

Abstract

Peer-to-Peer (P2P) systems are characterized by direct
access between peer computers, rather than through a
centralized server. File sharing is the dominant P2P
application on the Internet, allowing users to easily contribute,
search and obtain content. P2P systems can be categorized by
the degrees of centralization. For fully centralized systems, the
lookup service will not be available when the central directory
server is down. For purely decentralized and unstructured
systems, since there is no information about which nodes are
likely to have the relevant files, searching essentially amounts
to random search. This makes the lookup service unscalable
and unpredictable. The objective of this paper is to design a
partially centralized, scalable and self-organizing lookup
service (XYZ) for wide area P2P systems. A clustering method
is used to create the system backbone by connecting the cluster
heads together and a color clustering method is adopted to
create color overlays and minimize the searching space.
Simulations and analysis are also provided. Extensions are
proposed to achieve better performance.

1. Introduction

File sharing is the dominant P2P application on the Internet,
allowing users to easily contribute, search, and obtain content. It
raises many interesting research problems in distributed
systems. This paper is focused on one of them, the lookup
problem: How do you find any given data item in a large P2P
system in a scalable manner, without any centralized servers or
hierarchy? Traditionally, there have been two flavors of P2P
lookup systems.

One approach is to maintain a central database that maps a
file name to the locations of servers that store the file. Napster
(http://www.napster.com/) adopts this approach for song titles,
but it has inherent reliability and scalability problems that make
it vulnerable to attacks on the database. Another approach, at
the other end of the spectrum, is for the consumer to broadcast a

message to all its neighbors with a request for a file. Gnutella
has a protocol in this style with some mechanisms to avoid
request loops. However, this “broadcast” approach doesn’t
scale either [16], because of the bandwidth consumed by
broadcast messages and the computing cycles consumed by the
many nodes that must handle these messages.

To reduce the cost of broadcast messages, one can organize
the nodes in the network into a hierarchy, like the Internet’s
Domain Name System (DNS) does. The disadvantage of the
hierarchical approach is that the nodes higher in the tree take a
larger fraction of the load than the leaf nodes, and therefore
require more expensive hardware and more careful
management. The failure or removal of the tree root or a node
sufficiently high in the hierarchy can be catastrophic.

The lookup service will not be available when the central
directory server is down for fully centralized systems. For
purely decentralized and unstructured systems, since there is no
information about which nodes are likely to have the relevant
files, searching essentially amounts to a random search. This
makes the lookup service unscalable and unpredictable.

In this paper we propose a partially centralized, scalable and
self-organizing lookup service (XYZ) for wide area P2P
systems. We use a clustering method to create the system
backbone by connecting the clusterheads together and use a
color-clustering method to create color overlays and minimize
the searching space. Since XYZ is not fully centralized, you
cannot shut it down by simply disabling the central directory
server. Since XYZ is not purely decentralized, searching is
guaranteed to be complete in a certain number of steps. Node
joins and node departures are also adaptive because XYZ is
self-organizing.

The contributions of this paper are as follows: We briefly
introduce some traditional P2P lookup algorithms. We propose
a new hybrid approach called XYZ which is partially
centralized, scalable and self-organizing. We conduct extensive
simulation and compare performance with some existing
systems.

The remainder of this paper is organized as follows: Section 2
discusses several recent P2P lookup algorithms that have

XYZ: A Scalable, Partially Centralized Lookup
Service for Large-Scale Peer-to-Peer Systems

Jianying Zhang and Jie Wu
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431

Email: jzhang2@fau.edu, jie@cse.fau.edu

provable guarantees including DHT and YAPPERS. Section 3
proposes the design of XYZ. Performance analysis and
simulation are presented in section 4, and the paper concludes in
Section 5.

2. Related Work

2.1. Types of P2P lookup

Traditionally, there are two flavors of P2P lookup algorithms.
The first kind consists of Gnutella-style networks. These
networks do not organize the content in the networks.
Consequently, answering a total lookup requires flooding the
entire network to search every node. SBO [21] is one of them. In
SBO, all peers are separated into two groups, red and white.
Each red peer builds a minimum spanning tree (MST). Unlike
pure flooding, queries will only be forwarded along the MST.
Although the total traffic and response time of the queries can be
reduced by SBO, the queries are flooded to all the peers and it
does not reduce the searching space. The nature of flooding
makes the lookup service inefficient and unpredictable.

