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Abstract

1 Reliable communication in cube-based multicomputers
using the extended safety vector concept is studied in this
paper. In our approach, each node in a cube-based mul-
ticomputer of dimensionn is associated with an extended
safety vector ofn bits, which is an approximated measure of
the number and distribution of faults in the neighborhood.
In the extended safety vector model, each node knows fault
information within distance-2 and fault information outside
distance-2 is coded in a special way based on the coded in-
formation of its neighbors. The extended safety vector of
each node can be easily calculated throughn � 1 rounds
of information exchanges among neighboring nodes. Opti-
mal unicasting between two nodes is guaranteed if thekth
bit of the safety vector of the source node is one, wherek is
the Hamming distance between the source and destination
nodes. In addition, the extended safety vector can be used
as a navigation tool to direct a message to its destination
through a minimal path. Simulation results show a signifi-
cant improvement in terms of optimal routing capability in a
hypercube with faulty links using the proposed model, com-
pared with the one using the original safety vector model.

1. Introduction

Many recent experimental and commercial multicom-
puters use direct-connected networks with the grid topol-
ogy. The binary hypercube [8] is one of the popular grid
structures. Several research prototypes and systems have
been built in the past two decades, including NCUBE-2, In-
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tel iPSC, and the Connection Machine. The more recently
built SGI Origin 2000 uses a variation of the hypercube
topologies.

Efficient interprocessor communication is a key to the
performance of a multicomputer.Unicasting is a one-to-
one communication between two nodes, one is called the
source node and the other the destination node. With the
rapid progress in VLSI and hardware technologies, the size
of computer systems has increased tremendously and the
probability of processor failure has also increased. As a
result, building a reliable multicomputer has become one
of the central issues, especially in the communication sub-
system which handles all interprocessor communications.
Among different routing (unicast) schemes, the classical
e-cube routing is simple to implement and provides high
throughput for uniform traffic; however, it cannot handle
even simple node or link faults due to its nonadaptive rout-
ing. Adaptive and fault-tolerant routing protocols have been
the subject of extensive research in recent years ([3], [4],
[7]). A general theory of fault-tolerant routing is discussed
in [2].

Limited-global-information-basedrouting is a com-
promise between local-information-based and global-
information-based approaches. A routing algorithm of this
type normally obtains an optimal or suboptimal solution and
requires a relatively simple process to collect and maintain
fault information in the neighborhood (such information is
called limited global information). Therefore, an approach
of this type can be more cost effective than the ones based
on global information [9] or local information ([1], [5]).

One simple but ineffective approach is to use distance-k

information in which each node knows the status of all com-
ponents within Hamming-distance-k (or simple distance-
k). However, optimality cannot be guaranteed, as a routing
process could possibly go to either a state where all mini-



mal paths are blocked by faulty components or a dead end
where backtracking is required. In addition, each node has
to maintain a relatively large table containing distance-k in-
formation.

Another approach is based on thecoded fault informa-
tion, where each node has the exact information of adjacent
nodes and information of other nodes are coded in a spe-
cial way. Then an optimal/suboptimal routing algorithm is
proposed based on the coded information associated with
each node. The following is a summary of different coding
methods in ann-cube, all of them are primarily designed to
cover node faults.

� Lee and Hayes’ [6]safeandunsafenode concept. A
nonfaulty node is unsafe if and only if there are at least
two unsafe or faulty neighbors. Therefore, each node
is labeled (coded) faulty, unsafe, or safe.

� Wu and Fernandez’ [12]extended safe nodeconcept
by relaxing certain conditions of Lee and Hayes’ defi-
nition. Each node is still labeled faulty, unsafe, or safe.
However, a different definition is given: A nonfaulty
node is unsafe if and only if there are two faulty neigh-
bors or there are at least three unsafe or faulty neigh-
bors.

� Wu’s safety level[11] concept where each node is as-
signed with a safety levelk, 0 � k � n. A node with
a safety levelk = n is called safe and a faulty node
is assigned with the lowest level0. Therefore, there
aren + 1 possible labels for a node in the safety level
model.

� Wu’s safety vector[10] concept where each node is
associated with a binary vector. The bit value of thekth
bit corresponds to the routing capability to nodes that
are distance-k away. The safety vector is a refinement
of the safety level model.

