh, if necessary,

until source node S is in the upper-left submesh, as shown in Fig.2(d).

2. The source node sends the message to the upper-right eye E2
k(2) in the �rst step.

3. In the second step, E2
k(2) sends the message to the lower-right eye E2

k(4), as shown in Fig.2(d),

and the source node sends the message to either the lower-left eye E2
k(3) or E(3)

2
k�1(1) depending

on which one is closer to the source node. That is, if the source node is in the right-half region of

the submesh, it sends the message to E2
k(3), as shown in Fig.2(d); if it is in the left-half region of

the submesh, it sends the message to E(3)2k�1(1).

4. In the remaining steps, the four submeshes deliver the message within their own submeshes of the

next level following the above procedure. In this way the message is delivered down to submeshes

level by level until reaching the unit meshes, 2� 2 meshes, and all these unit meshes complete the

broadcast within themselves in two steps, as shown in Fig.1(a).

Algorithm 1 [1] is a minimum TCD broadcast algorithm in a 2-D mesh and the following two major

results are also shown in [1]:

1. If the source node is an eye of the mesh, the TCD obtained by applying Algorithm 1 is the minimum

among results obtained by applying Algorithm 1 to all the possible source nodes.

2. The TCD obtained by applying Algorithm 1 is the minimum TCD for a given source node.

In an n � n mesh (n = 2k), the optimal TCD is de�ned as OD2
k = minfMD2

k(x; y)g. where

1 � x; y � n � 1. The optimal TCD broadcast algorithm for a 2k � 2k mesh is just a special case of

Algorithm 1, in which the broadcast originates from an eye of a mesh. Base on the above two major

results, the TCD obtained by applying Algorithm 1 to an eye of the mesh is the optimal TCD, i.e.,
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OD2
k = MD2

k(Ek) = minfMD2
k(x; y)g. In the remaining of the paper, we use MD2

k(E
2
k) to represent

the optimal TCD. The recursive formula for MD2
k(E

2
k) is:

MD2
k(E

2
k) = 3ak + 4MD2

k�1(E
2
k�1) (2)

where MD2
1(E

2
1) = 3. The optimal TCD of a 2k � 2k mesh can be calculated by

MD2
k(E

2
k) =

1

5
[3� 22k+1 � (�1)k]� 2k; k � 1 : (3)

For example, MD2
1(E

2
1) = 3, MD2

2(E
2
2) = 15, MD2

3(E
2
3) = 69, MD2

4(E
2
4) = 291, andMD2

5(E
2
5) = 1197.

3 Minimizing TCD of a Time-Step Optimal Broadcast

in a 3-D Mesh

In this section, we discuss time-step optimal broadcasting with minimum TCD in a 3-D mesh by

extending the results for a 2-D mesh to a 3-D mesh. A 2k � 2k � 2k mesh is also called a 3-dimensional

2k mesh, or simply a 3-D 2k mesh. The eyes of a 3-D 2k mesh are de�ned in the following subsection.

3.1 Eyes of a 3-D mesh

For a given 3-D 2k mesh, we assume that the distance between any two adjacent nodes is one. The

location of a node in a 3-D mesh is denoted by a set of coordinates (x; y; z), where x; y; z = 0; 1; 2; :::; 2k�

1. Without loss of generality, the origin of the x � y � z coordinate system is assumed to be a corner

node of the mesh, as shown in Fig.3. A node N at (x; y; z) is denoted by N(x; y; z).

De�nition 2: There are 23 = 8 eyes in a 3-D 2k mesh, labeled as E3
k(i), where i = 1; 2; : : : ; 8 are

called the indices of 8 eyes. These eyes are recursively de�ned as follows: All 8 nodes of a 3-D 21 mesh

(i.e., 2 � 2 � 2 mesh) are eyes, E3
1(i), as shown in Fig.3(a). A 3-D 2k mesh is partitioned into 8 3-D

2k�1 submeshes, each is labeled as the ith submesh where the eye E3
k(i) locates, and i = 1; 2; : : : ; 8 are

also called the indices of eight submeshes. Each submesh has 8 eyes, E(i)3k�1(j), i; j = 1; 2; : : : ; 8. Eyes

E3
k(i) are selected from totally 8 � 8 = 64 E(j)3k�1(i)s. Speci�cally, eyes E3

k(i) are the 8 E(j)3k�1(i)s

that are the closest to the center of the 3-D 2k mesh, as shown in Fig.3(c).

For example, a 3-D 22 mesh (i.e., 4� 4� 4 mesh) consists of 23 = 8 3-D 21 submeshes (i.e., 2� 2� 2

submeshes), each of which has 8 eyes, E(j)31(i)s, i; j = 1; 2; : : : ; 8. Among these 8 � 8 = 64 E(j)31(i)s,

the inner 8 ones, which are the closest to the center of the 3-D 22 mesh, are the eyes of the 3-D 22 mesh,

E3
2(i), as shown in Fig.3(b). We also use E3

k to represent E3
k(i)s to simplify our notation when there is

no need to distinguish these 8 eyes.

De�nition 3: De�ne the cube, formed by eight eyes E3
k(i) of a 3-D 2k mesh as its eight corners,

as the eye-cube in the 3-D 2k mesh. Denote a3k as the length of the side of this eye-cube. Denote

(xk(i); yk(i); zk(i)), i = 1; 2; : : : ; 8, as the coordinates of eight E3
k(i), respectively.
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Figure 3: The recursive de�nition of eyes of (a) a 2 � 2 � 2 mesh, (b) a 4 � 4 � 4 mesh, and (c) a

2k � 2k � 2k mesh.

Obviously, the length of the side of the eye-cube in the 3-D 2k mesh is equal to the length of the

side of the eye-square of the 2k � 2k mesh, which is calculated by Eq.(1). Therefore, the length of the

side of the eye-cube can be calculated by

a3k =
1

3
[2k � (�1)k] ; k � 1 : (4)

Using Eq.(4), we can easily determine the locations of eight eyes of a given 3-D 2k mesh. Speci�cally,

xk(1; 3; 5; 7) =
1
6 [2

k+1 + (�1)k]� 1
2 ; yk(1; 2; 3; 4) = xk(1); zk(1; 2; 5; 6) = xk(1);

xk(2; 4; 6; 8) =
1
6 [2

k+2 � (�1)k]� 1
2 ; yk(5; 6; 7; 8) = xk(2); zk(3; 4; 7; 8) = xk(2) :

For example, the coordinates of eight eyes of a 2 � 2 � 2 mesh are (0; 0; 0), (1; 0; 0), (0; 0; 1), (1; 0; 1),

(0; 1; 0), (1; 1; 0), (0; 1; 1), and (1; 1; 1) (see Fig.3(a)). The coordinates of eight eyes of a 4 � 4 � 4

mesh are (1; 1; 1), (2; 1; 1), (1; 1; 2), (2; 1; 2), (1; 2; 1), (2; 2; 1), (1; 2; 2), and (2; 2; 2) (see Fig.3(b)). The

coordinates of eight eyes of an 8 � 8 � 8 mesh are (2; 2; 2), (5; 2; 2), (2; 2; 5), (5; 2; 5), (2; 5; 2), (5; 5; 2),

(2; 5; 5), and (5; 5; 5).

Because the eyes of a 3-D 2k mesh are recursively de�ned, the x� y � z coordinate system, a �xed

coordinate system, is inconvenient for the proposed broadcast algorithm (Algorithm 2). Therefore,

we use a set of relative coordinate systems. In a 3-D 2k mesh, the uk � vk � wk coordinate system

is used, as shown in Fig.4(a). Without loss of generality, the origin of the uk � vk � wk coordinate

system is assumed to be the eye E3
k(1) of the 3-D 2k mesh, and the uk, vk and wk axes satisfy the

right-hand screw rule, as shown in Fig.4(a). A node N at (uk; vk; wk) is denoted by N(uk; vk; wk),
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Figure 4: (a) The uk � vk �wk coordinate system of a 3-D 2k mesh. (b) Four cubic regions in the 1st

submesh of a 3-D 2k mesh.

where uk, vk and wk are integers. Each of the eight 3-D 2k�1 submeshes has its own coordinate system,

uk�1(i)� vk�1(i)� wk�1(i), i = 1; 2; : : : ; 8, with E3
k(i) as its origin (see Fig.4(a)).

