
 
 
 

 

 

Abstract 
 

Peer-to-Peer (P2P) systems are characterized by direct 
access between peer computers, rather than through a 
centralized server. File sharing is the dominant P2P 
application on the Internet, allowing users to easily contribute, 
search and obtain content. P2P systems can be categorized by 
the degrees of centralization. For fully centralized systems, the 
lookup service will not be available when the central directory 
server is down. For purely decentralized and unstructured 
systems, since there is no information about which nodes are 
likely to have the relevant files, searching essentially amounts 
to random search. This makes the lookup service unscalable 
and unpredictable.  The objective of this paper is to design a 
partially centralized, scalable and self-organizing lookup 
service (XYZ) for wide area P2P systems. A clustering method 
is used to create the system backbone by connecting the cluster 
heads together and a color clustering method is adopted to 
create color overlays and minimize the searching space. 
Simulations and analysis are also provided. Extensions are 
proposed to achieve better performance.                                                                                                                          
  
 

1. Introduction 
 

File sharing is the dominant P2P application on the Internet, 
allowing users to easily contribute, search, and obtain content. It 
raises many interesting research problems in distributed 
systems. This paper is focused on one of them, the lookup 
problem: How do you find any given data item in a large P2P 
system in a scalable manner, without any centralized servers or 
hierarchy? Traditionally, there have been two flavors of P2P 
lookup systems. 

One approach is to maintain a central database that maps a 
file name to the locations of servers that store the file. Napster 
(http://www.napster.com/) adopts this approach for song titles,  
but it has inherent reliability and scalability problems that make 
it vulnerable to attacks on the database. Another approach, at 
the other end of the spectrum, is for the consumer to broadcast a 

message to all its neighbors with a request for a file. Gnutella 
has a protocol in this style with some mechanisms to avoid 
request loops. However, this “broadcast” approach doesn’t 
scale either [16], because of the bandwidth consumed by 
broadcast messages and the computing cycles consumed by the 
many nodes that must handle these messages.  

To reduce the cost of broadcast messages, one can organize 
the nodes in the network into a hierarchy, like the Internet’s 
Domain Name System (DNS) does. The disadvantage of the 
hierarchical approach is that the nodes higher in the tree take a 
larger fraction of the load than the leaf nodes, and therefore 
require more expensive hardware and more careful 
management. The failure or removal of the tree root or a node 
sufficiently high in the hierarchy can be catastrophic.   

The lookup service will not be available when the central 
directory server is down for fully centralized systems. For 
purely decentralized and unstructured systems, since there is no 
information about which nodes are likely to have the relevant 
files, searching essentially amounts to a random search. This 
makes the lookup service unscalable and unpredictable.   

In this paper we propose a partially centralized, scalable and 
self-organizing lookup service (XYZ) for wide area P2P 
systems. We use a clustering method to create the system 
backbone by connecting the clusterheads together and use a 
color-clustering method to create color overlays and minimize 
the searching space.  Since XYZ is not fully centralized, you 
cannot shut it down by simply disabling the central directory 
server. Since XYZ is not purely decentralized, searching is 
guaranteed to be complete in a certain number of steps. Node 
joins and node departures are also adaptive because XYZ is 
self-organizing. 

The contributions of this paper are as follows: We briefly 
introduce some traditional P2P lookup algorithms. We propose 
a new hybrid approach called XYZ which is partially 
centralized, scalable and self-organizing. We conduct extensive 
simulation and compare performance with some existing 
systems. 

The remainder of this paper is organized as follows: Section 2 
discusses several recent P2P lookup algorithms that have 
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provable guarantees including DHT and YAPPERS. Section 3 
proposes the design of XYZ.  Performance analysis and 
simulation are presented in section 4, and the paper concludes in 
Section 5. 

2. Related Work 
 
2.1. Types of P2P lookup 
 

Traditionally, there are two flavors of P2P lookup algorithms. 
The first kind consists of Gnutella-style networks. These 
networks do not organize the content in the networks. 
Consequently, answering a total lookup requires flooding the 
entire network to search every node. SBO [21] is one of them. In 
SBO, all peers are separated into two groups, red and white. 
Each red peer builds a minimum spanning tree (MST). Unlike 
pure flooding, queries will only be forwarded along the MST. 
Although the total traffic and response time of the queries can be 
reduced by SBO, the queries are flooded to all the peers and it 
does not reduce the searching space. The nature of flooding 
makes the lookup service inefficient and unpredictable.  