 In contrast to Gnutella-style networks, several research
groups have recently developed algorithms for the lookup
problem that present a simple and general interface, a
distributed hash table (DHT). Some examples of DHT systems
are CAN [6], Chord [7], and Pastry [8]. The DHT interface is
built on top of an arbitrary overlay network to provide efficient
querying. A unique key is assigned to each data item and stored
in a DHT. To implement a DHT, the underlying algorithm must
be able to determine which node is responsible for storing the
data associated with any given key. To solve this problem, each
node maintains information (e.g., the IP address) of a small
number of other nodes (“neighbors”) in the system, forming an
overlay network and routing messages in the overlay to store
and retrieve keys. In the rest of this section, we review some
existing DHT-based lookup algorithms.

2.2. YAPPERS

Given the advantages and disadvantages of the Gnutella-style
networks and DHT-based systems, Ganesan, Sun, and
Garcia-Molina developed a hybrid system, YAPPERS [12],
that operates on top of an arbitrary overlay network, just as
Gnutella does, while providing DHT-like search efficiency.

Intuitively, YAPPERS works as follows: The key space of all
the keys that need to be stored is partitioned into a small number
of buckets. Each bucket has a unique color. Each node in the
network is also assigned a color. Each node can only store keys
that have the same color, so a query for a white key needs to be
forwarded only to white nodes in the network.

YAPPERS divides a large overlay network into many
small and overlapping neighborhoods (the immediate

neighborhoods). The immediate neighborhood of a node A,
denoted by IN(A), is the set of nodes where A may store its
<key, value> pairs. The data within each neighborhood is
partitioned among the neighbors like a distributed hash table.
When a lookup occurs and the neighborhood cannot satisfy the
request, YAPPERS intelligently forwards the request to nearby
neighborhoods, or the entire network if necessary. These
forwarding require each node to know a larger set of nodes (the
extended neighborhood EN(A)) that covers its neighbors’
neighbors.

More generally, if the radius of the immediate neighborhood
of a node is h, then it is necessary for the node to know all its
neighbors within (2h+1) hops of the extended neighborhood in
order to guarantee that we can jump though all the nodes with
the same color without touching any node with a different color.

3. XYZ

3.1. Basic ideas

A network can be logically represented as a set of clusters.
The key space of all the keys that need to be stored is partitioned
into a small number of buckets. Each bucket has a color. Every
node is also assigned a color according to its node ID. The
lookup strategy is to connect every node with the same color in
the entire network through virtual circuits to form overlays and
broadcast lookups within the overlay that have the same color as
the key. So if the key space is partitioned into m buckets, then
there are m overlays. A lookup for a red key will be broadcast
within the overlay formed by red nodes. The path taken by the
virtual circuit can change without affecting the overlay.

3.2. System design

� Data Structures

Every node belongs to a cluster of a CH (Cluster Head),
which is at most k hops away. Every node is also a part of a color
cluster of a CCH (Color Cluster Head), which is at most k hops
away. So, each node has a member table in which it stores its CH
ID and CCH ID (if the node is not a head), or cluster members’
IDs and neighboring CHs and CCHs’ IDs (if the node is a head
or boundary node).

Table 1 (a) shows a member-table stored at some non-head
node. Table 1 (b) is member-table stored at some CH. Table 1
(c) is member-table stored at some CCH. Table 1 (d) is
member-table stored at some boundary node.

� XYZ Construction

An XYZ system can be constructed in 2 stages.

� Stage 1: Clustering the whole network

In the first stage, nodes are partitioned into k-hop clusters
using the Lowest-ID algorithm [1], [2], and [3]. Each node in
the network broadcasts its node ID and clustering decision
exactly once. Each time a node receives a broadcast message
initiated by a node within its (k-1)-hop neighborhood, it
forwards it to all its neighbors.

Theorem 1: After k rounds, each node gets all the node IDs
within its k-hop neighborhood.

Theorem 1 is obvious if each node is willing to forward. It
can also be proved by induction. After round one, each node
knows its direct neighbors’ node IDs. After round two, each
node receives node IDs of its two-hop neighbors forwarded by
its direct neighbors. In this way, every node ID will be
propagated in its k-hop range.

 In the next step, all nodes whose ID is the lowest among all
their k-hop neighbors broadcast their decision to create clusters.
Node may hear the broadcasts by its neighbors. Then each
selects the lowest ID among neighboring CHs, if any, and
broadcasts the decision. If all neighbors who have a lower ID
send their decisions and none declare itself a CH, the node
decides to create its own cluster and declare itself a CH. Thus
each node broadcasts its clustering decision after all its k-hop
neighbors with lower IDs have already done so. Every node
belongs to only one cluster. Clusterheads elected in this step are
also called global CHs. Figure 1 shows 1-hop clusters produced
by the lowest-ID algorithm.