De�nition 4: Denote D3
k(uk; vk; wk) or D

3
k(S) as the TCD of a broadcast algorithm originated from

a source node S(uk; vk; wk) in a 3-D 2k mesh and MD3
k(uk; vk; wk) or MD3

k(S) as the minimum TCD

originated from a source node S(uk; vk; wk) among all the possible broadcast algorithms. Obviously,

MD3
k(uk; vk; wk) = minfD3

k(uk; vk; wk)g. Denote OD3
k as the optimal TCD for a 3-D 2k mesh. Obvi-

ously, OD3
k = minfMD3

k(uk; vk; wk)g.

In the subsequent discussion, superscript 3, representing 3-dimensional space, will be omitted in the

notation of a3k, E
3
k, D

3
k, MD3

k, and OD3
k, etc, unless there is a need to distinguish them from the ones

in a 2-D mesh.

De�nition 5: Denote FD as the communication distance in the �rst step of a broadcast, SD as the

total communication distance in the second step, TD as the total communication distance in the third

step, and RD as the total communication distance in the remaining steps.

For a given source node S(uk; vk; wk) in a 3-D mesh, di�erent algorithms would lead to di�erent sets

of FD, SD, TD and RD. However,

Dk(x; y) = FD + SD + TD +RD (5)

can be used to calculate the TCD for a particular broadcast algorithm in a 3-D mesh. Note that each

submesh has exactly three adjacent submeshes, one along each direction in the uk � vk �wk coordinate

system. Without loss of generality, we assume that the �rst, second, and third step of broadcast sends

the message to a node in an adjacent submesh along the uk, vk, and wk direction, respectively.
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Fig.3(a) shows an example of a broadcast starting from node S(0; 0; 0) in a 2� 2� 2 mesh (3-D unit

mesh). Arrows 1, 2, and 3 represent the �rst, second, and third step of broadcast, respectively. The

broadcast takes three steps to complete the broadcast with each step responsible for one dimension and

the number of the nodes to be delivered doubles after each step. The TCD of this case is calculated by

D1(0; 0; 0) = FD + SD + TD = 20 + 21 + 22 = 7. Obviously, we will obtain the same result starting

from any node in this 2� 2� 2 mesh. This means that OD1 =MD1(u; v; w) = D1(0; 0; 0) = 7.

The following example shows a way to obtain an optimal TCD among all the possible source nodes

in a 4 � 4 � 4 mesh. We calculate the minimum TCD for each node in a 4 � 4 � 4 mesh and place

results in matrices, as shown in Fig.5. There are four matrices in Fig.5, each of which corresponds to

a 4 � 4 mesh in a 2-D plane, as shown in Fig.3(b). Speci�cally, Figs.5(a), (b), (c), and (d) show the

results of a 4 � 4 mesh in y = 0, y = 1, y = 2, and y = 3 plane, respectively. Within these matrices,

the number at a particular position represents the minimum TCD if the broadcast starts from this

position (node). Clearly, OD2 =MD2(x; y; z) = 63 (in the x� y� z coordinate system), where (x; y; z)

represents (1; 1; 1), (2; 1; 1), (1; 1; 2), (2; 1; 2), (1; 2; 1), (2; 2; 1), (1; 2; 2), and (2; 2; 2), respectively (each

number with an underline in matrices). Note that these 8 locations belong to eight di�erent submeshes.

In addition, these locations are exactly the locations of eyes of the mesh! We will show that seven of

these eyes should be the destination nodes in the �rst three steps of broadcast in order to achieve a

minimum or an optimal broadcast.

3.2 Minimum TCD broadcast algorithm for a given source node in a 3-D mesh

In this subsection, we propose a minimum TCD broadcast algorithm (Algorithm 2) in a 3-D mesh and

the general expression of the TCD obtained from this algorithm. We also show later in Theorem 3 that

the TCD obtained from this algorithm is the minimum TCD for a given source node in a 3-D mesh. If

the source node is an eye, the TCD obtained is the optimal TCD.
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Algorithm 2: (Minimum TCD broadcast algorithm for a given source node S in a 3-D 2k mesh)

1. Divide the given 3-D 2k mesh into eight 3-D 2k�1 submeshes. Rotate the mesh, if necessary, until

source node S is in the 1st submesh (where Ek(1) is located), as shown in Fig.6(a).

2. In the �rst step, source node S sends the message to eye Ek(2).

3. In the second step,

� Source node S sends the message to either eye Ek(3) or E(3)k�1(5) (an eye in the 3rd

submesh), depending on which one is closer to the source node. In other word, if source node

S is in region (I) or (II) of the 1st submesh (see Fig.4(b)), it sends the message to Ek(3), as

shown in Fig.6(a); if it is in region (III) or (IV) of the 1st submesh (see Fig.4(b)), it sends

the message to E(3)k�1(5), as shown in Fig.6(b).

� Ek(2) sends the message to eye Ek(4), as shown in Fig.6(a).

4. In the third step,

� Source node S sends the message to one of the eyes E(5)k�1(1), E(5)k�1(2), E(5)k�1(3), and

E(5)k�1(4) = Ek(5) depending on which one is closer to the source node. In other word, if

source node S is in region (IV), (II), (III), or (I) of the 1st submesh (see Fig.4(b)), it sends

the message to E(5)k�1(1), E(5)k�1(2), E(5)k�1(3), or E(5)k�1(4) = Ek(5), respectively.

� Ek(2) sends the message to eye Ek(6).

� If it is Ek(3) that receives the message from source node S in the second step, Ek(3) sends

the message to Ek(7) in this step. If it is E(3)k�1(5) that receives the message from source

node S in the second step, E(3)k�1(5) sends the message to E(7)k�1(1) in this step.

� Ek(4) sends the message to eye Ek(8), as shown in Fig.6(a).

5. In the remaining steps, the eight submeshes deliver the message within their own submeshes of

the next level following the above procedure (each submesh has its own eight eyes). In this way

the message is delivered down to submeshes level by level until reaching the unit meshes, 2�2�2

meshes, and all these unit meshes complete the broadcast within themselves in three steps, as

shown in Fig.3(a).

Based on the de�nition of eyes, each node in a given mesh is an eye of exactly one submesh (including

the given mesh). Each eye will be visited exactly once in Algorithm 2.

Source node S in Algorithm 2 can be any node in the mesh. One special case of Algorithm 2 is

that source node S is an eye of the mesh, say, Ek(1). In this case, source node, S(0; 0; 0) = Ek(1),

sends the message to Ek(2) in the �rst step of Algorithm 2, with FD = ak. In the second step of

Algorithm 2, source node S doesn't need to compare Ek(3) and E(3)k�1(5) to determine which one is

closer to it, it just sends the message to Ek(3). In this step, SD = ak + ak = 2ak. In the third step

of Algorithm 2, source node S doesn't need to choose a destination node from E(5)k�1(1), E(5)k�1(2),

E(5)k�1(3), and E(5)k�1(4) = Ek(5), it just sends the message to Ek(5). Meanwhile, Ek(3) sends
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the message to Ek(7). In this step, TD = ak + ak + ak + ak = 4ak. In the remaining steps, the

eight submeshes deliver the message within their own submeshes following the above procedure with

RD = 8Dk�1(Ek�1). Therefore, according to Eq.(5), Dk(Ek), the TCD obtained from Algoritm 2 with

source node S = Ek(1), can be calculated by the following recursive formula

Dk(Ek) = 7ak + 8Dk�1(Ek�1): (6)

We will show later in Theorem 4 that this Dk(Ek) corresponds to the minimum TCD, MDk(Ek), and

the optimal TCD, ODk, in a 3-D mesh.

