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Abstract tel iPSC, and the Connection Machine. The more recently
built SGI Origin 2000 uses a variation of the hypercube

! Reliable communication in cube-based multicomputers topologies.
using the extended safety vector concept is studied in this Efficient interprocessor communication is a key to the
paper. In our approach, each node in a cube-based mul- performance of a multicomputetJnicastingis a one-to-
ticomputer of dimension is associated with an extended one communication between two nodes, one is called the
safety vector of bits, which is an approximated measure of source node and the other the destination node. With the
the number and distribution of faults in the neighborhood. rapid progress in VLS| and hardware technologies, the size
In the extended safety vector model, each node knows faulbf computer systems has increased tremendously and the
information within distance-2 and fault information outside probability of processor failure has also increased. As a
distance-2 is coded in a special way based on the coded inresult, building a reliable multicomputer has become one
formation of its neighbors. The extended safety vector ofof the central issues, especially in the communication sub-
each node can be easily calculated through- 1 rounds system which handles all interprocessor communications.
of information exchanges among neighboring nodes. Opti- Among different routing (unicast) schemes, the classical
mal unicasting between two nodes is guaranteed ikktthe  e-cube routing is simple to implement and provides high
bit of the safety vector of the source node is one, whése  throughput for uniform traffic; however, it cannot handle
the Hamming distance between the source and destinatioreven simple node or link faults due to its nonadaptive rout-
nodes. In addition, the extended safety vector can be usedng. Adaptive and fault-tolerant routing protocols have been
as a navigation tool to direct a message to its destination the subject of extensive research in recent years ([3], [4],
through a minimal path. Simulation results show a signifi- [7]). A general theory of fault-tolerant routing is discussed
cantimprovement in terms of optimal routing capabilityina in [2].
hypercube with faulty links using the proposed model, com- | jmited-global-information-basedouting is a com-
pared with the one USing the Original Safety vector model. promise between local-information-based and g|oba|-
information-based approaches. A routing algorithm of this
type normally obtains an optimal or suboptimal solution and
requires a relatively simple process to collect and maintain
fault information in the neighborhood (such information is
) ) i called limited global information). Therefore, an approach

Many recent experimental and commermal mL_JItlcom- of this type can be more cost effective than the ones based
puters use direct-connected networks with the grid topol- on global information [9] o local information ([1], [5]).

ogy. The binary hypercube [8] is one of the popular grid One simple but ineffective approach is to use distalce-
structures. Several research prototypes and systems have

been built in the past two decades, including NCUBE-2, In- mformaﬂon n which ea.ch nqde knows th? status'of all com-
ponents within Hamming-distande{or simple distance-

LThis work was supported in part by NSFC of P. R. China under grant ¥)- However, optimglity cannot _be guaranteed, as a rOUt.in.g
No. 69703001 and by NSF grant CCR 9900646. process could possibly go to either a state where all mini-

1. Introduction




mal paths are blocked by faulty components or a dead endend nodes of the link faulty. Each end node of a faulty link
where backtracking is required. In addition, each node hastreats the other one faulty, but it does not consider itself
to maintain a relatively large table containing distakde- faulty. This overly conservative approach generates many
formation. faulty nodes that severely diminishes the routing capability

Another approach is based on tbeded fault informa-  of the system.
tion, where each node has the exact information of adjacent In this paper, we propose a new coding methodology. It
nodes and information of other nodes are coded in a spedis assumed that each node has precise information of fault
cial way. Then an optimal/suboptimal routing algorithm is distribution within a given distancé. Fault information
proposed based on the coded information associated withoutside distance is coded, like the one used in safety vec-
each node. The following is a summary of different coding tor. We selecti = 2 as an example and the corresponding
methods in am-cube, all of them are primarily designedto model is calledextended safety vectoGSimulation results
cover node faults. show a significant improvement using the proposed model

in terms of optimal routing capability in a hypercube with
e Lee and Hayes’ [6bafeandunsafenode concept. A tq ity links, compared with the one using the original safety
nonfaulty node is unsafe if and only if there are at least \,octor model. We also show that the selectioniof 2 is

two unsafe or faulty neighbors. Therefore, each node 5 right one and its results stay very close to the one using
is labeled (coded) faulty, unsafe, or safe. global fault information, i.e.d = n.