In Figure 1, nodes 1, 18, 5, and 14 have the lowest IDs in their
1-hop neighborhood, so they declare themselves as CHs. Then
their 1-hop neighbors join the neighboring CH with the lowest
ID. Once node 2 decides to join node 1’s cluster, node 3 can
claim itself as CH. And once node 6 decides to join node 5’s
cluster, node 10 can claim itself as CH.

Theorem 2: Each node will eventually make a decision and
joins only one cluster.

Proof: According to the algorithm, nodes with the lowest IDs
within their k-hop neighborhood are eligible to declare
themselves CHs. Then nodes with a higher ID can make
decisions. Since there are finite nodes in each node’s k-hop
neighborhood, there are finite nodes with a lower ID. So, a node
is eligible to make a decision after finite steps. Although there
may be more than one CH in a node’s k-hop neighborhood,
there is only one CH with the lowest ID. So a node will only join
one cluster.

After the first two steps, each node knows the clustering
decisions made by all neighbors. A node is a boundary node if
one of its immediate neighbors belongs to a different cluster. All
the boundary nodes send their neighboring clusterhead ID to
their clusterhead. The network backbone can be easily set up by
connecting all the neighboring clusterheads together. In Figure
2, node 24 tells its clusterhead node 3 that node 5 and node 6 are
neighboring clusterheads. Node 80 tells node 3 that node 6 and
node 7 are neighboring clusterheads. A backbone can be set up
and works properly as long as the network is a connected graph.

� Stage 2: Clustering nodes with the same color

In the second stage, nodes within k hops with the same color
are partitioned into color clusters. This stage is the same as
stage 1, but only nodes with the same color and directly
connected will be involved. Here the directly connected means
no intermediate nodes with other colors. For example, in Figure
2, white node 54 has to connect white node 92 through some
black nodes, so they can not do color clustering together.
Instead, node 92 will do color clustering with node 42 and 50,
and node 54 will do color clustering with node 68. Also, nodes
do not need to broadcast node IDs again since we can use the
neighbor info gathered from stage 1. Clusterheads elected in
stage 2 are denoted as CCHs.

Theorem 3: Each node will eventually make a decision and join
only one color cluster.

Proof: The proof of Theorem 3 is similar to that of Theorem 2,
discussed above.

Table 1
Member tables

Member Type Member ID

CH 1

CCH 13

CCH 2

: :

CCH 7

Member Type Member ID

Color cluster 42

Color cluster 59

: :

NeighberingCCH 11

 (a)

 (c) (d)

Member Type Member ID Color CCH

cluster 12 Black Yes

 cluster 23 White No

: : : :

NeighberingCH 4 Black Yes

NeighberingCH 9 White Yes

Member Type Member ID

CH 17

CCH 21

NeighboringCH 30

NeighboringCH 7

 (b)

15

17

14

16

8
9

7

5

6

20

13

10

12

18

11

19

4

2
1

3

CH

Figure 1. Lowest-ID clustering

Next, CCHs with the same color are connected through
virtual links to form an overlay. Every CH knows all the CCHs
in its cluster and all the neighboring CHs. Every CCH sends a
request to its CH. The CH will respond with all the other CCHs’
IDs with the same color and forward the request to all the
neighboring CHs if it has not forwarded such a request from a
CCH with the same color yet. Once a CH receives a forwarded
request from a neighboring CH, it will send the corresponding
CCHs in its cluster to the generator of the request and stop
forwarding the request.

By doing this, CCHs within the same cluster can be
connected easily. Then neighboring CCHs with the same color
can also be connected. But all the CCHs with the same color
may not be connected as one component if some global cluster
does not have any CCH of that kind of color. For example, if
cluster 6 in Figure 4 does not exist, then white CCHs 54 and 42
are connected as a component. The other white CCHs 4, 60, 16,
18, 82, 14 and 76 are connected as another component.
Obviously these white overlay components are disconnected
since there is no white CCH in global cluster 5.

In order to solve this problem, the CHs that do not have any of
the requested CCHs must work as relay nodes and forward the
request to neighboring CHs. The request will jump between
global CHs until a CH which has CCHs of the requested color is
found. Since all the clusters are connected, any two
disconnected CCHs with the same color can get connected
through intermediate global CHs. So, all the CCHs with the
same color can get connected to form a color overlay.