The general expression of Dk(S) is very complex because Dk(S) varies with the location of source

node S(uk; vk; wk) in the 1st submesh. Based on Algorithm 2, we can divide the 1st submesh into nine

di�erent cubic regions as shown in Fig.7, which lead to nine di�erent expressions for Dk(S). These

cubic regions are marked from (i) to (ix) (see Fig.7) and they are delimited as follows:

(i) : (�ak=2 < uk � 0) ^ (�ak=2 < vk � 0)

(ii) : (�ak=2 < uk � 0) ^ (0 < vk � ak�1=2)

(iii) : (�ak=2 < uk � 0) ^ (ak�1=2 < vk � 2k�1 � 1� ak=2)

(iv) : (0 < uk � ak�1=2) ^ (�ak=2 < vk � 0)

(v) : (0 < uk � ak�1=2) ^ (0 < vk � ak�1=2)

(vi) : (0 < uk � ak�1=2) ^ (ak�1=2 < vk � 2k�1 � 1� ak=2)

(vii) : (ak�1=2 < uk � 2k�1 � 1� ak=2) ^ (�ak=2 < vk � 0)

(viii) : (ak�1=2 < uk � 2k�1 � 1� ak=2) ^ (0 < vk � ak�1=2)

(ix) : (ak�1=2 < uk � 2k�1 � 1� ak=2) ^ (ak�1=2 < vk � 2k�1 � 1� ak=2)

with �ak=2 < wk � 2k�1 � 1� ak=2 for all the nine cubic regions.

For example, when S(uk; vk; wk) is in cubic region (iii) of Fig.7, source node S sends the message

to Ek(2) in the �rst step; source node S sends the message to Ek(3) and Ek(2) sends the message to

Ek(4) in the second step; source node S sends the message to E(5)k�1(2), Ek(2) sends the message to

Ek(6), Ek(3) sends the message to Ek(7), and Ek(4) sends the message to Ek(8) in the third step, as

shown in Fig.6(a). But when S(uk; vk; wk) is in cubic region (viii) of Fig.7, source node S sends the

message to Ek(2) in the �rst step; source node S sends the message to E(3)k�1(5) and Ek(2) sends the

message to Ek(4) in the second step; source node S sends the message to E(5)k�1(3), Ek(2) sends the

message to Ek(6), E(3)k�1(5) sends the message to E(7)k�1(1), Ek(4) sends the message to Ek(8) in

the third step, as shown in Fig.6(b). Obviously, these two cases correspond to two di�erent expressions

for Dk(S). Overall, for all these nine cubic regions, we have the following theorem.

Theorem 1: Apply Algorithm 2 to any source node S(uk; vk; wk), the TCD obtained can be expressed

as follows:
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Figure 6: The �rst three steps of Algorithm 2 when (a) S is in the right-half of the submesh, (b) S is

in the left-half of the submesh.

Dk(S) =

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

�(uk + vk) + 2jwkj+ wk + [7ak +Dk�1(S) + 7Dk�1(Ek�1)] (i)

�uk + 3vk + 2jwkj+ wk + [7ak +Dk�1(S) + 7Dk�1(Ek�1)] (ii)

�uk + 2vk + jvk � ak�1j+ 2jwkj+ wk + [7ak +Dk�1(S) + 7Dk�1(Ek�1)] (iii)

3uk � vk + 2jwkj+ wk + [7ak +Dk�1(S) + 7Dk�1(Ek�1)] (iv)

3uk + 3vk + 2jwkj+ wk + [7ak +Dk�1(S) + 7Dk�1(Ek�1)] (v)

3uk + 2vk + jvk � ak�1j+ 2jwkj+ wk + [7ak +Dk�1(S) + 7Dk�1(Ek�1)] (vi)

uk + 2juk � ak�1j � vk + 2jwkj+ wk + [7ak +Dk�1(S) + 7Dk�1(Ek�1)] (vii)

uk + 2juk � ak�1j+ 3vk + 2jwkj+ wk + [7ak +Dk�1(S) + 7Dk�1(Ek�1)] (viii)

uk + 2juk � ak�1j+ 2vk + jvk � ak�1j+ 2jwkj+ wk + [7ak +Dk�1(S) + 7Dk�1(Ek�1)] (ix)

The proof of Theorem 1 is in Appendix A. Obviously, these Dk(S)s are too complex. To simplify

them, we introduce a mapping function, denoted as fk(uk; vk; wk), or simply fk(S). With this function,

we can use one general expression to represent these Dk(S)s.

De�nition 6: De�ne function
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Figure 7: Nine cubic regions in the 1st submesh of a 3-D 2k mesh.

fk(uk; vk; wk) =

8>>>>>>>>><
>>>>>>>>>:

2jukj+ uk + 2jvkj+ vk + 2jwkj+wk (I )

2jukj+ uk + 2jvkj+ jvk � ak�1j+ 2jwkj+ wk (II )

jukj+ 2juk � ak�1j+ 2jvkj+ vk + 2jwkj+ wk (III )

jukj+ 2juk � ak�1j+ 2jvkj+ jvk � ak�1j+ 2jwkj+wk (IV )

(7)

in a 3-D 2k mesh where (I), (II), (III), and (IV) represent the lower-right, upper-right, lower-left, and

upper-left cubic region of the 1st submesh, respectively, as shown in Fig.4(b), and they are delimited as

follows:

(I) : (�ak=2 < uk � ak�1=2) ^ (�ak=2 < vk � ak�1=2)

(II) : (�ak=2 < uk � ak�1=2) ^ (ak�1=2 < vk � 2k�1 � 1� ak=2)

(III) : (ak�1=2 < uk � 2k�1 � 1� ak=2) ^ (�ak=2 < vk � ak�1=2)

(IV ) : (ak�1=2 < uk � 2k�1 � 1� ak=2) ^ (ak�1=2 < vk � 2k�1 � 1� ak=2)

with �ak=2 < wk � 2k�1 � 1� ak=2 for all the four cubic regions.

By comparing Eq. (7) with the nine Dk(S)s discussed above, we have the following lemma.

Lemma 1: The Dk(S) obtained from Algorithm 2 for a given source node S(uk; vk; wk) in a 3-D 2k

mesh can be calculated by a general formula:

Dk(S) = fk(uk; vk; wk) + [7ak +Dk�1(S) + 7Dk�1(Ek�1)]: (8)
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There are two important properties of function fk(uk; vk; wk):

1. Function fk(uk; vk; wk) is always greater than or equal to zero, i.e.,

fk(uk; vk; wk) � 0: (9)

This is because that terms 2jukj+uk, 2jvkj+ vk and 2jwkj+wk in Eq.(7) are always nonnegative.

2. The only condition for fk(uk; vk; wk) = 0 is when S(uk; vk; vk) = Ek. In this case, Eq.(8) becomes

Dk(Ek) = 7ak + 8Dk�1(Ek�1), which is exactly the same as Eq.(6).

The use of function fk(uk; vk; wk) not only simpli�es the expression of Dk(S) but also establishes

the relationship between Dk(S) and Dk(Ek) (this is important because we have an exact formula for

Dk(Ek), see Eq.(13), in the next subsection). By comparing Eqs.(6) and (8), it is easy to see that

Dk(S)�Dk(Ek) = fk(S) +Dk�1(S)�Dk�1(Ek�1): (10)

By repeatedly substitutingDk�1(S) and Dk�1(Ek�1) into Eq.(10) by using Eqs.(6) and (8), respectively,

we have the following lemma.

Lemma 2: The Dk(S) obtained from Algorithm 2 for a given source node S(uk; vk; wk) in a 3-D 2k

mesh can be calculated in terms of fk(uk; vk; wk) ( or simply fk(S) ) and Dk(Ek):

Dk(S) =
kX

i=2

fi(S) +Dk(Ek): (11)

Lemma 2 immediately leads to the following theorem.