The effectiveness of a coding method is measured by the
following: (1) How fast fault information can be collected
(coded) at each node. (2) How accurate the coded fault in-
formation representing the real fault distribution in terms of
optimal routing capability.

Both safe/unsafe and extended safe/unsafe models re-
quireO(n2) rounds of information exchanges in ann-cube
to label (code) all the nodes. Both safety level and safety
vector need onlyO(n) rounds of information exchanges.
The order, in terms of accurately representing fault infor-
mation, is the following: safe/unsafe, extended safe/unsafe,
safety level, and safety vector. The safety vector is the lat-
est model that has a merit of simplicity and wide-range of
fault coverage. However, this model is still relatively inef-
ficient in handling of link faults. Basically, a link fault is
considered by other nodes as node fault(s) by treating two

end nodes of the link faulty. Each end node of a faulty link
treats the other one faulty, but it does not consider itself
faulty. This overly conservative approach generates many
faulty nodes that severely diminishes the routing capability
of the system.

In this paper, we propose a new coding methodology. It
is assumed that each node has precise information of fault
distribution within a given distanced. Fault information
outside distanced is coded, like the one used in safety vec-
tor. We selectd = 2 as an example and the corresponding
model is calledextended safety vector. Simulation results
show a significant improvement using the proposed model
in terms of optimal routing capability in a hypercube with
faulty links, compared with the one using the original safety
vector model. We also show that the selection ofd = 2 is
a right one and its results stay very close to the one using
global fault information, i.e.,d = n.

2. Preliminaries

Hypercubes. An n-cube (Qn) is a graph having2n nodes
labeled from0 to 2n � 1. Two nodes are joined by a link
if their addresses, as binary numbers, differ in exactly one
bit position. More specifically, every nodeu has an address
u(n)u(n� 1) � � �u(1) with u(i) 2 f0,1g, 1 � i � n, and
u(i) is called theith bit (dimension) of the address. We de-
note nodeu(i) the neighbor ofu along dimensioni. u(i) is
calculated by setting or resetting theith bit of u. For ex-
ample,1101(3) = 1001. This notation can be used to set
or reset theith bit of any binary string. A faultyn-cube in-
cludes faulty nodes and/or links. A faultyn-cube may or
may not be connected depending on the number and loca-
tion of faults. A path connecting two nodess andd is called
aminimal path(also called aHamming distance path) if its
length is equal to the Hamming distance between these two
nodes. An optimal (or minimal) routing is one which al-
ways generates a minimal path. In general, optimal routing
has a broader meaning which always generates a shortest
path, not necessarily a minimal one, among the available
ones. It is possible that all minimal paths are blocked by
faults. In this case, a shortest (available) path is not a mini-
mal one. In this paper, the above situation will never occur
and we use the terms shortest and minimal interchangeably.

The distance between two nodess and d is equal to
the Hamming distance between their binary addresses, de-
noted byH(s; d). Symbol� denotes the bitwise exclusive
OR operation on binary addresses of two nodes. Clearly,
s � d has value 1 atH(s; d) bit positions corresponding to
H(s; d) distinct dimensions. TheseH(s; d) dimensions are
called preferred dimensionsand the corresponding nodes
are termedpreferred neighbors. The remainingn�H(s; d)
dimensions are calledspare dimensionsand the correspond-
ing nodes arespare neighbors. A minimal path can be ob-



tained by using links at each of theseH(s; d) preferred di-
mensions in some order.

Safety Level and Safety Vector. Let us first review the
concepts of safety level and safety vector. Safety level and
safety vector are scalar and vector numbers associated with
each node in a givenn-cube, respectively. They provide
coded information about fault information in the neighbor-
hood.

Definition 1 [11]: The safety level of a faulty node is0. For
a nonfaulty nodeu, let (sl0; sl1; sl2; :::; sln�1), 0 � sli �
n, be the nondescending safety level sequence of nodeu’s
n neighboring nodes in an n-cube, such thatsli � sli+1,
0 � i < n� 1. The safety level of nodeu, sl(u), is defined
as: if (sl0; sl1; sl2; :::; sln�1) � (0; 1; 2; :::; n � 1)2, then
sl(u) = n, else if(sl0; sl1; sl2; :::; slk�1) � (0; 1; 2; :::; k�
1) ^ (slk = k � 1) thensl(u) = k.