 In contrast to Gnutella-style networks, several research 
groups have recently developed algorithms for the lookup 
problem that present a simple and general interface, a 
distributed hash table (DHT). Some examples of DHT systems 
are CAN [6], Chord [7], and Pastry [8]. The DHT interface is 
built on top of an arbitrary overlay network to provide efficient 
querying. A unique key is assigned to each data item and stored 
in a DHT. To implement a DHT, the underlying algorithm must 
be able to determine which node is responsible for storing the 
data associated with any given key. To solve this problem, each 
node maintains information (e.g., the IP address) of a small 
number of other nodes (“neighbors”) in the system, forming an 
overlay network and routing messages in the overlay to store 
and retrieve keys. In the rest of this section, we review some 
existing DHT-based lookup algorithms. 

 
2.2. YAPPERS 
 

Given the advantages and disadvantages of the Gnutella-style 
networks and DHT-based systems, Ganesan, Sun, and 
Garcia-Molina developed a hybrid system, YAPPERS [12],  
that operates on top of an arbitrary overlay network, just as 
Gnutella does, while providing DHT-like search efficiency. 

Intuitively, YAPPERS works as follows: The key space of all 
the keys that need to be stored is partitioned into a small number 
of buckets. Each bucket has a unique color. Each node in the 
network is also assigned a color. Each node can only store keys 
that have the same color, so a query for a white key needs to be 
forwarded only to white nodes in the network. 

YAPPERS  divides   a   large  overlay   network  into  many  
small and overlapping neighborhoods (the immediate 

neighborhoods). The immediate neighborhood of a node A, 
denoted by IN(A), is the set of nodes where A may store its 
<key, value> pairs. The data within each neighborhood is 
partitioned among the neighbors like a distributed hash table. 
When a lookup occurs and the neighborhood cannot satisfy the 
request, YAPPERS intelligently forwards the request to nearby 
neighborhoods, or   the entire network   if necessary.  These 
forwarding require each node to know a larger set of nodes (the 
extended neighborhood EN(A)) that covers its neighbors’ 
neighbors.  

More generally, if the radius of the immediate neighborhood 
of a node is h, then it is necessary for the node to know all its 
neighbors within (2h+1) hops of the extended neighborhood in 
order to guarantee that we can jump though all the nodes with 
the same color without touching any node with a different color. 
 

3. XYZ 
 
3.1. Basic ideas  
 

A network can be logically represented as a set of clusters. 
The key space of all the keys that need to be stored is partitioned 
into a small number of buckets. Each bucket has a color. Every 
node is also assigned a color according to its node ID. The 
lookup strategy is to connect every node with the same color in 
the entire network through virtual circuits to form overlays and 
broadcast lookups within the overlay that have the same color as 
the key. So if the key space is partitioned into m buckets, then 
there are m overlays. A lookup for a red key will be broadcast 
within the overlay formed by red nodes. The path taken by the 
virtual circuit can change without affecting the overlay. 

 
3.2. System design 
 
� Data Structures 

Every node belongs to a cluster of a CH (Cluster Head), 
which is at most k hops away. Every node is also a part of a color 
cluster of a CCH (Color Cluster Head), which is at most k hops 
away. So, each node has a member table in which it stores its CH 
ID and CCH ID (if the node is not a head), or cluster members’ 
IDs and neighboring CHs and CCHs’ IDs (if the node is a head 
or boundary node). 

Table 1 (a) shows a member-table stored at some non-head 
node. Table 1 (b) is member-table stored at some CH. Table 1 
(c) is member-table stored at some CCH. Table 1 (d) is 
member-table stored at some boundary node. 
 
� XYZ Construction 

An XYZ system can be constructed in 2 stages.  
 

� Stage 1: Clustering the whole network 



 
 
 

 

In the first stage, nodes are partitioned into k-hop clusters 
using the Lowest-ID algorithm [1], [2], and [3]. Each node in 
the network broadcasts its node ID and clustering decision 
exactly once. Each time a node receives a broadcast message 
initiated by a node within its (k-1)-hop neighborhood, it 
forwards it to all its neighbors.  
 
Theorem 1: After k rounds, each node gets all the node IDs 
within its k-hop neighborhood. 
 