Theorem 2: If the source node is an eye of the mesh, the TCD obtained by Algorithm 2 is the

minimum one among results obtained by applying Algorithm 2 to all the possible source nodes.

Proof: According to Eq.(9), each fi(S) in Eq.(11) is greater than or equal to zero. Therefore,

Dk(S) � Dk(Ek);

where the equal sign is taken only when S(uk; vk; wk) = Ek. Thus, Theorem 2 is true. 2

The following theorem shows that Algorithm 2 is the best possible broadcast algorithm.

Theorem 3: The TCD obtained from Algorithm 2 is the minimum TCD for a given source node in

a 3-D mesh.

The proof of Theorem 3 is lengthy and is placed in the Appendix B.

3.3 Optimal TCD broadcast algorithm for a 3-D mesh

In the previous subsection, we discuss the minimum TCD broadcast algorithm in a 3-D mesh, which

generates a minimum TCD for a given source node (i.e., generates an optimal TCD for that particular
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source node). In this subsection, we propose an optimal TCD broadcast algorithm (Algorithm 3) for

a 3-D mesh which guarantees that the TCD generated by this algorithm is the optimal one among all

the possible minimum TCDs in the mesh.

Algorithm 3: (Optimal TCD broadcast algorithm for a 3-D 2k mesh)

Start a broadcast from an eye, say Ek(1), of a 3-D mesh and follow Algorithm 2 except for the second

and third steps. In the second step, source node Ek(1) sends the message to eye Ek(3) directly. In the

third step, source node Ek(1) sends the message to eye Ek(5) directly and Ek(3) sends the message to

Ek(7).

Theorem 4: The TCD obtained from Algorithm 3 is the optimal TCD, i.e., ODk = MDk(Ek) =

minfMDk(S)g.

Proof: Theorem 4 can be directly derived from Theorems 1 and 2. 2

In fact, the optimal TCD broadcast algorithm for a 3-D 2k mesh is just a special case of Algorithm 2,

in which the broadcast originates from an eye of the mesh. This special case is discussed in the previous

subsection. Therefore, Eq.(6) can be used as the recursive formula of the optimal TCD of a 3-D mesh,

i.e.,

ODk = MDk(Ek) = 7ak + 8MDk�1(Ek�1): (12)

where MD1(E1) = 3. The exact expression of ODk is given by the following theorem.

Theorem 5: The optimal TCD of a 3-D 2k mesh can be calculated by

ODk = MDk(Ek) =
7

27
[23k+2 � (�1)k � 3� 2k]; k � 1 : (13)

For example, OD1 = MD1(E1) = 7, OD2 = MD2(E2) = 63, OD3 = MD3(E3) = 525, and

OD4 =MD4(E4) = 4235, etc. The proof of Theorem 5 can be found in [1].

4 Minimizing TCD of a Time-Step Optimal Broadcast

in a d-D Mesh

In this section, we outline possible extensions of the results for 2-D meshes to d-dimensional (d-D)

meshes. A

dz }| {
2k � 2k � : : :� 2k mesh is also called a d-D 2k mesh, or simply a d-D 2k mesh. The

de�nition of an eye in a d-D 2k mesh is de�ned as follows:

De�nition 7: There are 2d eyes in a d-D 2k mesh, labeled as Ed
k(i), 0 � i � 2d � 1. These eyes

are recursively de�ned as follows: All 2d nodes of a d-D 21 mesh are eyes, Ed
1 (i). A d-D 2k mesh is
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partitioned into 2d d-D 2k�1 submeshes, each of which has 2d eyes, Ed
k�1(i). Eyes Ed

k(i) are selected

from 22d Ed
k�1(i)s. Speci�cally, eyes E

d
k(i) are the 2d Ed

k�1(i)s that are the closest to the center of the

d-D 2k mesh.

For example, a d-D 22 mesh consists of 2d d-D 21 submeshes, each of which has 2d Ed
1 (i)s, 0 � i �

2d � 1. Among these 22d Ed
1 (i)s, the inner 2d ones, which are the closest to the center of the d-D 22

mesh, are the eyes of the d-D 22 mesh, Ed
2 (i). We use Ed

k to represent Ed
k(i) to simplify our notation.

Here we restrict our attention only to the cases where the source node is an eye of a d-D 2k mesh.

De�nition 8: Denote MDd
k(Ek) as the minimum TCD for a d-D 2k mesh to complete a broadcast

from an eye.

The optimal TCD broadcast takes three steps to complete the broadcast in a 3-D mesh with each

step responsible for one dimension and the number of the nodes to be delivered doubles in each step.

Using the same way for a d-D unit mesh, we can deduce that it takes d steps to complete a broadcast

in a d-D unit mesh. The optimal TCD is

MDd
1(E1) =

d�1X
i=0

2i = 2d � 1: (14)

We can extend our optimal TCD algorithm for a 2-D mesh to a d-D mesh. In a d-D 2k mesh, it

needs totally log nd = dk steps to complete a broadcast. We divide these dk steps into k phases, each of

which consists of d steps. In the �rst phase, the �rst d steps are for the broadcast among all the 2d eyes

of d-D 2k meshes. In the second phase, the next d steps are for the broadcast among all the 22d eyes of

2d d-D 2k�1 submeshes. In the last phase (the kth phase), the last d steps are for the broadcast among

all the 2kd eyes of 2(k�1)d d-D 21 submeshes (unit meshes). If we start a broadcast from an eye of a d-D

mesh and follow the above extended algorithm, we will obtain an optimal TCD. Also, by extending

our minimum TCD algorithm for a 2-D mesh to a d-D mesh, we can obtain the minimum TCD for a

given source node.

The recursive formula for optimal TCD of a d-D 2k mesh is

MDd
k(Ek) =

d�1X
i=0

2iak + 2dMDd
k�1(Ek�1) = (2d � 1)ak + 2dMDd

k�1(Ek�1); (15)

where k � 2 and MDd
1(E1) is given by Eq.(14).

Theorem 6: The optimal TCD of a d-D 2k mesh can be calculated by

MDd
k(Ek) =

2d � 1

3(2d + 1)(2d�1 � 1)
[3� 2d(k+1)�1 � (�1)k(2d�1 � 1)� 2k(2d + 1)]; (16)

where k; d � 1.

The proof of Theorem 6 is shown in the Appendix C.
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5 Conclusion

In this paper we have studied the problem of minimizing total communication distance (TCD) of a

time-step optimal broadcast in a 3-D mesh. We have identi�ed a set of special nodes called eyes in a

given 3-D mesh. The divide-and-conquer approach is applied to achieve a minimum TCD broadcasting

where a given 3-D mesh is partitioned into eight submeshes of equal size. The source node sends the

broadcast message to an eye in each submesh. The optimization problem is then solved recursively in

each submesh. Speci�cally, we have proposed a minimum TCD broadcast algorithm for a given source

node in a 3-D mesh and an optimal TCD broadcast algorithm for a 3-D mesh. Both algorithms are

based on the idea of eyes. If we start a broadcast from a given source node and follow the minimum

TCD algorithm, a minimum TCD from the source is obtained, which is the minimum one among all

the possible TCDs for this given source node. If we start a broadcast from an eye of a mesh and follow

the optimal TCD algorithm, an optimal TCD is obtained, which is the minimum one among TCDs for

all the possible source nodes.

Our results can be easily extended to a 3-D torus. A torus is a special mesh in which the nodes

at the periphery are connected by wraparound connections. This means that each node in the torus is

identical, i.e., each node in a torus is an eye in the corresponding mesh. Therefore, no matter where

a broadcast in the torus is initiated, we can use the proposed optimal TCD algorithm for a 3-D mesh

and obtain an optimal TCD in a 3-D torus. Another possible future work is to extend our model to a

general d-dimensional mesh.
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Appendix A (Proof of Theorem 1)

The theorem can be proved by deriving expressions of Dk(S) for all the nine cubic regions of Fig.7.