In the above definition, it is assumed that all faults are
node faults. To extend this definition to cover link faults,
both end nodes of a faulty link have to be assigned a safety
level of 0 in order to be consistent with the original safety
level definition. The safety vector concept is a refinement
of the safety level concept by providing routing capabil-
ity to destinations at different distances. More specifically,
each nodeu in ann-cube is assigned with a safety vector
sv(u) = (u1; u2; :::; un).

Definition 2 [10]: The safety vector of a faulty node is
(0; 0; :::; 0). If nodeu is an end node of a faulty link, the
other end node will be registered with a safety vector of
(0; 0; :::; 0) at nodeu.

� Base for the first bit:

u1 =

(
0 if nodeu is an end-node of a faulty link

1 otherwise

� Inductive definition for thekth bit:

uk =

8<
:

0 if
P

1�i�n u
(i)
k�1 � n� k

1 otherwise

In the safety level (vector) model, a node in ann-cube
is said to besafeif its safety level isn ((1; 1; :::; 1)); oth-
erwise, it isunsafe. Two properties related to safety levels
and safety vectors are as follows:

Property 1: If the safety level of a node isk (0 < k � n),
then there is at least one Hamming distance path from this
node to any node within distance-k.

Property 2: Assume that(u1; u2; :::; un) is the safety vector
associated with nodeu in a faultyn-cube. Ifuk = 1 then

2
seq1 � seq2 if and only if each element inseq1 is larger than or

equal to the corresponding element inseq2.
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Figure 1. An example of a faulty 3-cube with
its safety level and safety vector assign-
ments.

there exists at least one Hamming distance path from node
u to any node that is exactly distance-k away.

Based on the above two properties, it is clear that a safe
node in both models can reach any destination node (which
is within Hamming distancen, the diameter of the cube)
through a minimal path. The safety vector model is an im-
provement based on the safety level model. It can provide
more and accurate information about the number and dis-
tribution of faults in ann-cube. However, the safety vector
concept still cannot effectively present faulty link informa-
tion. Actually, it is not clear that an efficient coding method
exists under the assumption that each node has only neigh-
bor information.

Fig. 1 shows an example of a 3-cube with one faulty node
and two faulty links. In this example, the safety level of
each node is either 0 or 1, i.e., a source node can only send
a message to its neighbors. Clearly, by inspection, the safety
level information is not accurate. For example, nodes 110,
101, and 111 can send a message to any nodes through a
minimal path that are distance-2 or -3 away. This problem
is partially resolved in the safety vector model, where the
safety vectors associated with nodes 110 and 111 are (0,1,0)
and (1,0,1), respectively. Nodes 001, 100, and 101 still have
the lowest safety level (0,0,0). The reason that node 101
has a 0-bit at the 2nd bit of its safety vector is that it has
two neighbors 100 and 001 with both 0-bit as the 1st bit of
their safety vectors. However, the two corresponding faulty
links (100, 110) and (101, 001) do not span on the same
dimension, and hence, these two faulty nodes will not block
all the minimal paths initiated from node 101 to a node that
is distance-2 away.

Based on the above analysis, the direction of each fault
(especially link fault) is needed to provide accurate infor-
mation about fault distribution. However, this approach will
dramatically increase the memory space requirement and
the coding complexity. A compromise is therefore needed.



3. Extended Safety Vectors

Proposed Model. In this section, we propose a new ap-
proach to code fault information. In general, a good coding
method is generated on the soundness of its base. In all
existing approaches, the base is based on neighbor informa-
tion only. For both safety level and safety vector models,
the above method is proved to be effective for node faults,
but not for link faults. Our approach here consists of the
following two steps (see Fig. 2):

1. Each node knows the exact fault information within
distance-d.

2. Fault information about nodes that are outside
distance-d is coded in a special way.

In this paper, we show an application of the proposed
model ond = 2; that is, each node knows fault informa-
tion within distance-2. Information about faults that are
more than distance-2 away are coded. We show thatd = 2
is sufficient to handle link faults and there is no need to
select a larged (this will be confirmed by our simulation
results later). This model is calledextended safety vector,
where the first two bits of an extended safety vector (for a
node) represent accurate fault information and other bitsk

are coded based on the(k � 1)th bit of its neighbors’. Note
that the regular safety vector model is a special case of this
approach whered = 1. Results of our simulation show a
dramatic improvement of this approach over the safety vec-
tor model in handling link faults.