Theorem 4: A color overlay can be formed for each color by
connecting all the CCHs with the same color together.

Because all the global CHs are connected as a backbone, all

the CCHs with the same color can find each other by checking
CHs on the backbone.

� System maintenance

Node join: When a node joins the network, it asks its immediate
neighbors about their CHs to see if there is any global CH within
k-hop range. It joins the cluster of the CH within k-hops that has
the lowest ID if more than one such CH exists. If there is no CH
within its k-hop range, it will claim itself as a CH to form a new
cluster, which consists only of itself. One of the new node’s
immediate neighbors that has the same color will also send its
CCH ID to the new node. If the CCH is within the new node’s
k-hop range, it will select the CCH as its CCH; otherwise it will
claim itself as CCH. If the new node has no neighbor with the
same color, it will ask its CH for a CCH. The CH will either send
a CCH in its cluster if it has such one or ask a neighboring CH to
send one to the new node if itself does not have such CCH. In
this case, the new node claims itself as CCH. Once it has
selected its CH and CCH, it broadcasts its decision within the
k-hop neighborhood. It also sends a join message to neighboring
CHs to join the network backbone if it is a CH, and sends a join
message to neighboring CCHs to join the corresponding color
overlay if it is a CCH.

Node departure: If the node that left was a global CH, then all
the nodes within its cluster need to do clustering again. Once all
the new clusterheads are selected, they send a message to
neighboring CHs to repair the backbone. If the node that left
was a CCH, then all the nodes in its color cluster need to do
color clustering again. Any new color clusterhead that is
selected sends a message to its global CH to seek neighboring
CCHs and sends a join message to them to join the
corresponding color overlay. Node failure can also be
considered as node departure. In case a node failure breaks the
connected network into 2 parts, all the nodes in the broken
joined cluster will either join neighboring clusters or select a
new CH and CCHs. The new CH and CCHs will connect to
neighboring CHs and CCHs to be part of the backbone and color
overlay. You can see that XYZ is self organizing. Separated
networks will work as separated XYZ systems. Separated
backbones and overlays will remain functional.

We can reconstruct the XYZ system periodically, i.e.,
recluster the network, to maintain system consistency. This is
because run-time maintenance, the schemes of node joins and
node departures, is designed to be simple and affect nodes as
little as possible to maintain the network efficiency. It should be
noticed that maintenance overhead only applies to the small

1

3

9 6

5

7

4

Figure 3. Network backbone

CH

22

18

16

37

90

62

5

4136

84

6

77

65

7614

25

179

57

43
21

20

1

71

34
85

4

11

32

7
80

24

95

453

51

30

33

79
42

50

92

54

68

82

29

63

60
72

74

70
96

48

87

58

61

cluster 4

cluster 1

cluster 7

cluster 6

cluster 2

cluster 3

cluster 5

Figure 2. 2-Hop clustering

range of affected nodes and the rest of the system is still
functional. But by doing this, the resulting clusters may not be
consistent with the clusters clustered using lowest-ID algorithm
on all the nodes in the network. Although it is not necessary, in
order to keep the consistency, we can always cluster the whole
network using the lowest-ID algorithm periodically.

3.3. Case study

In this case, we use 2 colors and do 2-hop (k = 2) clustering in
the whole network and color overlays. A node is a white node if
its ID is even. A node is black if its ID is odd. Figure 2 shows
2-hop clusters produced by the lowest-ID algorithm. Figure 4
shows 2-hop clusters with CCHs labeled. Every boundary node
informs its CH of all its neighboring CHs. For example, in
cluster 1, node 62 is a boundary node. It informs its CH node 4
that node 5 is a neighboring CH. CH node 4 is also a boundary
node. So it knows node 1 is another neighboring CH. Once
every CH has figured out which other nodes are its neighboring
CHs, connecting those CHs together can easily set up the
network backbone. Figure 3 is the backbone of the network in
Figure 2.

After all the color clusters are constructed, all the CCHs with
the same color are connected to form overlays. At first, all the
CCHs with the same color in a cluster are introduced by their
CH, so the connections between those CCHs can be set up
easily. For example, CCH 29 and 71 are 3 hops away. They do
not know each other. But they are both in cluster 1. It is CH 4’s
responsibility to introduce them. Then, the CCHs with the same
color in different clusters are connected by exchanging CCH
information between neighboring CHs.

