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Abstract— In existing query-based routing protocols in wireless
sensor networks (WSNs), a node either keeps precise route
information to desired events, such as in event flooding, or does
not keep any route to desired events such as in query flooding.
In this paper, we propose a routing protocol, calledHint-based
Routing by Scope Decay Bloom Filter (HR-SDBF), that employs
probabilistic hints. In HR-SDBF, each node maintains some
probabilistic hints about events and utilizes these hints to route
queries intelligently. We also put forward a data structure,Scope
Decay Bloom Filter (SDBF)to encode the probabilistic hints. With
SDBF, the amount of information about an event is propagated,
without any loss, within the k-hop neighborhood of an event
source but decreases outside thek-hop neighborhood as the
distance from the event source increases. Compared to existing
query-based protocols, HR-SDBF greatly reduces the amortized
network traffic without compromising the query success rate
and achieves a higher energy efficiency. To the best of our
knowledge, this is the first query routing protocol in WSNs that
utilizes probabilistic hints encoded in a variant of the bloom
filter. Both the analytic and the experimental results support the
performance improvement of our protocol.

Keywords: bloom filter, data-centric, hint-based, query-based,
routing, wireless sensor networks (WSNs).

I. I NTRODUCTION

Wireless sensor networks (WSNs) have been used in ap-
plications such as the health industry, military, warehouse,
and home environment [1]. Sensors are typically low-cost,
low power, and multi-functional. They communicate with each
other through wireless media and form a wireless distributed
network.

In WSNs, routing is data-centric, i.e. finding data with spe-
cific attribute values [2]. In many WSN applications, routing
is query-based. Asink initiates a query for some desired data,
which is forwarded towards the hosting sensors [3]. Sinks can
be static or dynamic. In this paper, we are interested in the
latter case, where any sensor could issue a query. We refer
to the queried data as events. Because sensors have limited
power, one of the major challenges in designing WSN routing
protocols is energy efficiency. One way to achieve this is to
reduce the total routing traffic [4].

Existing query-based routing protocols can be classified
into two types. The first type, calledquery flooding based,
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is blind forwarding and does not proactively maintain any
hints. Queries are flooded over the WSNs. Query flooding can
find desired events quickly but is also costly because many
query messages are generated. This is evident when many
events are frequently queried. The second type, calledevent
flooding based, employs precise routing hints to route queries.
The second type can reduce query messages at the expense of
heavy routing overhead. Specifically, keeping precise routing
hints for many events is expensive. This is because each node
keeps a precise list of events that may be found through each
neighbor. The cost to create and update this list is prohibitive
when the list is large.

In this paper, we propose a routing protocol, calledHint-
based Routing by Scope Decay Bloom Filter (HR-SDBF), that
utilizes probabilistic hints. Each sensor maintains probabilistic
hints about events that may be found through its neighbors.
Hints are encoded using the proposed variant of the bloom
filter (BF) [5] [6], called scope decay bloom filter (SDBF).

A BF is a lossy compression of a set for supporting
membership queries. It consists of a bit string and a group of
hash functions. To generate a BF for a set, each set element
is mapped by each hash function to a bit position in the bit
string. All mapped bits are set. To determine the membership
of an item, the item is hashed similarly. If any of the hashed
bits is not set, then the item definitely does not belong to the
set. If all bits are set, then the item ispossiblyin the set. If in
fact the set does not contain the item, a false positive occurs.
Nevertheless, the space savings usually offset this shortcoming
when the false positive rate is significantly low. Bloom filters
have been used in database applications [5], web caching [7],
and searching in peer-to-peer networks [8] [9]. Unlike BFs,
a SDBF can denote different amount of information about an
element and represent probabilistic membership.

The HR-SDBF protocol uses SDBFs to advertise the routing
hint about an event. The advertisement is designed such that
the hint does not decay within thek-hop neighborhood of
an event source but decays outside thek-hop neighborhood
as the distance from the boundary of thek-hop neighborhood
increases. By trading off precise routing hints for probabilistic
ones, HR-SDBF achieves a higher query success rate with the
same or less amortized routing overhead.