Theorem 1 is obvious if each node is willing to forward. It 
can also be proved by induction. After round one, each node 
knows its direct neighbors’ node IDs. After round two, each 
node receives node IDs of its two-hop neighbors forwarded by 
its direct neighbors. In this way, every node ID will be 
propagated in its k-hop range. 
 

 In the next step, all nodes whose ID is the lowest among all  
their k-hop neighbors broadcast their decision to create clusters.  
Node may hear the broadcasts by its neighbors. Then each 
selects the lowest ID among neighboring CHs, if any, and 
broadcasts the decision. If all neighbors who have a lower ID 
send their decisions and none declare itself a CH, the node 
decides to create its own cluster and declare itself a CH. Thus 
each node broadcasts its clustering decision after all its k-hop 
neighbors with lower IDs have already done so. Every node 
belongs to only one cluster. Clusterheads elected in this step are 
also called global CHs. Figure 1 shows 1-hop clusters produced 
by the lowest-ID algorithm. 

In Figure 1, nodes 1, 18, 5, and 14 have the lowest IDs in their 
1-hop neighborhood, so they declare themselves as CHs. Then 
their 1-hop neighbors join the neighboring CH with the lowest 
ID. Once node 2 decides to join node 1’s cluster, node 3 can 
claim itself as CH. And once node 6 decides to join node 5’s 
cluster, node 10 can claim itself as CH. 
 
Theorem 2: Each node will eventually make a decision and 
joins only one cluster. 

 
Proof: According to the algorithm, nodes with the lowest IDs  
within their k-hop neighborhood are eligible to declare 
themselves CHs. Then nodes with a higher ID can make 
decisions. Since there are finite nodes in each node’s k-hop 
neighborhood, there are finite nodes with a lower ID. So, a node 
is eligible to make a decision after finite steps. Although there 
may be more than one CH in a node’s k-hop neighborhood, 
there is only one CH with the lowest ID. So a node will only join 
one cluster. 
 

After the first two steps, each node knows the clustering 
decisions made by all neighbors. A node is a boundary node if 
one of its immediate neighbors belongs to a different cluster. All 
the boundary nodes send their neighboring clusterhead ID to 
their clusterhead. The network backbone can be easily set up by 
connecting all the neighboring clusterheads together. In Figure 
2, node 24 tells its clusterhead node 3 that node 5 and node 6 are 
neighboring clusterheads. Node 80 tells node 3 that node 6 and 
node 7 are neighboring clusterheads. A backbone can be set up 
and works properly as long as the network is a connected graph. 

 
� Stage 2: Clustering nodes with the same color 

In the second stage, nodes within k hops with the same color 
are partitioned into color clusters.  This stage is the same as 
stage 1, but only nodes with the same color and directly 
connected will be involved. Here the directly connected means 
no intermediate nodes with other colors. For example, in Figure 
2, white node 54 has to connect white node 92 through some 
black nodes, so they can not do color clustering together. 
Instead, node 92 will do color clustering with node 42 and 50, 
and node 54 will do color clustering with node 68. Also, nodes 
do not need to broadcast node IDs again since we can use the 
neighbor info gathered from stage 1. Clusterheads elected in 
stage 2 are denoted as CCHs. 
 
Theorem 3: Each node will eventually make a decision and join 
only one color cluster. 
 
Proof: The proof of Theorem 3 is similar to that of Theorem 2, 
discussed above. 

Table 1 
Member tables 

 
Member Type Member ID

CH 1

CCH 13

CCH 2

: :

CCH 7

Member Type Member ID

Color cluster 42

Color  cluster 59

: :

NeighberingCCH 11

 (a)

 (c)  (d)

Member Type Member ID Color CCH

cluster 12 Black Yes

 cluster 23 White No

: : : :

NeighberingCH 4 Black Yes

NeighberingCH 9 White Yes

Member Type Member ID

CH 17

CCH 21

NeighboringCH 30

NeighboringCH 7

 (b)
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Figure 1.   Lowest-ID clustering 



 
 
 

 

Next, CCHs with the same color are connected through 
virtual links to form an overlay. Every CH knows all the CCHs 
in its cluster and all the neighboring CHs. Every CCH sends a 
request to its CH. The CH will respond with all the other CCHs’ 
IDs with the same color and forward the request to all the 
neighboring CHs if it has not forwarded such a request from a 
CCH with the same color yet. Once a CH receives a forwarded 
request from a neighboring CH, it will send the corresponding 
CCHs in its cluster to the generator of the request and stop 
forwarding the request. 