Figure 5 shows the topology of the XYZ system formed by
color overlays. When node 94 joins the network, it checks its
immediate neighbors, node 25 and node 77, for their CHs. Node
25 returns 9 and node 7 returns 6. Since only CH node 9 is
within its 2-hop range, it will join cluster 4. Since it has no white

neighbors, it will claim itself as a CCH and asks its CH node 9
for neighboring white CCH. Node 9 will return either 14 or 76.
Then the new node 94 will send its decision to node 9 and node
14 or node 76 to join cluster 4 and the white color cluster. If
node 7 leaves the network, all the nodes in its cluster will do
clustering again because it is a CH. Nodes 33, 92 and 54 are the
new selected CHs. Three new clusters are formed in this case.
An interesting thing is all the new CHs are CCHs except node
92. That is because its 2-hop white neighbor node 42 has a
smaller ID.

3.4. Lookups

Once the system is constructed, it is easy to do lookup. If a
node is searching for a file that has the same color, it will send
the lookup (file_key) message with a timestamp and its ID to its
CCH. The CCH will forward the message to neighboring CCHs
in the same overlay. Any CCH that receives the lookup message
will broadcast it in its color cluster and forward it to neighboring
CCHs in the same overlay, except the one that forwarded the
message to it. Any node that has the file will reply to the
originator of the lookup message. Then, the lookup generator
can selectively download the file from one or many hosts.

If a node is searching for a file which has a different color, it
simply sends the lookup (file_key) message with a timestamp
and its ID to its CH. The CH forwards the message to a
corresponding CCH in the same cluster, if any, or forwards it to
a neighboring CH and asks the CH to forward the query to a
corresponding CCH in its cluster. Once a CCH receives the
lookup message, it floods it within the overlay it belongs to.

Theorem 5: The node that has the requested file will be

found if it exists.

All the nodes with the same color are connected by virtual

links in the color overlay. Once the lookup message reaches one

CCHCH Cluster Link Overlay Link Backbone

cluster 1
cluster 6cluster 3cluster 2 cluster 7cluster 4 cluster 5

cluster 1
cluster 6cluster 3cluster 2 cluster 7cluster 4 cluster 5

5

6

91

4

73

18

16

82

71

29

60

76

14

65

42

54

White Overlay

Black Overlay

61

Figure 5. System overview

cluster 4

cluster 1

cluster 7

cluster 6

cluster 2

cluster 3

CCHCH

22

18

16

37

90

62

5

4136

84

6

77

65

76
14

25

179

57

43

21
20

1

71

34

85

4

11

32

7
80

24

95

45
3

51

30

33

79
42

50

92

54

68

82

29

63

60

72

74

70
96

48

87

58

61

cluster 5

Figure 4. 2-Hop Clustering with CCHs labeled

node in the overlay, it can also reach others in the same overlay.
A timestamp and the originator ID can be attached with the
request, so duplicate requests will not be forwarded at any
nodes.

4. Performance Analysis and Simulation

4.1. Performance analysis

 As mentioned in section 3, the system construction process

consists of 6 steps. In the first step, each node propagates IDs of
nodes within k-1 hops. Then every node will receive the IDs of
all the nodes in its k-hop neighborhood. So the time complexity
of this step is O(k). The message complexity is dependent on the
network density. If every node has C k-hop neighbors in
average, then each node will send out C messages in each round.
So the message complexity is O(Ckn).

 In the second step, all nodes whose ID is the lowest among
all their k-hop neighbors declare themselves CHs; all nodes
whose ID is the lowest among all their k-hop neighbors with the
same color (no intermediate nodes with other colors) declare
themselves CCH; Each node broadcasts its clustering decision
and color clustering decision after all its k-hop neighbors with
lower IDs have already done so. In the best case, every CH has
the minimum ID within its k-hop neighborhood, so the time
complexity is O(k). In the worst case, CHs claim themselves as
clusterheads one by one. These CHs do not claim themselves as
clusterheads until all the k-hop neighbors with lower IDs have
made decisions. So in this case, the time complexity is O(d),
where d is the network diameter. The message complexity is the

same as it is in step 1.
 In the third step, all the boundary nodes send their

neighboring clusterhead ID to their clusterhead. The network
backbone is setup by connecting neighboring CHs together.
Since boundary nodes are at most k hops away from their CHs,
the time complexity is O(k). If the average node degree is r, then
each CH has at most rk boundary nodes. So the message
complexity is O(hrk) where h is the number of CHs.