Because the derivations for all the nine cubic regions are similar, we just show detailed derivations for

two regions.

First, we derive the expression of Dk(S) when S(uk; vk; wk) is in cubic region (iii) of Fig.7, where

�ak=2 < uk � 0, ak�1=2 < vk � 2k�1 � 1 � ak=2, and 0 < wk � 2k�1 � 1 � ak=2. Fig.6(a) shows

the �rst three steps of broadcast. Fig.8 also shows the �rst three steps of broadcast of this case but in
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Figure 8: The �rst three steps of Dk(S) when S(uk; vk; wk) is in cubic region (iii) of the 1st submesh.

a 2-D plane, in which Fig.8(a) shows the projection of Fig.6(a) along the +wk direction and Fig.8(b)

shows the projection of Fig.6(a) along the +uk direction. In Fig.8, only the nodes involved in the

�rst three steps of broadcast are drawn. Again, arrows 1, 2, and 3 represent the �rst, second, and

third steps of broadcast, respectively. In the �rst step, source node S sends the message to Ek(2)

with FD = ak + uk + vk + wk. In the second step, source node S sends the message to Ek(3) with

TCD = ak � uk + vk + wk. Meanwhile, Ek(2) sends the message to Ek(4) with TCD = ak. Therefore,

SD = 2ak � uk + vk + wk. In the third step, source node S sends the message to E(5)k�1(2) with

TCD = ak � uk + jvk � ak�1j + wk. Meanwhile, Ek(2) sends the message to Ek(6) with TCD = ak,

Ek(3) sends the message to Ek(7) with TCD = ak, Ek(4) sends the message to Ek(8) with TCD = ak.

Therefore, TD = 4ak � uk + jvk � ak�1j+ wk. After the �rst three steps, each eye (seven in all except

the one in the 1st submesh) has a copy of the broadcast message. This means that the TCD of the

remaining steps of the broadcast can be written as RD = Dk�1(S)+7Dk�1(Ek�1). Therefore, by using

Eq.(5), we have the expression of Dk(S) obtained from Algorithm 2 with source node S located in cubic

region (iii) of the 1st submesh (speci�cally, in cubic region (iii) where wk � 0),

Dk(S) = �uk + 2vk + jvk � ak�1j+ 3wk +Dk�1(S) + 7ak + 7Dk�1(Ek�1):

Second, we derive the expression of Dk(S) when S(uk; vk; wk) is in cubic region (viii) of Fig.7,

where ak�1=2 < uk � 2k�1 � 1 � ak=2, 0 < vk � ak�1=2, and �ak=2 < wk � 0. Fig.6(b) shows the

�rst three steps of broadcast. Fig.9 also shows the �rst three steps of broadcast of this case but in

a 2-D plane, in which Fig.9(a) shows the projection of Fig.6(b) along the +wk direction and Fig.9(b)

shows the projection of Fig.6(b) along the +uk direction. In Fig.9, only the nodes involved in the

�rst three steps of broadcast are drawn. Again, arrows 1, 2, and 3 represent the �rst, second, and

third steps of broadcast, respectively. In the �rst step, source node S sends the message to Ek(2) with

FD = ak + uk + vk � wk. In the second step, source node S sends the message to E(3)k�1(5) with
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Figure 9: The �rst three steps of Dk(S) when S(uk; vk; wk) is in cubic region (viii) of the 1st submesh.

TCD = ak + juk � ak�1j + vk � wk. Meanwhile, Ek(2) sends the message to Ek(4) with TCD = ak.

Therefore, SD = 2ak + juk � ak�1j + vk � wk. In the third step, source node S sends the message to

E(5)k�1(3) with TCD = ak+ juk�ak�1j+ vk+wk. Meanwhile, Ek(2) sends the message to Ek(6) with

TCD = ak, E(3)k�1(5) sends the message to E(7)k�1(1) with TCD = ak, Ek(4) sends the message to

Ek(8) with TCD = ak. Therefore, TD = 4ak + juk � ak�1j+ vk + wk. After the �rst three steps, each

eye (seven in all except the one in the 1st submesh) has a copy of the broadcast message. This means

that the TCD of the remaining steps of the broadcast can be written as RD = Dk�1(S)+7Dk�1(Ek�1).

Therefore, by using Eq.(5), we have the expression ofDk(S) obtained from Algorithm 2 with source node

S located in cubic region (viii) of the 1st submesh (speci�cally, in cubic region (viii) where wk � 0),

Dk(S) = uk + 2juk � ak�1j+ 3vk � wk +Dk�1(S) + 7ak + 7Dk�1(Ek�1):

By treating other seven cases in the same way, the expression of Dk(S) can be derived for each case.

Therefore, Theorem 1 is true. 2

Appendix B (Proof of Theorem 3)

We prove this theorem by mathematical induction on l in a 3-D 2l mesh. Assume that the source

node is represented by S. Theorem 3 can be proved by showing

Dl(S)
0 �Dl(S) � 0 (17)

for any integer l, where Dl(S) is the TCD obtained from Algorithm 2 and Dl(S)
0 is the TCD obtained

from an arbitrary broadcast algorithm.
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Figure 10: (a) Calculation of Dk(S)
0 in a 3-D 2k mesh. (b) fk�2(N2) in a 3-D 2k mesh.

� l = 1 : For l = 1, it is a 2� 2� 2 mesh (3-D unit mesh). Algorithm 2 is the only possible approach,

and hence, D1(S)
0 = D1(S) = 7 (see Section 3). Therefore, Theorem 3 is true for l = 1.

� l = k � 1 : Assume that Theorem 3 is true up to level l = k � 1, i.e., Dl(S)
0 � Dl(S) � 0,

1 � l � k � 1, and Dk�1(S) =MDk�1(S). We will show that Theorem 3 is also true for level l = k.

� l = k : For l = k, we need to prove

Dk(S)
0 �Dk(S) � 0: (18)

In order to prove Eq.(18), we need to determine Dk(S)
0 and Dk(S) �rst. For Dk(S)

0, assuming that

source node S(uk; vk; wk) is in the 1st submesh, the seven destination nodes of the �rst three steps of

broadcast are in other seven di�erent submeshes. Because Dk(S)
0 is for an arbitrarily selected broadcast

algorithm other than Algorithm 2, these seven destination nodes of the �rst three steps can be at any

locations in the corresponding submeshes. We denote these seven destination nodes of the �rst three

steps as Ni(uk�1(i); vk�1(i); wk�1(i)), i = 2; 3; 4; : : : ; 8, respectively, as shown in Figs.10(a), 11, 12, and

13. Note that the coordinates of these seven destination nodes are with respect to their own coordinate

systems, not with respect to the coordinate system of the 3-D 2k mesh. The coordinate system of each

3-D 2k�1 submesh is set up according to the convention in Fig.4(a).

Fig.10(a) shows the �rst three steps ofDk(S)
0 in a 3-D 2k mesh in a three-dimensional space. Figs.11,

12, and 13 show the �rst, second, and third steps of Dk(S)
0 of a 3-D 2k mesh in 2-D planes, respectively,

in which Figs.11(a), 12(a), and 13(a) show the projections of Fig.10(a) along the +wk direction and

Figs.11(b), 12(b), and 13(b) show the projections of Fig.10(a) along the +uk direction. In these �gures,

only the nodes involved in the corresponding steps of broadcast are drawn.