e Wu and Fernandez’ [12¢xtended safe nodmncept
by relaxing certain conditions of Lee and Hayes’ defi- 2. Preliminaries
nition. Each node is still labeled faulty, unsafe, or safe.
However, a different definition is given: A nonfaulty Hypercubes An n-cube ,,) is a graph havin@™ nodes
node is unsafe if and only if there are two faulty neigh- |abeled from0 to 2 — 1. Two nodes are joined by a link
bors or there are at least three unsafe or faulty neigh-if their addresses, as binary numbers, differ in exactly one
bors. bit position. More specifically, every nodehas an address
u(n)u(n —1)---u(1) with u(i) € {0,1},1 < i < n, and
u(4) is called theith bit (dimension) of the address. We de-
note nodew(”) the neighbor of: along dimension. u(? is
calculated by setting or resetting tkth bit of u. For ex-
ample, 1101 = 1001. This notation can be used to set
or reset theth bit of any binary string. A faulty:-cube in-
cludes faulty nodes and/or links. A faultycube may or
o Wu's safety vectof10] concept where each node is May not be connected depe.nding on the numper and loca-
associated with a binary vector. The bitvalue ofttie  tion of faults. A path connecting two nodeandd is called
bit corresponds to the routing capability to nodes that @ Minimal path(also called dlamming distance pajfif its

are distance: away. The safety vector is a refinement length is equal to the Hamming distance between these two
of the safety level model. nodes. An optimal (or minimal) routing is one which al-

ways generates a minimal path. In general, optimal routing

The effectiveness of a coding method is measured by thehas a broader meaning which always generates a shortest
following: (1) How fast fault information can be collected path, not necessarily a minimal one, among the available
(coded) at each node. (2) How accurate the coded fault in-ones. It is possible that all minimal paths are blocked by
formation representing the real fault distribution in terms of faults. In this case, a shortest (available) path is not a mini-

e Wu'’s safety leve[11] concept where each node is as-
signed with a safety levdl, 0 < & < n. A node with
a safety levek = n is called safe and a faulty node
is assigned with the lowest level Therefore, there
aren + 1 possible labels for a node in the safety level
model.

optimal routing capability. mal one. In this paper, the above situation will never occur
Both safe/unsafe and extended safe/unsafe models reand we use the terms shortest and minimal interchangeably.
quireO(n?) rounds of information exchanges in arcube The distance between two nodesand d is equal to

to label (code) all the nodes. Both safety level and safetythe Hamming distance between their binary addresses, de-
vector need onlyO(n) rounds of information exchanges. noted byH (s, d). Symbol® denotes the bitwise exclusive
The order, in terms of accurately representing fault infor- OR operation on binary addresses of two nodes. Clearly,
mation, is the following: safe/unsafe, extended safe/unsafe,;s @ d has value 1 aH (s, d) bit positions corresponding to
safety level, and safety vector. The safety vector is the lat- H (s, d) distinct dimensions. Thes (s, d) dimensions are

est model that has a merit of simplicity and wide-range of called preferred dimensionand the corresponding nodes
fault coverage. However, this model is still relatively inef- are termegbreferred neighborsThe remaining: — H (s, d)
ficient in handling of link faults. Basically, a link fault is  dimensions are callespbare dimensiorsnd the correspond-
considered by other nodes as node fault(s) by treating twoing nodes araspare neighborsA minimal path can be ob-



tained by using links at each of theB& s, d) preferred di-
mensions in some order.

Safety Level and Safety Vector Let us first review the
concepts of safety level and safety vector. Safety level and
safety vector are scalar and vector numbers associated with
each node in a given-cube, respectively. They provide
coded information about fault information in the neighbor-
hood.