By doing this, CCHs within the same cluster can be 
connected easily. Then neighboring CCHs with the same color 
can also be connected. But all the CCHs with the same color 
may not be connected as one component if some global cluster 
does not have any CCH of that kind of color. For example, if 
cluster 6 in Figure 4 does not exist, then white CCHs 54 and 42 
are connected as a component. The other white CCHs 4, 60, 16, 
18, 82, 14 and 76 are connected as another component. 
Obviously these white overlay components are disconnected 
since there is no white CCH in global cluster 5.  

In order to solve this problem, the CHs that do not have any of 
the requested CCHs must work as relay nodes and forward the 
request to neighboring CHs. The request will jump between 
global CHs until a CH which has CCHs of the requested color is 
found. Since all the clusters are connected, any two 
disconnected CCHs with the same color can get connected 
through intermediate global CHs. So, all the CCHs with the 
same color can get connected to form a color overlay. 
 
Theorem 4: A color overlay can be formed for each color by  
connecting all the CCHs with the same color together. 

 
Because all the global CHs are connected as a backbone, all 

the CCHs with the same color can find each other  by  checking 
CHs on the backbone. 
 

� System maintenance 

Node join: When a node joins the network, it asks its immediate 
neighbors about their CHs to see if there is any global CH within 
k-hop range. It joins the cluster of the CH within k-hops that has 
the lowest ID if more than one such CH exists. If there is no CH 
within its k-hop range, it will claim itself as a CH to form a new 
cluster, which consists only of itself. One of the new node’s 
immediate neighbors that has the same color will also send its 
CCH ID to the new node. If the CCH is within the new node’s 
k-hop range, it will select the CCH as its CCH; otherwise it will 
claim itself as CCH. If the new node has no neighbor with the 
same color, it will ask its CH for a CCH. The CH will either send 
a CCH in its cluster if it has such one or ask a neighboring CH to 
send one to the new node if itself does not have such CCH. In 
this case, the new node claims itself as CCH. Once it has 
selected its CH and CCH, it broadcasts its decision within the 
k-hop neighborhood. It also sends a join message to neighboring 
CHs to join the network backbone if it is a CH, and sends a join 
message to neighboring CCHs to join the corresponding color 
overlay if it is a CCH. 
 
Node departure: If the node that left was a global CH, then all 
the nodes within its cluster need to do clustering again.  Once all 
the new clusterheads are selected, they send a message to 
neighboring CHs to repair the backbone. If the node that left 
was a CCH, then all the nodes in its color cluster need to do 
color clustering again. Any new color clusterhead that is 
selected sends a message to its global CH to seek neighboring 
CCHs and sends a join message to them to join the 
corresponding color overlay.  Node failure can also be 
considered as node departure. In case a node failure breaks the 
connected network into 2 parts, all the nodes in the broken 
joined cluster will either join neighboring clusters or select a 
new CH and CCHs. The new CH and CCHs will connect to 
neighboring CHs and CCHs to be part of the backbone and color  
overlay. You can  see that  XYZ is  self  organizing.  Separated  
networks will work as separated XYZ systems. Separated 
backbones and overlays will remain functional. 

We can reconstruct the XYZ system periodically, i.e., 
recluster the network,  to maintain system  consistency.  This is 
because run-time maintenance, the schemes of node joins and 
node departures,  is designed to be simple  and affect  nodes  as 
little as possible to maintain the network efficiency. It should be 
noticed  that  maintenance  overhead  only  applies  to the small 
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Figure 3.   Network backbone 
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range of affected nodes and the rest of the system is still 
functional.  But by doing this, the resulting clusters may not be 
consistent with the clusters clustered using lowest-ID algorithm 
on all the nodes in the network. Although it is not necessary, in 
order to keep the consistency, we can always cluster the whole 
network using the lowest-ID algorithm periodically. 