In the fourth step, each CH introduces CCHs with the same
color in the same cluster to each other, so that CCHs with the
same color in a cluster are connected. Because the distance
between the CH and any CCH in the same cluster is at most k,
the time complexity is O(k). The message complexity is
dependant on the number of CCHs, which is at most n, i.e.,
O(n).

In the fifth step, neighboring CHs exchange CCH information
so that CCHs in different clusters can be connected to form a
color overlay. Since 2 CHs are at most 2k +1 hops away, the
time complexity is O(k), and the message complexity is O(h),
where h is the number of clusters.

In the last step, disconnected CCHs with the same color are
connected to form a color overlay. If the network diameter is d,
then the distance between any 2 CCHS is at most d. So, the time
complexity is O(d), and the message complexity is O(n),
because there are at most n intermediate nodes.

 In the XYZ system, the value of k, the radius of a cluster, and
the total number of colors will also affect the lookup
performance. If you increase the value of k, then the total
number of clusters will be decreased and the distance between
clusterheads will be increased, so messages can jump quickly
within the network. But each CH will store more information

C=1

1
1.5
2

2.5
3

3.5
4

1 2 3 4

K

Ho
ps

 N=50

N=100
N=300

C=1

400
600
800
1000
1200
1400
1600
1800

1 2 3 4

K

Ti
m

e(
us

ec
)

N=50
N=100
N=300

C=2

1
1.5
2

2.5
3

3.5
4

1 2 3 4

K

H
op

s

 N=50
N=100
N=300

C=2

400
600
800
1000
1200
1400
1600
1800

1 2 3 4

K

Ti
m

e(
us

ec
)

N=50
N=100
N=300

C=3

1
1.5
2

2.5
3

3.5
4

1 2 3 4

K

H
op

s

 N=50
N=100
N=300

C=3

400

600

800

1000

1200

1400

1 2 3 4

K

Ti
m

e(
us

ec
)

N=50
N=100
N=300

C=4

1
1.5
2

2.5
3

3.5
4

1 2 3 4

K

Ho
ps

 N=50

N=100
N=300

C=4

200
400
600
800
1000
1200
1400

1 2 3 4

K

Ti
m

e(
us

ec
)

N=50
N=100
N=300

Figure 7. Fixed C

K=1

1

1.5

2

2.5

3

3.5

4

1 2 3 4

Color

H
op

s

 N=50
N=100
N=300

K=1

400

600

800

1000

1200

1400

1600

1 2 3 4

Color

Ti
m

e(
us

ec
)

N=50
N=100
N=300

K=2

1

1.5

2

2.5

3

3.5

4

1 2 3 4

Color

H
op

s

 N=50
N=100
N=300

K=2

400

600

800

1000

1200

1400

1600

1 2 3 4

Color

Ti
m

e(
us

ec
)

N=50
N=100
N=300

K=3

1

1.5

2

2.5

3

3.5

1 2 3 4

Color

H
op

s

 N=50
N=100
N=300

K=3

400

600

800

1000

1200

1400

1600

1 2 3 4

Color

Ti
m

e(
us

ec
)

N=50
N=100
N=300

K=4

1

1.5

2

2.5

3

1 2 3 4

Color

H
op

s

 N=50
N=100
N=300

K=4

400
600
800
1000

1200
1400
1600
1800

1 2 3 4

Color

Ti
m

e(
us

ec
)

N=50
N=100
N=300

Figure 6. Fixed K

a
i
o
o
t
m

4

s
r
g
1

p
a
w
a
n
d

p

l

c
a

than those values in small networks. That is because the network
diameter increases, and more nodes are involved in the lookup
process. In Figure 6, it is shown that when k is fixed and color
increases, the average lookup time gets smaller. That is because
fewer nodes will be touched. The average number of lookup
hops does not change too much, since if k is fixed, the number of
hops between the lookup initiator and the host depends only on
the distance between them. Suppose both the source and
0%

20%

40%

60%

80%

100%

5 6 7 8 9

TTL

Pe
rc

en
t

0

2

4

6

8

10

12

5 6 7 8 9

TTL

C
op

ie
s

 (a) (b)

Figure 8. (a) Percentage of connected color overlay
 (b) Number of copies found for different TTL
bout its members since there are more nodes in its cluster. If we
ncrease the total number of colors, then the number of color
verlays will be increased and the number of nodes in each color
verlay will be decreased. So the lookup can be done in less
ime since fewer nodes will be visited. But the disadvantage is
ore overhead will be introduced to maintain more overlays.