Extended Safety Vectors. Let esv(u) = (u1; u2; :::; un)
be the extended safety vector of nodeu and esv(u) =

(u
(i)
1 ; u

(i)
2 ; :::; u

(i)
n ) be the extended safety vector of node

u(i), u’s neighbor along dimensioni. We have the follow-
ing inductive definition of extended safety vectoresv(u).

Definition 3: The safety vector of a faulty node is
(0; 0; :::; 0). If nodeu is an end node of a faulty link, the
other end node will be registered with a safety vector of
(0; 0; :::; 0) at nodeu.

� Base for the first bit:u1 = 1 if nodeu can reach any
neighbor, i.e.,

u1 =

(
0 if nodeu is an end-node of a faulty link

1 otherwise

� Base for the second bit:u2 = 1 if nodeu can reach
any nonfaulty and faulty nodes that are two hops away
through a minimal path (a decision process will be dis-
cussed later); otherwise,u2 = 0.

� Inductive definition for thekth bit, wherek � 3:

uk =

8<
:

0 if
P

1�i�n u
(i)
k�1 � n� k

1 otherwise

d

precise info.

coded info.

u

Figure 2. A new approach to code information.

In the extended safety vector model, in addition to the
information of adjacent links and nodes, each node has
complete information about adjacent links of its neighbors.
u1 = 1 (or u2 = 1) indicates the existence of a minimal
path to a nonfaulty nodes that are one hop (or two hops)
away. For the case ofu1 = 0 (or u2 = 0), such a minimal
path may or may not exist, but for a given source-destination
pair (that are one or two hops away) its existence can be eas-
ily verified based on distance-2 information. We use coded
information for destinations that are more than two hops
away. Therefore, for the case ofuk = 0, with k > 2,
the actual existence of a minimal path for a given source-
destination pair cannot be verified, that is,uk = 1 provides
a sufficient condition for the existence of a minimal path to
a distance-k node, but it is not a necessary condition.

To determineu2, nodeu needs to keepfaulty paths of
length 2 initiated from nodeu, i.e., a path along which
there exists at least one faulty link or node. A faulty path
(u; u(i); (u(i))(j)) can be simply represented by a dimen-
sion sequence(i; j). Clearly, an adjacent faulty link or
node along dimensioni can be represented as(i; ci), where
ci = f1; 2; :::; ng�fig. That is, any path(u; u(i); (u(i))(k)),
wherek 2 ci, is a faulty path of length 2. If both adjacent
link and node along dimensioni are healthy, but there are
adjacent faulty links along dimensions inc

0

i, wherec
0

i is a
subset (including empty set) ofci, the corresponding faulty
paths can be represented as(i; c

0

i). Note that information
about(i; c

0

i) is passed from nodeu(i) to nodeu. In general,
each nodeu in ann-cube has exactlyn pairs of(i; c

0

i), de-
noted asf(u) = f(i; c

0

i) : i 2 f1; 2; :::; ngg. Some(i; c
0

i)’s
correspond to healthy paths, wherec

0

i = fg is an empty set.

Theorem 1: u2 = 0 for nodeu if and only if there exist
(i; c

0

i) and(j; c
0

j) in f(u) such thatfig \ c
0

j 6= � andfjg \

c
0

i 6= �, where� = fg is an empty set.

Proof: There are two node-disjoint paths from nodeu to
another nodev that is distance-2 away. Suppose these two
nodes “span” on dimensionsi and j. Clearly, a path of
length 2 from nodeu to nodev is (i; j) and another is(j; i).



Calculating extended safety vectors:

1. In the first round, nodeu determinesu1 based on the
status of its adjacent links, and then, exchanges adja-
cent link and node status with all its neighbors’.