 

3.3. Case study 
 

In this case, we use 2 colors and do 2-hop (k = 2) clustering in 
the whole network and color overlays. A node is a white node if 
its ID is even. A node is black if its ID is odd. Figure 2 shows 
2-hop clusters produced by the lowest-ID algorithm. Figure 4 
shows 2-hop clusters with CCHs labeled. Every boundary node 
informs its CH of all its neighboring CHs. For example, in 
cluster 1, node 62 is a boundary node. It informs its CH node 4 
that node 5 is a neighboring CH. CH node 4 is also a boundary 
node. So it knows node 1 is another neighboring CH. Once 
every CH has figured out which other nodes are its neighboring 
CHs, connecting those CHs together can easily set up the 
network backbone. Figure 3 is the backbone of the network in 
Figure 2. 

After all the color clusters are constructed, all the CCHs with 
the same color are connected to form overlays. At first, all the 
CCHs with the same color in a cluster are introduced by their 
CH, so the connections between those CCHs can be set up 
easily. For example, CCH 29 and 71 are 3 hops away. They do  
not know each other. But they are both in cluster 1. It is CH 4’s 
responsibility to introduce them. Then, the CCHs with the same 
color in different  clusters  are connected by  exchanging  CCH  
information between neighboring CHs. 

Figure 5 shows the topology of the XYZ system formed by 
color overlays. When node 94 joins the network, it checks its 
immediate neighbors, node 25 and node 77, for their CHs. Node  
25 returns 9 and node 7 returns 6. Since only CH node 9 is 
within its 2-hop range, it will join cluster 4. Since it has no white 

neighbors, it will claim itself as a CCH and asks its CH node 9 
for neighboring white CCH. Node 9 will return either 14 or 76. 
Then the new node 94 will send its decision to node 9 and node 
14 or node 76 to join cluster 4 and the white color cluster. If 
node 7 leaves the network, all the nodes in its cluster will do 
clustering again because it is a CH. Nodes 33, 92 and 54 are the 
new selected CHs. Three new clusters are formed in this case. 
An interesting thing is all the new CHs are CCHs except node 
92. That is because its 2-hop white neighbor node 42 has a 
smaller ID. 
 

3.4. Lookups 
 

Once the system is constructed, it is easy to do lookup. If a 
node is searching for a file that has the same color, it will send 
the lookup (file_key) message with a timestamp and its ID to its 
CCH. The CCH will forward the message to neighboring CCHs 
in the same overlay. Any CCH that receives the lookup message 
will broadcast it in its color cluster and forward it to neighboring 
CCHs in the same overlay, except the one that forwarded the 
message to it. Any node that has the file will reply to the 
originator of the lookup message. Then, the lookup generator 
can selectively download the file from one or many hosts. 

If a node is searching for a file which has a different color, it 
simply sends the lookup (file_key) message with a timestamp 
and its ID to its CH. The CH forwards the message to a 
corresponding CCH in the same cluster, if any, or forwards it to 
a neighboring CH and asks the CH to forward the query to a 
corresponding CCH in its cluster. Once a CCH receives the 
lookup message, it floods it within the overlay it belongs to.  

 
Theorem 5: The node that has the requested file will be 

found if it exists. 
 
All the nodes with the same color are connected by virtual 

links in the color overlay. Once the lookup message reaches one 
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Figure 4.  2-Hop Clustering with CCHs labeled 
 



 
 
 

 

node in the overlay, it can also reach others in the same overlay. 
A timestamp and the originator ID can be attached with the 
request, so duplicate requests will not be forwarded at any 
nodes. 

 

4. Performance Analysis and Simulation 
 
4.1. Performance analysis  

 
   As mentioned in section 3, the system construction process 

consists of 6 steps. In the first step, each node propagates IDs of 
nodes within k-1 hops. Then every node will receive the IDs of 
all the nodes in its k-hop neighborhood. So the time complexity 
of this step is O(k). The message complexity is dependent on the 
network density. If every node has C k-hop neighbors in 
average, then each node will send out C messages in each round. 
So the message complexity is O(Ckn). 