Definition 1 [11]: The safety level of a faulty nodedisFor
a nonfaulty nodex, let (slo, sl1, sla, ..., slp—1), 0 < sl; <
n, be the nondescending safety level sequence of wisde

n neighboring nodes in an n-cube, such that < s, Figure 1. An example of a faulty 3-cube with
0 < i < n — 1. The safety level of nodg sl(u), is defined its safety level and safety vector assign-
as: if (slo, sl1,sl2, ..., sln_1) > (0,1,2,...,n — 1)?, then ments.

sl(u) = n, else if(sly, sl1, sla, ..., slp—1) > (0,1,2,....,k—
1) A (sl =k — 1) thensl(u) = k.

In the above definition, it is assumed that all faults are there exists at least one Hamming distance path from node
node faults. To extend this definition to cover link faults, « to any node that is exactly distanéeaway.

both end nodes of a faulty link have to be assigned a safety .
level of 0 in order to be consistent with the original safety ~ 5ased on the above two properties, it is clear that a safe

level definition. The safety vector concept is a refinement N0d€ in both models can reach any destination node (which

of the safety level concept by providing routing capabil- 'S Within Hamming distance., the diameter of the cube)

ity to destinations at different distances. More specifically, hrough & minimal path. The safety vector model is an im-

each node: in ann-cube is assigned with a safety vector provement based on the safety level model. It can provide

s0() = (U1, Uz, erry Un) more and accurate information about the number and dis-

Definiti 2’ 16':"Tﬁ ' et or of a faulty node i tribution of faults in am-cube. However, the safety vector

( Oe (|)n| '03) hE ntlde ;‘Z’; ee?]/ dvﬁg doer gf :‘ fail:tyyli:(lz tehles concept still cannot effectively present faulty link informa-
,0,...,0). u ,

h d node will b : d with f ¢ tion. Actually, it is not clear that an efficient coding method
other end node will be registered with a safety vector of gyjsts ynder the assumption that each node has only neigh-
(0,0,...,0) at nodeu.

bor information.
e Base for the first bit: Fig. 1 shows an example of a 3-cube with one faulty node
. ] ] and two faulty links. In this example, the safety level of
{ 0 ifnodeu is an end-node of a faulty link each node is either 0 or 1, i.e., a source node can only send
ur = . a message to its neighbors. Clearly, by inspection, the safety
1 otherwise level information is not accurate. For example, nodes 110,
101, and 111 can send a message to any nodes through a
minimal path that are distance-2 or -3 away. This problem
0 iy, WD <k is partially resolved in the safety vector model, where the
1<isn k-1 = safety vectors associated with nodes 110 and 111 are (0,1,0)
and (1,0,1), respectively. Nodes 001, 100, and 101 still have
the lowest safety level (0,0,0). The reason that node 101
has a 0-bit at the 2nd bit of its safety vector is that it has
two neighbors 100 and 001 with both 0-bit as the 1st bit of
their safety vectors. However, the two corresponding faulty
links (100, 110) and (101, 001) do not span on the same
dimension, and hence, these two faulty nodes will not block
all the minimal paths initiated from node 101 to a node that
is distance-2 away.
. Based on the above analysis, the direction of each fault
Property 2: Assume thafu,, us, ..., u,) is the safety vector  (egpecially link fault) is needed to provide accurate infor-
associated with node in a faultyn-cube. Ifu; = 1then  maiion about fault distribution. However, this approach will
25eq1 > segs if and only if each element iseq; is larger than or  dramatically increase the memory space requirement and
equal to the corresponding elementinys. the coding complexity. A compromise is therefore needed.

o Inductive definition for théth bit:

U =
1 otherwise

In the safety level (vector) model, a node inmatube
is said to besafeif its safety level isn ((1,1,...,1)); oth-
erwise, it isunsafe Two properties related to safety levels
and safety vectors are as follows:
Property 1: If the safety level of a node is(0 < k& < n),
then there is at least one Hamming distance path from this
node to any node within distande-