2. In the second round, nodeu constructsf(u) which is a
list of faulty paths of length 2 based on the information
collected in the first round.u2 is determined based
on f(u), and then, exchangesu2 with u

0

2s of all its
neighbors.

3. In thekth round (3 � k < n), nodeu determinesuk
based onuk�1’s collected in the previous round, and
then, exchangesuk with u

0

ks of all its neighbors.

4. In the nth round, nodeu determinesun based on
un�1’s collected in the previous round.

u cannot reachv if and only if (i; j) is in (i; c
0

i) (i.e., that
path is faulty) and(j; i) is in (j; c

0

j). In this case, we have

fig \ c
0

j 6= � andfjg \ c
0

i 6= �.

In the example of Fig. 1, ifu = 111, then f(u) =
f(1; f2g); (2; f3g); (3; f1; 2g)g. Based on the above theo-
rem, the second bitu2 of the safety vector associated with
node 111 is 1. Clearly, bitsu1 andu2 can be determined
through 2 rounds of information exchanges among neigh-
boring nodes andu3, u4, ..., un each needs one round.
Therefore, the extended safety vector(u1; u2; :::; un) of
nodeu in ann-cube can be calculated throughn�1 rounds
of information exchanges among neighboring nodes.

Theorem 2: The extended safety vector of each node in an
n-cube can be determined throughn�1 rounds of informa-
tion exchanges between adjacent nodes.

4. Examples and Properties

Fig. 3 shows an example of a faulty 4-cube with two
faulty nodes 0001 and 1011 and two faulty links (0000,
0010) and (1100, 1101). The safety vector of each node
is shown under both the safety vector and extended safety
vector (on top) models. The safety level of each node is
placed inside each node. Nodes 0001 and 1011 have an
extended safety vector(0; 0; 0; 0), nodes 0010, 1100, and
1101 have an extended safety vector(0; 1; 1; 1), 0011 has
(1,0,1,1) and 0000 has (0,0,1,1), and the remaining nodes
have a safety vector(1; 1; 1; 1).

In the following we show several properties related to
extended safety vectors.

Theorem 3: Assume that(u1; u2; :::; un) is the extended
safety vector associated with nodeu in a faultyn-cube. If
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Figure 3. A faulty 4-cube with two faulty nodes
and two faulty links.

uk = 1 then there exists at least one Hamming distance
path from nodeu to any node which is exactly distance-k
away.

Proof: We prove this theorem by induction onk. If u1 = 1
(wherek = 1), there is no adjacent faulty link. Clearly node
u can reach all the neighboring nodes, faulty and nonfaulty.
If u2 = 1 (wherek = 2), based on the definition ofu2,
there is a minimal path to any destination that is distance-
2 away from the source. Assume that this theorem holds
for k = l, i.e., if ul = 1 there exists at least one Ham-
ming distance path from nodeu to any node which is ex-
actly distance-l away. Whenk = l + 1, if ul+1 = 1 thenP

1�i�n u
(i)
l > n � (l + 1), which means that there are at

mostl neighbors which have 0 at thelth bit of their safety
vectors. Therefore, amongl + 1 preferred neighbors, there
is at least one neighbor, say nodev, that has itslth safety
bit set. Based on the induction assumption, there is at least
one Hamming distance path from nodev to any destination
node, sayw, which is distance-l away. Connecting the link
from nodeu to nodev to the path originated from nodev to
destination nodew, we construct a Hamming distance path
from nodeu to destination nodew which is distance-(l+1)
away.

Next we show that the extended safety vector is bet-
ter than the regular safety vector in terms of accurately
representing fault information (Figure 4 is such an exam-
ple). Consider a vertexu in an n-cube with safety vec-
tor sv(u) = (u1; u2; :::; un) and extended safety vector
esv(u) = (u

0

1; u
0

2; :::; u
0

n), the extended safety vector is said
to cover the safety vector at nodeu, if u

0

k � uk for all
1 � k � n. Intuitively, if ev(u) coversv(u) at thekth bit,
then the routing based on the extended safety vector has at
least the same routing capability as one based on the safety
vector to all destinations that are distance-k away.