.2. Simulation results

 Simulations have been done on a single station. In the
imulations, the range of k was selected from 1 to 4 and the
ange of color was selected from 1 to 4. There are three kinds of
raphs being used in the simulations: 50-node uniform graph,
00-node uniform graph, 300-node uniform graph.

For each pair of k and color, 800 random lookups were
erformed in each graph, then the average lookup time and
verage jumps between the lookup initiator and the file hosts
ere computed. Figure 6 fixes k and compares the lookup time

nd jumps for different numbers of colors. Figure 7 fixes the
umber of colors and compares the lookup time and jumps for
ifferent k.

The following metrics are used to evaluate the system
erformance:

1) Hops: the average number of hops/jumps required to route
 the lookup message between the lookup initiator and the
 file host.
2) Time: the average latency between when the lookup
 initiator sends out the request and receives the response

 from the file host.
The key design parameters affecting system performance are:
1) k: number of hops used to do clustering. This is also the
 radius of each cluster.
2) color: the total number of colors used to group all the
 nodes
3) N: number of nodes in the system.

 4) density: average number of neighbors of each node.
5) d: network diameter.

In a given network, N, density and d are all fixed. So the

ookup performance depends on k and colors only.
In Figures 6 and 7, it is shown that no matter what

ombination of k and color are used in the simulation, the
verage hops and time of lookups in large networks are greater

destination are CHs and the distance between them is 3k, then
the number of hops is 3k/k, which is 3. In Figure 7, it is shown
that when color is fixed and k increases, the average number of
lookup hops decreases. That’s because the radius of each cluster
is larger, which means lookup messages can jump further
between clusters. But in this case, the lookup time does not
change too much because with a fixed color, the number of
targeted nodes is fixed. All the lookup messages will be flooded
in the same group of nodes for different values of k.

Simulation results can be summarized as follows: When k is
fixed and color increases, the average look-up time gets smaller
but lookup hops does not change too much. When color is fixed
and k increases, the average lookup hops gets decreased but the
lookup time does not change too much.

We also did some simulations on a modified XYZ system.
Compared with the original XYZ system construction process,
we do not do the global clustering in the modified XYZ system.
What we do is color cluster the whole network. Then each CCH
broadcasts its role using a TTL (time to live). By doing this, all
the neighboring CCHs with the same color are known by each
other and hence they can be connected as a color overlay. The
problem with the modified XYZ is if the maximum distance
between any two CCHs with the same color is more than TTL
hops, then there will be more than 1 color overlay for that color,
and those overlays are not connected. Any lookup message
flooded in one partial color overlay will not be forwarded to
other partial overlays with the same color. This means a node
may not be able to find all the copies of a file in the network.

In the simulations, we did color clustering using k=4 in
300-node networks and set TTL to values greater than 4. When
k is 4, TTL has to be 5 or greater. Otherwise, broadcast
messages will not be able to be forwarded to neighboring CCHs,
which are at least 5 hops away. Figure 8(a) shows the percentage
of connected color overlays for each TTL. In other words, it
shows for each TTL, what is the probability to get all the CCHs
with the same color connected. You can see that when TTL
increases, the percentage also increases. The trend is true
because more nodes will be touched with a larger TTL. But, the
value of the percentage may vary in different networks because
it depends on the diameter of the network. Figure 8(b) shows
how many copies of the desired file are found for each TTL, no
matter whether every CCHs with the same color is connected as
a single overlay or not. It is easy to see that more copies can be
found for a larger TTL. That is because there is a better chance

for more CCHs with the same color to get connected, thus
lookup messages will be forwarded to more nodes.

5. Conclusions

This paper presents and evaluates XYZ, a generic
peer-to-peer content location and routing system based on a
self-organizing overlay network of nodes connected via the
Internet. XYZ is partially centralized: some nodes such as CHs
and CCHs play as system backbones, color overlay connectors,
and local central indexes for files shared by local peers within
the same color cluster. By using clusters and color overlays,
messages can jump between nodes more quickly, traveling
within color clusters and among color overlays. XYZ is
fault-resilient, scalable, and reliably routes a lookup message to
all the live nodes that have the file. You need at most  kd / +
2 steps to route messages between any nodes, which means any
lookup process can be done in a constant number of steps. Table
2 is the comparison of different P2P systems.

There are a couple of extensions that can make the XYZ
protocol practical in actual systems. These extensions include
caching and replication techniques for “Hot Spot” management.
In reality, hot spots will be overloaded when many nodes
request popular files from them in a short period of time. Some
caching and replication techniques commonly applied to the
World Wide Web are borrowed to solve this issue. Another
interesting topic introduced by caching and replication is the
question of storage space management. Because the storage
space at each node is limited, and it will affect the performance
of the system.