  In the second step, all nodes whose ID is the lowest among 
all their k-hop neighbors declare themselves CHs; all nodes 
whose ID is the lowest among all their k-hop neighbors with the 
same color (no intermediate nodes with other colors) declare 
themselves CCH; Each node broadcasts its clustering decision  
and color clustering decision after all its k-hop neighbors with 
lower IDs have already done so. In the best case, every CH has 
the minimum ID within its k-hop neighborhood, so the time 
complexity is O(k). In the worst case, CHs claim themselves as 
clusterheads one by one. These CHs do not claim themselves as 
clusterheads until all the k-hop neighbors with lower IDs have 
made decisions. So in this case, the time complexity is O(d), 
where d is the network diameter. The message complexity is the 

same as it is in step 1. 
  In the third step, all the boundary nodes send their 

neighboring clusterhead ID to their clusterhead. The network 
backbone is setup by connecting neighboring CHs together. 
Since boundary nodes are at most k hops away from their CHs, 
the time complexity is O(k). If the average node degree is r, then 
each CH has at most rk boundary nodes. So the message 
complexity is O(hrk) where h is the number of CHs. 

In the fourth step, each CH introduces CCHs with the same 
color in the same cluster to each other, so that CCHs with the 
same color in a cluster are connected. Because the distance 
between the CH and any CCH in the same cluster is at most k, 
the time complexity is O(k). The message complexity is 
dependant on the number of CCHs, which is at most n, i.e., 
O(n). 

In the fifth step, neighboring CHs exchange CCH information 
so that CCHs in different clusters can be connected to form a 
color overlay. Since 2 CHs are at most 2k +1 hops away, the 
time complexity is O(k), and the message complexity is O(h), 
where h is the number of clusters. 

In the last step, disconnected CCHs with the same color are 
connected to form a color overlay. If the network diameter is d, 
then the distance between any 2 CCHS is at most d. So, the time 
complexity is O(d), and the message complexity is O(n), 
because there are at most n intermediate nodes. 

 In the XYZ system, the value of k, the radius of a cluster, and 
the total number of colors will also affect the lookup 
performance. If you increase the value of k, then the total 
number of clusters will be decreased and the distance between 
clusterheads will be increased, so messages can jump quickly 
within the network. But each CH will store more information 
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than those values in small networks. That is because the network 
diameter increases, and more nodes are involved in the lookup 
process. In Figure 6, it is shown that when k is fixed and color 
increases, the average lookup time gets smaller. That is because 
fewer nodes will be touched. The average number of lookup 
hops does not change too much, since if k is fixed, the number of 
hops between the lookup initiator and the host depends only on 
the distance between them. Suppose both the source and 
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Figure 8.  (a)  Percentage of connected color overlay 
             (b)  Number of copies found for different TTL 
bout its members since there are more nodes in its cluster. If we 
ncrease the total number of colors, then the number of color 
verlays will be increased and the number of nodes in each color 
verlay will be decreased. So the lookup can be done in less 
ime since fewer nodes will be visited. But the disadvantage is 
ore overhead will be introduced to maintain more overlays. 
 

.2. Simulation results  
 

   Simulations have been done on a single station. In the 
imulations, the range of k was selected from 1 to 4 and the 
ange of color was selected from 1 to 4. There are three kinds of 
raphs being used in the simulations: 50-node uniform graph, 
00-node uniform graph, 300-node uniform graph.  

For each pair of k and color, 800 random lookups were 
erformed in each graph, then the average lookup time and 
verage jumps between the lookup initiator and the file hosts 
ere computed. Figure 6 fixes k and compares the lookup time 

nd jumps for different numbers of colors. Figure 7 fixes the 
umber of colors and compares the lookup time and jumps for 
ifferent k.  

The following metrics are used to evaluate the system 
erformance: 

1) Hops: the average number of hops/jumps required to route 
    the lookup message between the lookup initiator and the   
    file host. 
2) Time: the  average  latency  between  when  the  lookup                 
    initiator sends out the request and receives the response   

       from the file host. 
The key design parameters affecting system performance are: 
1) k: number of hops used to do clustering.  This   is also  the 
     radius of each cluster. 
2) color: the total number of colors used to group all the       
    nodes 
3) N: number of nodes in the system. 

 4) density: average number of neighbors of each node. 
5) d: network diameter. 
 
In a given network, N, density and d are all fixed. So the 

ookup performance depends on k and colors only. 
In Figures 6 and 7, it is shown that no matter what 

ombination of k and color are used in the simulation, the 
verage hops and time of lookups in large networks are greater 

destination are CHs and the distance between them is 3k, then 
the number of hops is 3k/k, which is 3. In Figure 7, it is shown 
that when color is fixed and k increases, the average number of 
lookup hops decreases. That’s because the radius of each cluster 
is larger, which means lookup messages can jump further 
between clusters. But in this case, the lookup time does not 
change too much because with a fixed color, the number of 
targeted nodes is fixed. All the lookup messages will be flooded 
in the same group of nodes for different values of k. 