Theorem 4: For any given faultyn-cube,esv(u) covers
sv(u) for any nodeu in the cube.



Proof: We assume that a general node in a given cube
is represented asu, with esv(u) = (u

0

1; u
0

2; :::; u
0

n) and
sv(u) = (u1; u2; :::; un) as extended safety vector and
safety vector, respectively. We prove the theorem by in-
duction onk in bit uk for all nodes in the cube. When
k = 1, u1 has the same definition asu

0

1 for all nodes.
Clearly, u

0

1 � u1. Whenk = 2, based on Property 2,
u2 = 1 means that there is a minimal path to any node
that is distance-2 away. On the other hand,u

0

2 = 1 if and
only if there is a minimal path to any node that is distance-
2 away. Hence, ifu2 = 1 then u

0

2 = 1. The reverse
condition normally does not hold. Therefore,u

0

2 covers
u2. Assume that the theorem holds fork = l > 2, i.e.,
u

0(i)
l � u

(i)
l for all l. When k = l + 1, ul+1 = 1 ifP

1�i�n u
(i)
l > n�(l+1) andu

0

l+1 = 1 if
P

1�i�n u
0(i)
l >

n � (l + 1). Based on the fact thatu
0(i)
l � u

(i)
l for all i,

wherei 2 f1; 2; :::; ng,
P

1�i�n u
0(i)
l > n� (l+1) impliesP

1�i�n u
(i)
l > n�(l+1), i.e.,u

0

l+1 = 1 impliesul+1 = 1.

5. Fault-Tolerant Routing

Basic Idea. The routing algorithm is similar to the one
in [10]. Suppose that source nodes, with safety vector
(s1; s2; :::; sn), intends to forward a message to a node that
is distance-k away.(s(i)1 ; s

(i)
2 ; :::; s

(i)
n ) is the safety vector of

neighbors(i). The optimality is guaranteed if thekth bit of
its safety vector is 1 (sk = 1) or one of its preferred neigh-
bors’ (along dimensioni) (k � 1)th bit is 1, i.e.,s(i)k�1 = 1,
1 � i � n. Routing starts by forwarding the message to a
preferred neighbor where the(k� 1)th bit of its safety vec-
tor is one, and this node in turn forwards the message to one
of its preferred neighbors that has 1 in the(k�2)th bit of its
safety vector, and so on. If the optimality condition fails but
there exists a spare neighbor that has one in the(k + 1)th
bit of its safety vector, the message is first forwarded to this
neighbor and then the optimal routing algorithm is applied.
In this case, the length of the resultant path is the Hamming
distance plus two. We call this result suboptimal.

Routing Algorithms . The routing process consists of two
parts: unicastingat sourcenode is applied at the source
node to decide the type of the routing algorithm and to per-
form the first routing step.unicastingat intermediatenode
is used at an intermediate node. In the proposed routing
process, anavigation vector, N = s � d, is used which
is the relative address between the source and destination
nodes. This vector is determined at the source node and it is
passed to a selected neighbor after resetting or setting (us-
ing H(i)) the corresponding biti in N . Upon receiving a
routing message, each intermediate node first calculates its
preferred and spare neighbors based on the navigation vec-

Algorithm unicastingat sourcenode
begin
N = s� d; k = js� dj;

if sk = 1 _ 9i(s
(i)
k�1 = 1 ^N(i) = 1)_

(k = 1 (or 2)^ a healthy 1-hop (or 2-hop) path
along dimensioni exists)

then optimal unicasting:
send(m;N (i)) to s(i), wheres(i)k�1 = 1 ^ N(i) = 1

else if9 i(s(i)k+1 = 1 ^N(i) = 0)
then suboptimalunicasting:

send(m;N (i)) to s(i), wheres(i)k+1 = 1
elsefailure

end.