3. Extended Safety Vectors

Proposed Model In this section, we propose a new ap-
proach to code fault information. In general, a good coding

method is generated on the soundness of its base. In all
existing approaches, the base is based on neighbor informa-

tion only. For both safety level and safety vector models,
the above method is proved to be effective for node faults,
but not for link faults. Our approach here consists of the
following two steps (see Fig. 2):

1. Each node knows the exact fault information within
distanced.

2. Fault information about nodes that are outside
distanced is coded in a special way.

In this paper, we show an application of the proposed
model ond = 2; that is, each node knows fault informa-
tion within distance-2. Information about faults that are
more than distance-2 away are coded. We showdhat2
is sufficient to handle link faults and there is no need to
select a largel (this will be confirmed by our simulation
results later). This model is callezktended safety vector
where the first two bits of an extended safety vector (for a
node) represent accurate fault information and otherkbits
are coded based on tle — 1)th bit of its neighbors’. Note

u

preciseinfo.

coded info.

Figure 2. A new approach to code information.

In the extended safety vector model, in addition to the
information of adjacent links and nodes, each node has
complete information about adjacent links of its neighbors.
u; = 1 (orusz = 1) indicates the existence of a minimal
path to a nonfaulty nodes that are one hop (or two hops)
away. For the case af; = 0 (or us = 0), such a minimal
path may or may not exist, but for a given source-destination
pair (that are one or two hops away) its existence can be eas-
ily verified based on distance-2 information. We use coded
information for destinations that are more than two hops
away. Therefore, for the case af = 0, with & > 2,

that the regular safety vector model is a special case of thisthe actual existence of a minimal path for a given source-

approach wherd = 1. Results of our simulation show a

dramatic improvement of this approach over the safety vec-

tor model in handling link faults.

Extended Safety Vectors Let esv(u) = (u1,usg, ..., Up)

be the extended safety vector of nodeand esv(u) =
@{? ul?, ..., ul?) be the extended safety vector of node
u, w's neighbor along dimensioh We have the follow-
ing inductive definition of extended safety vectew(u).
Definition 3: The safety vector of a faulty node is
(0,0,...,0). If nodew is an end node of a faulty link, the
other end node will be registered with a safety vector of
(0,0,...,0) at nodeu.

e Base for the first bitu; = 1 if nodew can reach any
neighbor, i.e.,

0
Ulz{

e Base for the second bitz, = 1 if nodewx can reach
any nonfaulty and faulty nodes that are two hops away
through a minimal path (a decision process will be dis-
cussed later); otherwise,; = 0.

if nodew is an end-node of a faulty link

1 otherwise

¢ Inductive definition for théth bit, wherek > 3:

0 ifYcich “1(311 <n—k
U = -

1 otherwise

destination pair cannot be verified, thatig, = 1 provides
a sufficient condition for the existence of a minimal path to
a distancek node, but it is not a necessary condition.

To determineus, nodeu needs to keefaulty paths of
length 2initiated from nodeu, i.e., a path along which
there exists at least one faulty link or node. A faulty path
(u,u®, (u)()) can be simply represented by a dimen-
sion sequencéi, j). Clearly, an adjacent faulty link or
node along dimensioihcan be represented ésc;), where
ci ={1,2,...,n}—{i}. Thatis, any patlfu, u(*), (u(?)*)),
wherek € ¢;, is a faulty path of length 2. If both adjacent
link and node along dimensianare healthy, but there are
adjacent faulty links along dimensionsdh Wherec; is a
subset (including empty set) of, the corresponding faulty
paths can be represented (asc;). Note that information
about(i, c;) is passed from node'? to nodeu. In general,
each node: in ann-cube has exactly pairs of (i, c;), de-
noted asf (u) = {(i,c;) : i € {1,2,...,n}}. Some(i, c;)’s
correspond to healthy paths, Whe'ge: {} is an empty set.
Theorem 1 u, = 0 for nodeuw if and only if there exist
(i,¢;) and(j, c;) in f(u) such tha{i} N c; # ¢ and{;j} N
c; # ¢, wherep = {} is an empty set.