References

[1] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh,
“Max-min D-cluster formation in wireless ad hoc networks,”
In Proceedings of INFOCOM 2000, Mar. 2000.

[2] I. Stojmenovic, F. G. Nocetti, and J. S. Gonzalez, “Connectivity
based k-hop clustering in wireless networks,”
Telecommunication System, 22:1-4, 205-220, 2003.

[3] C.R. Lin and M. Gerla, “Adaptive clustering for mobile wireless
networks,” IEEE Journal on Selected Areas in Communications,
Vol.15, No. 7, pp. 1265-1275, Sept. 1997.

[4] M. Liu, R.R Talpade, A. McAuley, and E. Bommaiah, “Amroute:
ad-hoc multicast routing protocol,” CSHCN T.R.99-1 (ISR T.R.
99-8), Aug. 1999.

[5] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I.
Stoica, “Looking up data in P2P systems'', Communications of
the ACM, Vol. 46, No. 2, pp. 43-48, Feb. 2003.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” In Proceedings of
ACM SIGCOMM, Aug. 2001.

[7] I. Stoica, R. Morris , D. Karger , M. F. Kaashoek , and H.
Balakrishnan, “Chord: A scalable peer-to-peer lookup service for
Internet applications,” In Proceedings of ACM SIGCOMM, Aug.
2001.

[8] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems,”
In Proceedings of the 18th IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware 2001), Nov.
2001.

[9] K. Hildrum, J. D. Kubatowicz, S. Rao, and B. Y. Zhao,
“Distributed object location in a dynamic network,” In
Proceedings of 14th ACM Symp. on Parallel Algorithms and
Architectures, Aug. 2002.

[10] C. Plaxton, R. Rajaraman, and A. Richa, “Accessing nearby
copies of replicated objects in a distributed environment,” In
Proceedings of ACM SPAA, Jun. 1997.

[11] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A
distributed anonymous information storage and retrieval system,”
In Proceedings of ICSI Workshop on Design Issues in Anonymity
and Unobservability, Jun. 2000.

[12] P. Ganesan, Q. Sun, and H. Garcia-Molina, “YAPPERS: A
peer-to-peer lookup service over arbitrary topology,” In
Proceedings of INFOCOM 2003, Apr. 2003.

[13] M. Ripeanu and I. Foster, “Mapping the Gnutella network:
Macroscopic properties of large-scale peer-to-peer systems,” In
Proceedings of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS '02), MIT Faculty Club, Cambridge, MA, USA,
Mar. 2002.

[14] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J.
Pruyne, B. Richard, S. Rollins, and Z. Xu, “Peer-to-peer
computing,” HPL-2002-57, HP Laboratories Palo Alto, Mar.
2002.

[15] S. Androutsellis-Theotokis, “A survey of peer-to-peer file sharing
technologies,” Athens University of Economics and Business,
Mar. 2003.

[16] A. Oram, Ed., “Peer-to-peer: harnessing the power of disruptive
computation,” O’Reilly & Associates, Mar. 2001.

[17] Q. Lv, S. Ratnasamy, and S. Shenker, “Can heterogeneity make
Gnutella scalable?” In Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS '02), MIT Faculty
Club, Cambridge, MA, USA, Mar. 2002.

[18] http://kazaa.com
[19] http://grokster.com
[20] http://morpheus.com
[21] Y. Liu, L. Xiao, and L. M. Ni, "Building a scalable bipartite P2P

overlay network," In Proceedings of the 18th International
Parallel and Distributed Processing Symposium (IPDPS'04),
Apr. 2004.

Table 2

Comparison of different P2P systems

Algorithm Comparison Criteria

 P2P

System Model Parameters
Hops to

locate data
Routing state Peers join and leave

XYZ

Partially
centralized,
Broadcast requests
in overlay only

k-diameter of
cluster
c-number of
colors/overlays
d-diameter of
network

  2/ +kd Constant
Joins: constant

Leaves: 6k

Gnutella
Broadcast request
to as many peers
as possible,
download directly

None

No guarantee

Constant
(approx 3-7)

Constant

CAN
Multidimensional
coordinate space

N - number of
peers in network
d - number of
dimensions

dNd /1⋅ d⋅2 d⋅2

Chord
Uni-dimensional,
circular ID space

N - number of
peers in network Nlog Nlog 2)(log N