Algorithm unicastingat intermediatenode
begin
fat any intermediate nodeu with messagem and
navigation vectorNg
if N = 0
then stop

else send(m;N (i)) to u(i), whereu(i)k�1 = 1 ^ N(i) = 1
end.

tor associated with the message. If this intermediate node is
distance-(k + 1) away from the destination node (this dis-
tance can be determined based on the number of 1’s in the
navigation vector), a preferred neighbor which has 1 in the
kth bit of its safety vector is selected. When a node receives
a message with an empty navigation vector, it identifies it-
self as the destination node by terminating the routing pro-
cess and by keeping a copy of this message. Note that, at
the source node, if both conditions for optimal and subopti-
mal routing fail, the proposed algorithm cannot be applied.
This failure state can be easily detected at the source node.
The cause of failure could be either too many faults in the
neighborhood or a network partition.

6. Performance Evaluation

The simulation study focuses on the following three as-
pects. (1) Percentage of optimal/suboptimal routing. (2)
Comparison of safety vector and extended safety vector in
terms of routing capability. (3) Performance results when
d = k (other thank = 2), i.e., each node knows the exact
fault information that is within distance-k.

Percentage of optimal routing is measured by the proba-
bility of an optimal routing using the proposed approach for
two randomly selected source and destination nodes. Again,
an optimal routing to a distance-k destination is possible if



sk = 1 for the source node ors(i)k�1 = 1 for the source
node’s preferred neighbor along dimensioni. In addition,
suboptimal routing is feasible, ifs(i)k+1 = 1 for the source
node’s spare neighbor along dimensioni. When the source
and destination nodes are separated by 1- or 2-hop, opti-
mal routing can be decided directly from the distance-1 and
distance-2 information at the source node. Note that a min-
imal path may exist even whens1 ands2 are both zero.

Routing capability of safety vector and extended safety
vector is compared mainly under the above two measures.
Tables 1 and 2 show simulation results for 8-cubes and 10-
cubes, respectively. Each table contains three subtables for
three different distributions of faults: (a) represents cases of
all faults being node faults; (b) for half faults being node
faults and the other half being link faults; and (c) for all
faults being link faults. Within each cube, for a given num-
ber of faults, these faults are randomly generated based on
the specificed distribution of link and node faults. We se-
lected 100 different fault distributions for each case. For
a given fault distribution, we randomly selected 200,000
source and destination pairs. Percentage of the actual op-
timal routing is also reported (in the second column of each
subtable). This also corresponds to cases when global fault
information is given, i.e.,d = n. Percentage of optimal
routing, when distance-3 information is given, is shown in
the third column of each subtable.

Based on results in Tables 1 and 2, the percentage of op-
timal routing under the extended safety vector model (when
d = 2) stays very close to the one with global information
(whend = n) for all cases. That is, the model ford = 2
is sufficient. Note that when all faults are node faults, the
safety vector and the extended safety vector models are the
same. However, as the percentage of link faults increases,
the results for the safety vector model deteriorate quickly,
especially for large numbers of faults. For example, when
there are 75 link faults (no node faults) in a 10-cube, the
percentage of optimal routing is only 35.82 percentage. For
the extended safety vector model, the percentage of opti-
mal routing remains high, especially when there is a high
percentage of link faults. The summation of percentages of
optimal (Op) and suboptimal (SubOp) routing corresponds
to the percentage of the applicability of the corrsponding
approach, which is either safety vector (d = 1) or extended
safety vector (d = 2).

7. Conclusions

We have proposed a new coding method of limited global
fault information in ann-cube. First each node collects
precise fault information within distance-d, and then, fault
information about nodes that are more than distance-d is
coded in a special way. A model, called extended safety
vector, has been proposed which is extended from the safety

level and safety vector models to better handle link faults.
The extended safety level model has been used to achieve
optimal and suboptimal routing in ann-cube. A simulation
study has been conducted based on different selections ofd

and results have shown a significant improvement under the
proposed model over the safety vector model in handling
link faults, even for a small value ofd such asd = 2.
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# of Op Op Safety Vec. Ext. Safety Vec.
faults (d=n) (d=3) Op SubOp Op SubOp
6 99.99 99.99 99.99 0.006 99.99 0.006
10 99.98 99.98 99.97 0.030 99.97 0.030
15 99.96 99.90 99.81 0.187 99.81 0.187
20 99.91 99.75 99.03 0.832 99.03 0.832
22 99.89 99.65 99.31 1.372 98.31 1.372
25 99.86 99.43 96.37 2.583 96.37 2.853
28 99.80 99.09 93.05 3.987 93.05 3.987
30 99.77 98.75 90.74 4.950 90.74 4.950