Simulation results can be summarized as follows: When k is 
fixed and color increases, the average look-up time gets smaller 
but lookup hops does not change too much. When color is fixed 
and k increases, the average lookup hops gets decreased but the 
lookup time does not change too much. 

We also did some simulations on a modified XYZ system. 
Compared with the original XYZ system construction process, 
we do not do the global clustering in the modified XYZ system. 
What we do is color cluster the whole network. Then each CCH 
broadcasts its role using a TTL (time to live). By doing this, all 
the neighboring CCHs with the same color are known by each 
other and hence they can be connected as a color overlay. The 
problem with the modified XYZ is if the maximum distance 
between any two CCHs with the same color is more than TTL 
hops, then there will be more than 1 color overlay for that color, 
and those overlays are not connected. Any lookup message 
flooded in one partial color overlay will not be forwarded to 
other partial overlays with the same color. This means a node 
may not be able to find all the copies of a file in the network. 

In the simulations, we did color clustering using k=4 in 
300-node networks and set TTL to values greater than 4. When 
k is 4, TTL has to be 5 or greater. Otherwise, broadcast 
messages will not be able to be forwarded to neighboring CCHs, 
which are at least 5 hops away. Figure 8(a) shows the percentage 
of connected color overlays for each TTL. In other words, it 
shows for each TTL, what is the probability to get all the CCHs 
with the same color connected. You can see that when TTL 
increases, the percentage also increases. The trend is true 
because more nodes will be touched with a larger TTL. But, the 
value of the percentage may vary in different networks because 
it depends on the diameter of the network. Figure 8(b) shows 
how many copies of the desired file are found for each TTL, no 
matter whether every CCHs with the same color is connected as  
a single overlay or not. It is easy to see that more copies can be 
found for a larger TTL. That is because there is a better chance 



 
 
 

 

for more CCHs with the same color to get connected, thus 
lookup messages will be forwarded to more nodes. 

5. Conclusions  
 

This paper presents and evaluates XYZ, a generic 
peer-to-peer content location and routing system based on a 
self-organizing overlay network of nodes connected via the 
Internet. XYZ is partially centralized: some nodes such as CHs 
and CCHs play as system backbones, color overlay connectors, 
and local central indexes for files shared by local peers within 
the same color cluster. By using clusters and color overlays, 
messages can jump between nodes more quickly, traveling 
within color clusters and among color overlays. XYZ is 
fault-resilient, scalable, and reliably routes a lookup message to 
all the live nodes that have the file. You need at most  kd /  + 
2 steps to route messages between any nodes, which means any 
lookup process can be done in a constant number of steps. Table 
2 is the comparison of different P2P systems.  

There are a couple of extensions that can make the XYZ 
protocol practical in actual systems. These extensions include 
caching and replication techniques for “Hot Spot” management. 
In reality, hot spots will be overloaded when many nodes 
request popular files from them in a short period of time. Some 
caching and replication techniques commonly applied to the 
World Wide Web are borrowed to solve this issue. Another 
interesting topic introduced by caching and replication is the 
question of storage space management. Because the storage 
space at each node is limited, and it will affect the performance 
of the system. 
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Table 2 

Comparison of different P2P systems 
 

 
Algorithm Comparison Criteria 

 P2P 

System   Model Parameters 
Hops to 

locate data 
Routing state Peers join and leave 

XYZ 

Partially 
centralized, 
Broadcast requests 
in overlay only 

k-diameter of 
cluster 
c-number of 
colors/overlays 
d-diameter of 
network 

  2/ +kd  Constant 
Joins: constant 

Leaves: 6k 

Gnutella 
Broadcast request 
to as many peers 
as possible, 
download directly 

 
None 

 

 
No guarantee 

 

Constant 
(approx 3-7) 

 

 
Constant 

 

CAN 
Multidimensional 
coordinate space 
 

N - number of 
peers in network 
d - number of 
dimensions 

dNd /1⋅  d⋅2  d⋅2  

Chord 
Uni-dimensional, 
circular ID space 
 

N - number of 
peers in network Nlog  Nlog  2)(log N  

 