Proof. There are two node-disjoint paths from nogédo
another node that is distance-2 away. Suppose these two

nodes “span” on dimensionsandj. Clearly, a path of
length 2 from node: to nodev is (4, ) and another i$j, 7).



(11,1
01,11 111) (00.1,2)

Calculating extended safety vectors 0101 (100, ©00.)

1. In the first round, node determines:; based on the a1y
status of its adjacent links, and then, exchanges adja-"
cent link and node status with all its neighbors’. 0000)

(0,0,00)

0001

2. Inthe second round, nodeconstructsf (u) which is a @iy o0
list of faulty paths of length 2 based on the information 01y (0009
collected in the first round.us is determined based QA
on f(u), and then, exchanges with u,s of all its
neighbors.

3. Inthekth round 8 < k < n), nodeu determines, Figure 3. A faulty 4-cube with two faulty nodes
based onu;_;'s collected in the previous round, and and two faulty links.
then, exchanges;, with u'ks of all its neighbors.

4. In the nth round, nodeu determinesu,, based on
u,-1's collected in the previous round. ur = 1 then there exists at least one Hamming distance
path from nodes to any node which is exactly distance-k
away.

Proof. We prove this theorem by induction én If u; =1
(wherek = 1), there is no adjacent faulty link. Clearly node

) ) ‘ , u can reach all the neighboring nodes, faulty and nonfaulty.
{i}nec; # pand{j}nc; # ¢. . If us = 1 (Wherek = 2), based on the definition afs,

In the example of Fig. 1, iz = 111, then f(u) = there is a minimal path to any destination that is distance-
{(1,{2}),(2,{3}), (3,{1,2})}. Based on the above theo- 2 away from the source. Assume that this theorem holds
rem, the second bii, of the safety vector associated with for & = [, i.e., if u; = 1 there exists at least one Ham-
node 111 is 1. Clearly, bitg; andu, can be determined ming distance path from nodeto any node which is ex-
through 2 rounds of information exchanges among neigh-actly distancd-away. Wherk = [ + 1, if u;,; = 1 then
boring nodes andiz, uy, ..., u, €ach needs one round. oo uD sy (1 + 1), which means that there are at

i<n 1l
Therefore, the extended safety vectar,us,...,un) Of  mosti neighbors which have 0 at tfith bit of their safety
nodeu in ann-cube can be calculated through-1rounds  yectors. Therefore, amorigr 1 preferred neighbors, there
of information exchanges among neighboring nodes. is at least one neighbor, say nodethat has itdth safety
Theorem 2 The extended safety vector of each node in an bit set. Based on the induction assumption, there is at least
n-cube can be determined through- 1 rounds of informa- ~ one Hamming distance path from nodéo any destination

u cannot reach if and only if (i, ) is in (i,c;) (i.e., that
path is faulty) andj, ¢) is in (7, c'j). In this case, we have

tion exchanges between adjacent nodes. node, sayw, which is distancé-away. Connecting the link
from nodeu to nodew to the path originated from nodeto

4. Examples and Properties destination node, we construct a Hamming distance path
from nodeu to destination node which is distance? + 1)

Fig. 3 shows an example of a faulty 4-cube with two away. _.
faulty nodes 0001 and 1011 and two faulty links (0000, Next we show that the extendegl safety vector is bet-
0010) and (1100, 1101). The safety vector of each nodet€’ than the regulgr safety vectpr in ter'ms of accurately
is shown under both the safety vector and extended safetfePresenting fault information (Figure 4 is such an exam-
vector (on top) models. The safety level of each node is Pl€)- Consider a vertex in ann-cube with safety vec-
placed inside each node. Nodes 0001 and 1011 have afor sv(u) = (u1,u2,..,u,) and extended safety vector
extended safety vectd, 0, 0,0), nodes 0010, 1100, and esv(u) = (U, Ug, ..., Uy,), the extende'd sa}fety vector is said
1101 have an extended safety vedtoyl, 1,1), 0011 has 0 coverthe safety vector at node, if u;, > uy for all
(1,0,1,1) and 0000 has (0,0,1,1), and the remaining noded < k < n. Intuitively, if ev(u) coversv(u) at thekth bit,