(a) When all faults are node faults in 8-cubes

# of Op Op Safety Vec. Ext. Safety Vec.
faults (d=n) (d=3) Op SubOp Op SubOp
6 99.99 99.98 99.97 0.030 99.98 0.020
10 99.98 99.95 99.82 0.176 99.95 0.050
15 99.96 99.89 99.16 0.782 99.88 0.122
20 99.93 99.80 95.81 3.005 99.70 0.289
22 99.92 99.74 93.41 4.353 99.61 0.380
25 99.90 99.66 87.58 6.467 99.30 0.661
28 99.87 99.56 79.28 8.500 98.91 1.003
30 99.85 99.46 72.49 9.313 98.45 1.344

(b) When half faults are node faults in 8-cubes

# of Op Op Safety Vec. Ext. Safety Vec.
faults (d=n) (d=3) Op SubOp Op SubOp
6 99.98 99.96 99.90 0.097 99.96 0.039
10 99.97 99.91 99.50 0.487 99.91 0.090
15 99.95 99.82 97.30 2.316 99.82 0.175
20 99.92 99.71 88.30 6.624 99.70 0.299
22 99.91 99.65 82.41 8.432 99.65 0.347
25 99.90 99.56 68.76 10.11 99.55 0.450
28 99.88 99.47 58.38 10.39 99.45 0.552
30 99.87 99.39 52.79 10.63 99.35 0.645

(c) When all faults are link faults in 8-cubes

Table 1. Percentage of optimal and subopti-
mal routing under different models.

# of Op Op Safety Vec. Ext. Safety Vec.
faults (d=n) (d=3) Op SubOp Op SubOp
8 99.99 99.99 99.99 0.0003 99.99 0.0003
15 99.99 99.99 99.99 0.001 99.99 0.001
30 99.99 99.99 99.98 0.019 99.98 0.019
40 99.99 99.98 99.91 0.087 99.91 0.087
50 99.99 99.95 99.55 0.422 99.55 0.422
55 99.98 99.93 99.13 0.736 99.13 0.736
60 99.99 99.99 98.22 1.386 98.22 1.386
65 99.98 99.87 96.91 2.217 96.91 2.217
70 99.97 99.83 93.83 3.685 93.83 3.685
75 99.97 99.77 90.08 5.180 90.08 5.180

(a) When all faults are node faults in 10-cubes

# of Op Op Safety Vec. Ext. Safety Vec.
faults (d=n) (d=3) Op SubOp Op SubOp
8 99.99 99.99 99.99 0.001 99.99 0.001
15 99.99 99.99 99.99 0.008 99.99 0.003
30 99.99 99.98 99.88 0.117 99.98 0.014
40 99.99 99.98 99.33 0.612 99.97 0.026
50 99.99 99.97 96.91 2.337 99.94 0.056
55 99.99 99.96 94.05 3.872 99.92 0.082
60 99.99 99.95 88.34 6.032 99.88 0.114
65 99.98 99.94 81.76 7.713 99.83 0.172
70 99.98 99.93 71.86 9.035 99.74 0.248
75 99.98 99.91 61.32 9.635 99.54 0.426

(b) When half faults are node faults in 10-cubes

# of Op Op Safety Vec. Ext. Safety Vec.
faults (d=n) (d=3) Op SubOp Op SubOp
8 99.99 99.99 99.99 0.004 99.99 0.002
15 99.99 99.99 99.97 0.022 99.99 0.006
30 99.99 99.99 99.62 0.367 99.98 0.019
40 99.99 99.97 97.01 2.341 99.97 0.032
50 99.99 99.95 86.01 6.977 99.95 0.049
55 99.99 99.94 75.59 9.078 99.94 0.057
60 99.99 99.93 63.41 9.981 99.93 0.066
65 99.98 99.92 50.81 9.885 99.92 0.078
70 99.98 99.91 42.67 9.417 99.91 0.089
75 99.98 99.90 35.82 8.791 99.90 0.099

(c) When all faults are link faults in 10-cubes

Table 2. Percentage of optimal and subopti-
mal routing under different models.