As shown in Figs.10(a) and 11, the �rst step of broadcast of Dk(S)
0 is from source node S(uk; vk; wk)
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Figure 11: The �rst step of broadcast of Dk(S)
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to N2(uk�1(2); vk�1(2); wk�1(2)) with

FD = ak + uk � uk�1(2) + jvk + vk�1(2)j + jwk + wk�1(2)j: (19)

The second step of broadcast of Dk(S)
0 is from S(uk; vk; wk) to N3(uk�1(3); vk�1(3); wk�1(3)) with

TCD = juk + uk�1(3)j+ ak + vk � vk�1(3) + jwk +wk�1(3)j, and from N2(uk�1(2); vk�1(2); wk�1(2)) to

N4(uk�1(4); vk�1(4); wk�1(4)) with TCD = juk�1(2) � wk�1(4)j + ak � vk�1(2)� vk�1(4) + jwk�1(2)�

uk�1(4)j, as shown in Figs.10(a) and 12. Therefore,

SD = juk + uk�1(3)j+ ak + vk � vk�1(3) + jwk + wk�1(3)j +

juk�1(2)� wk�1(4)j + ak � vk�1(2) � vk�1(4) + jwk�1(2)� uk�1(4)j: (20)

The third step of broadcast of Dk(S)
0 is from S(uk; vk; wk) to N5(uk�1(5); vk�1(5); wk�1(5)) with

TCD = juk + uk�1(5)j + jvk + vk�1(5)j + ak + wk � wk�1(5), from N2(uk�1(2); vk�1(2); wk�1(2)) to

N6(uk�1(6); vk�1(6); wk�1(6)) with TCD = juk�1(2)�wk�1(6)j+ jvk�1(2)� vk�1(6)j+ ak +wk�1(2)�

uk�1(6), from N3(uk�1(3); vk�1(3); wk�1(3)) to N7(uk�1(7); vk�1(7); wk�1(7)) with TCD = juk�1(3) �

wk�1(7)j + jvk�1(3) � vk�1(7)j + ak � wk�1(3) � uk�1(7), and from N4(uk�1(4); vk�1(4); wk�1(4)) to

N8(uk�1(8); vk�1(8); wk�1(8)) with TCD = jwk�1(4)� uk�1(8)j+ jvk�1(4)� vk�1(8)j+ ak � uk�1(4)�

wk�1(8), as shown in Figs.10(a) and 13. Therefore,

TD = juk + uk�1(5)j + jvk + vk�1(5)j+ ak + wk � wk�1(5) +

juk�1(2) � wk�1(6)j+ jvk�1(2) � vk�1(6)j + ak + wk�1(2)� uk�1(6) +

juk�1(3) � wk�1(7)j+ jvk�1(3) � vk�1(7)j + ak � wk�1(3)� uk�1(7) +

jwk�1(4) � uk�1(8)j+ jvk�1(4) � vk�1(8)j + ak � uk�1(4)� wk�1(8): (21)
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Because Theorem 3 is assumed to be true up to level l = k � 1, RD, the TCD of remaining steps, can

be determined by

RD =
8X

i=1

MDk�1(Ni) (22)

where N1 = S(uk; vk; wk). According to Lemma 2, Theorem 3, and Theorem 4, we have

MDk(S) =
kX

i=2

fi(S) +MDk(Ek); (23)

where the expression for MDk(Ek) is given by Eq.(13). Therefore, MDk�1(Ni) can be obtained by

using Eq.(23), i.e.,

MDk�1(Ni) =MDk�1(Ek�1) +
k�1X
j=2

fj(Ni); (24)

where i = 1; 2; : : : ; 8. By substituting Eqs.(19), (20), (21), (22), and (24) into Eq.(5), the basic formula

to calculate the TCD for a particular broadcast algorithm, i.e., Dk(S)
0 = FD + SD + TD + RD, we

have,

Dk(S)
0 =

8X
i=1

k�1X
j=2

fj(Ni) + 8MDk�1(Ek�1) + 7ak + uk + vk + wk

�uk�1(2) � uk�1(4) � uk�1(6)� uk�1(7)� vk�1(2)� vk�1(3)

�vk�1(4) + wk�1(2) � wk�1(3)� wk�1(5)� wk�1(8)

+juk + uk�1(3)j + juk + uk�1(5)j+ jvk + vk�1(2)j + jvk + vk�1(5)j

+jwk +wk�1(2)j + jwk + wk�1(3)j + juk�1(2)� wk�1(4)j+ jwk�1(2) � uk�1(4)j

+juk�1(2) � wk�1(6)j+ jvk�1(2) � vk�1(6)j+ juk�1(3) �wk�1(7)j

+jvk�1(3) � vk�1(7)j+ jwk�1(4) � uk�1(8)j+ jvk�1(4) � vk�1(8)j: (25)

Dk(S), the TCD obtained from Algorithm 2, can be easily determined by using Eqs.(11) and (6),

and hence,

Dk(S) = 7ak + 8MDk�1(Ek�1) +
kX

j=2

fj(S) : (26)

Note that during the derivation of Eq.(26), we use Dk�1(Ek�1) =MDk�1(Ek�1) because Theorem 3 is

true at level l = k � 1.

With Eqs.(25) and (26), we are ready to prove Eq.(18). Subtracting Eq.(25) by Eq.(26), we have

Dk(S)
0 �Dk(S) =

8X
i=0

�i (27)

where

�0 = juk�1(2)� wk�1(4)j + jwk�1(2)� uk�1(4)j + juk�1(2)� wk�1(6)j+ jvk�1(2) � vk�1(6)j+

juk�1(3)� wk�1(7)j + jvk�1(3)� vk�1(7)j + jwk�1(4)� uk�1(8)j+ jvk�1(4) � vk�1(8)j
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�1 = uk + vk +wk � fk(S) + juk + uk�1(3)j + juk + uk�1(5)j+

jvk + vk�1(2)j+ jvk + vk�1(5)j + jwk + wk�1(2)j+ jwk +wk�1(3)j (28)

�2 =
k�1X
j=2

fj(N2)� uk�1(2)� vk�1(2) + wk�1(2) (29)

�3 =
k�1X
j=2

fj(N3)� vk�1(3)� wk�1(3) (30)

�4 =
k�1X
j=2

fj(N4)� uk�1(4)� vk�1(4)

�5 =
k�1X
j=2

fj(N5)� wk�1(5) (31)

�6 =
k�1X
j=2

fj(N6)� uk�1(6)

�7 =
k�1X
j=2

fj(N7)� uk�1(7)

�8 =
k�1X
j=2

fj(N8)� wk�1(8):

In the following steps, we show that �0 and �i, i = 2; 3; : : : ; 8, are always nonnegative. �1 is either
positive or negative depending on the location of source node S and the locations of N2, N3, and N5.
When �1 is nonnegative, Eq.(27) is automatically nonnegative, and hence, Eq.(18) is true. When �1

is negative, we can show that �1 +�2 +�3 +�5 is still nonnegative which guarantees that Eq.(27) is
nonnegative. Therefore, Eq.(18) is always true. First of all, we need to derive an important inequality to
be used in the following proof. According to Eq.(7), function fk�1(Ni), Ni = (uk�1(i); vk�1(i); wk�1(i)),
i = 1; 2; : : : ; 8, can be written as:

fk�1(Ni) =

8>>>>>>><
>>>>>>>:

2juk�1(i)j+ uk�1(i) + 2jvk�1(i)j+ vk�1(i) + 2jwk�1(i)j+ wk�1(i) (I )

2juk�1(i)j+ uk�1(i) + 2jvk�1(i)j+ jvk�1(i)� ak�2j+ 2jwk�1(i)j+ wk�1(i) (II )

juk�1(i)j+ 2juk�1(i)� ak�2j+ 2jvk�1(i)j+ vk�1(i) + 2jwk�1(i)j+ wk�1(i) (III )

juk�1(i)j+ 2juk�1(i)� ak�2j+ 2jvk�1(i)j+ jvk�1(i)� ak�2j+ 2jwk�1(i)j+ wk�1(i); (IV )

where (I), (II), (III), and (IV) belong to the ith submesh of a 3-D 2k mesh. Obviously, the following

inequality is always true,

fk�1(Ni) � juk�1(i)j+ jvk�1(i)j + jwk�1(i)j: (32)

Now we discuss each �i one by one. Note that �1 is the last one to be discussed because it uses the

results of other �is.