have a safety vectdt, 1,1, 1) then the routing based on the extended safety vector has at
9’ ) 9’ . . e
In the following we show several properties related to least the same routing capability as one based on the safety
extended safety vectors. vector to all destinations that are distariceway.

Theorem 3 Assume thafu;,us,...,u,) is the extended Theorem 4 For any given faultyn-cube,esv(u) covers
safety vector associated with noden a faulty n-cube. If sv(u) for any nodeu in the cube.



Proof. We assume that a general node in a given cube

is represented as, with esv(u) = (uy,us,...,u,) and

b n

Algorithm unicastingat sourcenode

sv(u) = (u1,us,...,un) as extended safety vector and begin

safety vector, respectively. We prove the theorem by in-
duction onk in bit u; for all nodes in the cube. When
k = 1, u; has the same definition asl for all nodes.
Clearly, ul < u;. Whenk = 2, based on Property 2,
us = 1 means that there is a minimal path to any node

that is distance-2 away. On the other hangl,= 1 if and

only if there is a minimal path to any node that is distance-
2 away. Hence, ifuy = 1 thenu, = 1. The reverse
condition normally does not hold. Therefore, covers

us. Assume that the theorem holds for= [ > 2, i.e.,
u;(i) > ul(i) forall i. Whenk = 1+ 1, uyqy = 11f
icicn ) >n—(l+1)andu;, = 1if 3, o u >
n — (I + 1). Based on the fact thazt;(i) > ul(i) for all i,
wherei € {1,2,..,n}, 3 i u'? > n— (1+1) implies
Sicientl” >n—(141),ie.,up,, = limpliesu 1 = 1.

N=sod k=|sad;
if s, =1V 3i(s\), =1ANG) =1)v
(k = 1 (or 2) A a healthy 1-hop (or 2-hop) path
along dimension exists)
then optimalunicasting:
send(m, N to s(), wheres\” | = 1 A N(i) =1
else if3i(s\’), = 1A N(i) = 0)
then suboptimalunicasting:
send(m, N() to s(), wheres{] | = 1
elsefailure
end.

Algorithm unicastingat_intermediatenode

begin
{at any intermediate nodewith messagen and
navigation vectotV}

u if N =0
then stop
5. Fault-Tolerant Routing else send(m, N@) tou®, whereu!” | = 1A N(i) = 1
end.

Basic Idea The routing algorithm is similar to the one
in [10]. Suppose that source node with safety vector
(s1, 82, .-, Sn), iNtends to forward a message to a node that
is distancek away. (s\”, s{" ..., s{)) is the safety vector of
neighbors(?. The optimality is guaranteed if thgh bit of

tor associated with the message. If this intermediate node is
distance- + 1) away from the destination node (this dis-
its safety vector is 1sf, = 1) or one of its preferred neigh- tance can be determined based on the number of 1's in the
bors’ (along dimensior) (k — 1)th bit is 1, i.e.,s;fll =1, navigation vector), a preferred neighbor which has 1 in the
1 < i < n. Routing starts by forwarding the message to a kth bit of its safety vector is selected. When a node receives
preferred neighbor where tiig — 1)th bit of its safety vec- @ message with an empty navigation vector, it identifies it-
tor is one, and this node in turn forwards the message to ones€lf as the destination node by terminating the routing pro-
of its preferred neighbors that has 1 in fite- 2)th bitofits ~ cess and by keeping a copy of this message. Note that, at
safety vector, and so on. If the optimality condition fails but the source node, if both conditions for optimal and subopti-
there exists a spare neighbor that has one ir(the 1)th mal routing fail, the proposed algorithm cannot be applied.
bit of its safety vector, the message is first forwarded to this This failure state can be easily detected at the source node.
neighbor and then the optimal routing algorithm is applied. The cause of failure could be either too many faults in the
In this case, the length of the resultant path is the Hammingneighborhood or a network partition.

distance plus two. We call this result suboptimal.