�0: It is obvious that �0 � 0.

�2: According to Eq.(32), function fk�1(N2(uk�1(2); vk�1(2); wk�1(2))) can be written as:

fk�1(N2) � juk�1(2)j + jvk�1(2)j+ jwk�1(2)j:
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Therefore, �2 can be re-written as

�2 �
k�2X
j=2

fj(N2) + (juk�1(2)j � uk�1(2)) + (jvk�1(2)j � vk�1(2)) + (jwk�1(2)j + wk�1(2))

by substituting fk�1(N2) into the �2 expression. Because juk�1(2)j�uk�1(2) � 0, jvk�1(2)j�vk�1(2) �

0, jwk�1(2)j + wk�1(2) � 0, and
Pk�2

j=2 fj(N2) � 0 (according to Eq.(9)), we immediately have �2 � 0.

�3: According to Eq.(32), function fk�1(N3(uk�1(3); vk�1(3); wk�1(3))) can be written as:

fk�1(N3) � juk�1(3)j + jvk�1(3)j+ jwk�1(3)j:

Therefore, �3 can be re-written as

�3 �
k�2X
j=2

fj(N3) + juk�1(3)j + (jvk�1(3)j � vk�1(3)) + (jwk�1(3)j �wk�1(3))

by substituting fk�1(N3) into the �3 expression. Because juk�1(3)j � 0, jvk�1(3)j � vk�1(3) � 0,

jwk�1(3)j � wk�1(3) � 0, and
Pk�2

j=2 fj(N3) � 0, we immediately have �3 � 0.

�4: According to Eq.(32), function fk�1(N4(uk�1(4); vk�1(4); wk�1(4))) can be written as:

fk�1(N4) � juk�1(4)j + jvk�1(4)j+ jwk�1(4)j:

Therefore, �4 can be re-written as

�4 �
k�2X
j=2

fj(N4) + (juk�1(4)j � uk�1(4)) + (jvk�1(4)j � vk�1(4)) + jwk�1(4)j

by substituting fk�1(N4) into the �4 expression. Because juk�1(4)j�uk�1(4) � 0, jvk�1(4)j�vk�1(4) �

0, jwk�1(4)j � 0, and
Pk�2

j=2 fj(N4) � 0, we immediately have �4 � 0.

�5: According to Eq.(32), function fk�1(N5(uk�1(5); vk�1(5); wk�1(5))), can be written as:

fk�1(N5) � juk�1(5)j + jvk�1(5)j+ jwk�1(5)j:

Therefore, �5 can be re-written as

�5 �
k�2X
j=2

fj(N5) + juk�1(5)j+ jvk�1(5)j + (jwk�1(5)j � wk�1(5))

by substituting fk�1(N5) into the �5 expression. Because juk�1(5)j � 0, jvk�1(5)j � 0, jwk�1(5)j �

wk�1(5) � 0, and
Pk�2

j=2 fj(N5) � 0, we immediately have �5 � 0.

�6: According to Eq.(32), function fk�1(N6(uk�1(6); vk�1(6); wk�1(6))), can be written as:

fk�1(N6) � juk�1(6)j + jvk�1(6)j+ jwk�1(6)j:

Therefore, �6 can be re-written as

�6 �
k�2X
j=2

fj(N6) + (juk�1(6)j � uk�1(6)) + jvk�1(6)j+ jwk�1(6)j
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by substituting fk�1(N6) into the �6 expression. Because juk�1(6)j � uk�1(6) � 0, jvk�1(6)j � 0,

jwk�1(6)j � 0, and
Pk�2

j=2 fj(N6) � 0, we immediately have �6 � 0.

�7: According to Eq.(32), function fk�1(N7(uk�1(7); vk�1(7); wk�1(7))), can be written as:

fk�1(N7) � juk�1(7)j + jvk�1(7)j+ jwk�1(7)j:

Therefore, �7 can be re-written as

�7 �
k�2X
j=2

fj(N7) + (juk�1(7)j � uk�1(7)) + jvk�1(7)j+ jwk�1(7)j

by substituting fk�1(N7) into the �7 expression. Because juk�1(7)j � uk�1(7) � 0, jvk�1(7)j � 0,

jwk�1(7)j � 0, and
Pk�2

j=2 fj(N7) � 0, we immediately have �7 � 0.

�8: According to Eq.(32), function fk�1(N8(uk�1(8); vk�1(8); wk�1(8))), can be written as:

fk�1(N8) � juk�1(8)j + jvk�1(8)j+ jwk�1(8)j:

Therefore, �8 can be re-written as

�8 �
k�2X
j=2

fj(N8) + juk�1(8)j+ jvk�1(8)j + (jwk�1(8)j � wk�1(8))

by substituting fk�1(N8) into the �8 expression. Because juk�1(8)j � 0, jvk�1(8)j � 0, jwk�1(8)j �

wk�1(8) � 0, and
Pk�2

j=2 fj(N8) � 0, we immediately have �8 � 0.

�1: �1 in Eq.(27) is rather complex because it can be either positive or negative depending on the

location of S and the locations of N2, N3 and N5. In the following, we show that

�1 +�2 +�3 +�5 � 0 (33)

even when �1 is negative.

When uk; vk; wk � 0, according to Eq.(7), fk(S) becomes

fk(S) = jukj+ jvkj+ jwkj:

Therefore, �1 (see Eq.(28)) becomes

�1 = �2jukj � 2jvkj � 2jwkj+ juk + uk�1(3)j+ juk + uk�1(5)j

+jvk + vk�1(2)j + jvk + vk�1(5)j+ jwk + wk�1(2)j + jwk + wk�1(3)j: (34)

In Eq.(34), there are three negative terms �2jukj, �2jvkj, and �2jwkj. If uk�1(3), uk�1(5), vk�1(2),

vk�1(5), wk�1(2), wk�1(3) in Eq.(34) are all negative, Eq.(34) becomes

�1 = �2jukj � 2jvkj � 2jwkj+ jukj+ juk�1(3)j + jukj+ juk�1(5)j

+jvkj+ jvk�1(2)j+ jvkj+ jvk�1(5)j+ jwkj+ jwk�1(2)j+ jwkj+ jwk�1(3)j:
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The three negative terms are cancelled out. Therefore, �1 � 0. The worst case of Eq.(34) occurs when

all the terms, uk�1(3), uk�1(5), vk�1(2), vk�1(5), wk�1(2), and wk�1(3), in Eq.(34) are positive. In this

case, Eq.(34) becomes

�1 = �2jukj � 2jvkj � 2jwkj+ jukj � juk�1(3)j + jukj � juk�1(5)j

+jvkj � jvk�1(2)j+ jvkj � jvk�1(5)j+ jwkj � jwk�1(2)j+ jwkj � jwk�1(3)j;

i.e.,

�1 = �jvk�1(2)j � jwk�1(2)j � juk�1(3)j � jwk�1(3)j � juk�1(5)j � jvk�1(5)j: (35)

�1 is negative now. However, all these six negative terms in Eq.(35) can be cancelled out in �1+�2+

�3 +�5. Because both vk�1(2) and wk�1(2) are positive, according to Eq.(7), fk�1(N2) satis�es

fk�1(N2) � juk�1(2)j+ 2jvk�1(2)j+ 3jwk�1(2)j: (36)

Substituting Eq.(36) into Eq.(29), �2 can be re-written as

�2 �
k�2X
j=2

fj(N2) + jvk�1(2)j+ 4jwk�1(2)j: (37)

Therefore, terms jvk�1(2)j and jwk�1(2)j in Eq.(37) can cancel out two negative terms, �jvk�1(2)j and

�jwk�1(2)j, in Eq.(35). Other four negative terms in Eq.(35) can be cancelled out in a similar way.