Routing Algorithms. The routing process consists of two 6. Performance Evaluation

parts: unicastingat sourcenodeis applied at the source

node to decide the type of the routing algorithm and to per-  The simulation study focuses on the following three as-
form the first routing stepunicastingat.intermediatenode pects. (1) Percentage of optimal/suboptimal routing. (2)
is used at an intermediate node. In the proposed routingComparison of safety vector and extended safety vector in
process, anavigation vector N = s & d, is used which  terms of routing capability. (3) Performance results when
is the relative address between the source and destinatio@d = & (other thank = 2), i.e., each node knows the exact
nodes. This vector is determined at the source node and it iSault information that is within distance-k.

passed to a selected neighbor after resetting or setting (us- Percentage of optimal routing is measured by the proba-
ing H() the corresponding bitin N. Upon receiving a bility of an optimal routing using the proposed approach for
routing message, each intermediate node first calculates itéwo randomly selected source and destination nodes. Again,
preferred and spare neighbors based on the navigation vecan optimal routing to a distandeédestination is possible if



sr = 1 for the source node osfgfll = 1 for the source level and safety vector models to better handle link faults.
node’s preferred neighbor along dimensionn addition, The extended safety level model has been used to achieve
suboptimal routing is feasible, y}ﬁrl — 1 for the source  optimal and suboptimal routing in anrcube. A simulation
node’s spare neighbor along dimensioWhen the source ~ Study has been conducted based on different selectiafis of
and destination nodes are separated by 1- or 2-hop, opti@nd results have shown a significantimprovement under the
mal routing can be decided directly from the distance-1 and Proposed model over the safety vector model in handling
distance-2 information at the source node. Note that a min-link faults, even for a small value afsuch asi = 2.
imal path may exist even when ands» are both zero.
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# of Op Op Safety Vec. Ext. Safety Vec.
faults | (d=n) | (d=3) | Op SubOp| Op SubOp
8 99.99 | 99.99 | 99.99 | 0.0003| 99.99 | 0.0003
# of Op Op Safety Vec. Ext. Safety Vec. 15 99.99 | 99.99| 99.99| 0.001| 99.99| 0.001
faults | (d=n) | (d=3) | Op SubOp| Op SubOp 30 99.99| 99.99 | 99.98| 0.019| 99.98| 0.019
6 99.99| 99.99| 99.99| 0.006| 99.99| 0.006 40 99.99| 99.98 | 99.91| 0.087| 99.91| 0.087
10 99.98 | 99.98 | 99.97 | 0.030| 99.97| 0.030 50 99.99 | 99.95| 99.55| 0.422| 99.55| 0.422
15 99.96 | 99.90 | 99.81| 0.187| 99.81| 0.187 55 99.98 | 99.93| 99.13| 0.736| 99.13| 0.736
20 99.91| 99.75| 99.03| 0.832| 99.03| 0.832 60 99.99 | 99.99 | 98.22 | 1.386| 98.22| 1.386
22 99.89 | 99.65| 99.31| 1.372| 98.31| 1.372 65 99.98 | 99.87 | 96.91| 2.217| 96.91| 2.217
25 99.86 | 99.43 | 96.37 | 2.583| 96.37| 2.853 70 99.97 | 99.83 | 93.83| 3.685| 93.83| 3.685
28 99.80 | 99.09 | 93.05| 3.987| 93.05| 3.987 75 99.97 | 99.77 | 90.08 | 5.180| 90.08 | 5.180

30 99.77 | 98.75| 90.74 | 4.950| 90.74| 4.950

(a) When all faults are node faults in 10-cubes
(a) When all faults are node faults in 8-cubes
# of Op Op Safety Vec. Ext. Safety Vec.
# of Op Op Safety Vec. Ext. Safety Vec. faults | (d=n) | (d=3) | Op SubOp| Op SubOp
faults | (d=n) | (d=3) | Op SubOp| Op SubOp 8 99.99| 99.99| 99.99| 0.001| 99.99| 0.001
6 99.99 | 99.98 | 99.97| 0.030| 99.98| 0.020 15 99.99| 99.99| 99.99| 0.008| 99.99| 0.003
10 99.98 | 99.95| 99.82| 0.176| 99.95| 0.050 30 99.99 | 99.98 | 99.88| 0.117| 99.98 | 0.014
15 99.96 | 99.89 | 99.16 | 0.782| 99.88| 0.122 40 99.99 | 99.98 | 99.33| 0.612| 99.97| 0.026
20 99.93| 99.80 | 95.81| 3.005| 99.70| 0.289 50 99.99 | 99.97 | 96.91| 2.337| 99.94| 0.056
22 99.92| 99.74 | 93.41| 4.353| 99.61| 0.380 55 99.99 | 99.96 | 94.05| 3.872| 99.92| 0.082
25 99.90 | 99.66 | 87.58 | 6.467| 99.30| 0.661 60 99.99| 99.95| 88.34| 6.032| 99.88| 0.114
28 99.87 | 99.56 | 79.28 | 8.500| 98.91| 1.003 65 99.98 | 99.94 | 81.76 | 7.713| 99.83| 0.172
30 99.85| 99.46 | 72.49 | 9.313| 98.45| 1.344 70 99.98| 99.93| 71.86| 9.035| 99.74| 0.248
75 99.98| 99.91 | 61.32| 9.635| 99.54| 0.426
(b) When half faults are node faults in 8-cubes
(b) When half faults are node faults in 10-cubes

# of Op Op Safety Vec. Ext. Safety Vec.
faults | (d=n) | (d=3) | Op SubOp| Op SubOp # of Op Op Safety Vec. Ext. Safety Vec.
6 99.98 | 99.96 | 99.90 | 0.097| 99.96| 0.039 faults | (d=n) | (d=3) | Op SubOp | Op SubOp
10 99.97 | 99.91| 99.50 | 0.487| 99.91| 0.090 8 99.99| 99.99 | 99.99| 0.004| 99.99| 0.002
15 99.95| 99.82| 97.30| 2.316| 99.82| 0.175 15 99.99| 99.99 | 99.97 | 0.022| 99.99| 0.006
20 99.92| 99.71| 88.30| 6.624| 99.70| 0.299 30 99.99| 99.99 | 99.62| 0.367| 99.98| 0.019
22 99.91| 99.65| 82.41| 8.432| 99.65| 0.347 40 99.99 | 99.97 | 97.01| 2.341| 99.97| 0.032
25 99.90 | 99.56 | 68.76 | 10.11| 99.55| 0.450 50 99.99| 99.95| 86.01| 6.977| 99.95| 0.049
28 99.88 | 99.47 | 58.38| 10.39| 99.45| 0.552 55 99.99| 99.94 | 7559 | 9.078| 99.94| 0.057
30 99.87 | 99.39 | 52.79 | 10.63| 99.35| 0.645 60 99.99 | 99.93| 63.41| 9.981| 99.93| 0.066
65 99.98 | 99.92 | 50.81| 9.885| 99.92| 0.078
(c) When all faults are link faults in 8-cubes 70 99.98| 99.91 | 42.67| 9.417| 99.91| 0.089
75 99.98| 99.90 | 35.82| 8.791| 99.90| 0.099

Table 1. Percentage of optimal and subopti-

mal routing under different models.

(c) When all faults are link faults in 10-cubes

Table 2. Percentage of optimal and subopti-

mal routing under different models.