Because both uk�1(3) and wk�1(3) are positive, according to Eq.(7), fk�1(N3) satis�es

fk�1(N3) � juk�1(3)j + jvk�1(3)j + 3jwk�1(3)j:

Substituting this inequality into Eq.(30), �3 can be re-written as

�3 �
k�2X
j=2

fj(N3) + juk�1(3)j+ 2jwk�1(3)j:

Therefore, terms juk�1(3)j and jwk�1(3)j in this inequality can cancel out two negative terms, �juk�1(3)j

and �jwk�1(3)j, in Eq.(35). Because both uk�1(5) and vk�1(5) are positive, according to Eq.(7),

fk�1(N5) satis�es

fk�1(N5) � juk�1(5)j + 2jvk�1(5)j+ jwk�1(5)j:

Substituting this inequality into Eq.(31), �5 can be re-written as

�5 �
k�2X
j=2

fj(N5) + juk�1(5)j + 2jvk�1(5)j:

Therefore, terms juk�1(5)j and jvk�1(5)j in the above inequality can cancel out two negative terms,

�juk�1(5)j and �jvk�1(5)j, in Eq.(35). Therefore, all the six negative terms in Eq.(35) are cancelled

out by �2 +�3 +�5. This means Eq.(33) is true when uk; vk; wk � 0.

When uk; vk; wk > 0, according to Eq.(7), the maximum value of fk(S) (which corresponds to the

worst case of �1) becomes

fk(S) = 3jukj+ 3jvkj+ 3jwkj:
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Therefore, �1 (see Eq.(28)) becomes

�1 = �2jukj � 2jvkj � 2jwkj+ juk + uk�1(3)j+ juk + uk�1(5)j

+jvk + vk�1(2)j + jvk + vk�1(5)j+ jwk + wk�1(2)j + jwk + wk�1(3)j: (38)

In Eq.(38), there are also three negative terms �2jukj, �2jvkj, and �2jwkj. When uk�1(3), uk�1(5),

vk�1(2), vk�1(5), wk�1(2), wk�1(3) in Eq.(38) are all positive, Eq.(38) becomes

�1 = �2jukj � 2jvkj � 2jwkj+ jukj+ juk�1(3)j + jukj+ juk�1(5)j

+jvkj+ jvk�1(2)j+ jvkj+ jvk�1(5)j+ jwkj+ jwk�1(2)j+ jwkj+ jwk�1(3)j:

The three negative terms are cancelled out. Therefore, �1 � 0. The worst case of Eq.(38) occurs when

all the terms, uk�1(3), uk�1(5), vk�1(2), vk�1(5), wk�1(2), and wk�1(3) in Eq.(38) are negative. In this

case, Eq.(38) becomes

�1 = �2jukj � 2jvkj � 2jwkj+ jukj � juk�1(3)j + jukj � juk�1(5)j

+jvkj � jvk�1(2)j+ jvkj � jvk�1(5)j+ jwkj � jwk�1(2)j+ jwkj � jwk�1(3)j;

i.e.,

�1 = �jvk�1(2)j � jwk�1(2)j � juk�1(3)j � jwk�1(3)j � juk�1(5)j � jvk�1(5)j: (39)

�1 is negative now. We can still use six positive terms, jvk�1(2)j, jwk�1(2)j, juk�1(3)j, jwk�1(3)j,

juk�1(5)j, and jvk�1(5)j, from �2 + �3 + �5 to cancel out all these six negative terms in Eq.(39).

Because both vk�1(2) and wk�1(2) are negative, according to Eq.(7), fk�1(N2) satis�es

fk�1(N2) � juk�1(2)j + jvk�1(2)j+ jwk�1(2)j: (40)

Substituting Eq.(40) into Eq.(29), �2 can be re-written as

�2 �
k�2X
j=2

fj(N2) + 2juk�1(2)j + 2jvk�1(2)j: (41)

Now only one term jvk�1(2)j can be used to cancel out �jvk�1(2)j in Eq.(39). We still need term

jwk�1(2)j to cancel out �jwk�1(2)j in Eq.(39). Actually, jwk�1(2)j can be found in fk�2(N2) in Eq.(41).

Because

fk�2(N2) � juk�2(2)j + jvk�2(2)j+ jwk�2(2)j;

and juk�2(2)j = jwk�1(2)j, as shown in Fig.10(b), we have fk�2(N2) � jwk�1(2)j. Substituting this

result into Eq.(41), we have

�2 �
k�3X
j=2

fj(N2) + 2juk�1(2)j + 2jvk�1(2)j + jwk�1(2)j: (42)

Therefore, terms jvk�1(2)j and jwk�1(2)j in Eq.(42) can cancel out the two negative terms, �jvk�1(2)j

and �jwk�1(2)j, in Eq.(39). Other four negative terms in Eq.(39) can be cancelled out in a similar way.

Because both uk�1(3) and wk�1(3) are positive, according to Eq.(7), fk�1(N3) satis�es

fk�1(N3) � juk�1(3)j + jvk�1(3)j+ jwk�1(3)j:
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Substituting this inequality into Eq.(30), �3 can be re-written as

�3 �
k�2X
j=2

fj(N3) + juk�1(3)j + jvk�1(3)j + 2jwk�1(3)j:

Therefore, terms juk�1(3)j and jwk�1(3)j, in this inequality can cancel out two negative terms, �juk�1(3)j

and �jwk�1(3)j, in Eq.(39). Because both uk�1(5) and vk�1(5) are positive, according to Eq.(7),

fk�1(N5) satis�es

fk�1(N5) � juk�1(5)j + jvk�1(5)j+ jwk�1(5)j:

Substituting this inequality into Eq.(31), �5 can be re-written as

�5 �
k�2X
j=2

fj(N5) + juk�1(5)j + jvk�1(5)j + 2jwk�1(5)j:

Therefore, terms juk�1(5)j and jvk�1(5)j, in the above inequality can cancel out two negative terms,

�juk�1(5)j and �jvk�1(5)j, in Eq.(39). Hence, all the six negative terms in Eq.(39) are cancelled out by

�2 +�3 +�5. This means Eq.(33) is true.

In summary, we have shown that �0, and �i, i = 2; 3; 4; : : : ; 8 are always nonnegative. �1 is either

positive or negative. When �1 is nonnegative, Eq.(27) is automatically nonnegative, and hence, Eq.(18)

is true. When �1 is negative, �1 +�2 +�3 +�5 is still nonnegative which guarantees that Eq.(27) is

nonnegative, and hence, Eq.(18) is correct. Therefore, Eq.(18) is always true, which means that Eq.(17)

is always true for l = k. Therefore, Eq.(17) is true for all l, i.e., Theorem 3 is true. 2

Appendix C (Proof of Theorem 6)

Proof: The Eq.(15) can be written as

MDd
k(Ek) = (2d � 1)[ak + (2d)1ak�1 + (2d)2ak�2 + (2d)3ak�3 + : : : + (2d)k�2a2]

+(2d)k�1MDd
1(E1); (43)

through substitution. Using Eq.(1), the �rst term of Eq.(43) can be written as

ak + (2d)1ak�1 + (2d)2ak�2 + (2d)3ak�3 + : : : + (2d)k�2a2

=
1

3
f[(2d)02k�0 + (2d)12k�1 + (2d)22k�2 + (2d)32k�3 + : : :+ (2d)k�222]�

[(2d)0(�1)k�0 + (2d)1(�1)k�1 + (2d)2(�1)k�2 + (2d)3(�1)k�3 + : : :+ (2d)k�2(�1)2]g

=
1

3
f2k[(2d�1)0 + (2d�1)1 + (2d�1)2 + (2d�1)3 + : : :+ (2d�1)k�2]�

(�1)k[(�2d)0 + (�2d)1 + (�2d)2 + (�2d)3 + : : : + (�2d)k�2]g

=
1

3
[2k �

1� (2d�1)k�1

1� 2d�1
� (�1)k �

1 + (�1)k(2d)k�1

1 + 2d
]: (44)

Therefore, by substituting Eq.(44) and MDd
1(E1) = 2d � 1 into Eq.(43), we get Eq.(16). 2
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