Sinks may conduct different types of searching based on



SDBFs. They can specify the minimum amount of information
that a neighbor must have in order to receive queries.

• 1-thread best HR-SDBF. A query is always forwarded
to the best neighbor that has the maximum amount of
information among all neighbors. Ties can be broken by
random selection or based on some SDBF component.
This option is intended to find at least one desired event
with minimum cost.

• N-threads HR-SDBF. A query is forwarded to all neigh-
bors that have the full amount of information about the
desired event (i.e. all bits for the desired event are set).
This choice is designed to find all events within the no-
decay scope,k-neighborhood.

We make the following contributions in this paper.

• We propose a hint based routing protocol, HR-SDBF,
which combines the advantages of both blind and precise-
hint based schemes. To the best of our knowledge, HR-
SDBF is the first query routing protocol in WSNs that
utilizes probabilistic hints.

• We present a novel data strucure,scope decay bloom filter
(SDBF). SDBFs improve the conventional BFs by being
capable of representing probabilistic membership and
various amount of information about elements. SDBFs
are flexible and can include different decay models.

• We discuss different design tradeoffs in HR-SDBF. These
include tie breaking by random selection and some SDBF
component, and different decay models such as the ex-
ponential decay and the linear decay.

• We conduct extensive performance analysis and simula-
tion of HR-SDBF.

This paper is organized as follows. In Section II, we review
the related work. In Section III, we give an overview of the
HR-SDBF protocol. In Section IV, we present the detailed
design of HR-SDBF. In Section V, we provide an analytical
study of the HR-SDBF. In Section VI, we present experimental
results. At the end, we summarize the paper and point out the
future work.

II. RELATED WORK

A. Query flooding and its variants

The simplest way to route queries is to flood queries from
the sink over the entire WSN and set up the reverse paths
for desired data to be sent back to the sink. Various query
flooding schemes differ in the manner in which they set up
and use reverse paths. Directed diffusion [10] tries to find
an optimal path between the sink and the event sources by
flooding an exploratory query that is initiated at a sink. Each
node sets gradients between neighboring nodes, and reinforces
the best route for real data while transferring the exploratory
events on the reverse query path. The gradients are only used
for sending the real data from the discovered event source to
the sink that initiates the exploratory query.

Gradient-based routing [11] is another scheme based on
query flooding. It associates each node with a height, which
is the minimum distance in terms of the number of hops

from the sink. The scheme also assigns a gradient to the
link between a node and its neighbor. A gradient is defined
as the height difference between a node and its neighbor. A
node always forwards desired data through the link with the
highest gradient among all links to its neighbors. Energy aware
routing [12] is also based on query flooding. This scheme
tries to maintain multiple paths between a data source and
the sink. Desired data is propagated through a route that is
probabilistically selected. The probability of a route is set
based on its energy consumption.

To reduce the cost of query flooding, gossiping [13] can
be used for query-based routing in WSNs. It is essentially a
random walk where each node forwards a received query to a
randomly chosen neighbor.

B. Event flooding and its variants

Another option to correct the deficiency of query flooding is
event flooding when the number of events in the WSN is small.
We can use the minimum cost forwarding algorithm in [14]
to set up the minimum cost path from every node to the event
source. The event source broadcasts an event with cost 0. Each
node updates its cost estimate and forwards a received message
if the message leads to a lower cost path. Rumor routing [15]
combines query flooding and event flooding. It uses long-
lived packets (called agents) to spread event hints. An agent
randomly walks in the WSN and updates its event routes along
its path. An event query is forwarded to a neighbor that knows
a route to the desired event. If no hint is available, a query is
randomly forwarded.

Another related work is SQR searching [8] in peer-to-peer
networks that uses an exponential decay bloom filter (EDBF)
to advertise hints. SDBF is more general than EDBF. It can
incorporate different decay models and can be utilized to
perform more types of routing.

To the best of our knowledge, only one existing query-based
WSN routing protocol, called resilient data-centric storage
[16], uses bloom filters for routing. It stores information about
all event sources of an event type in some replica nodes. A
bloom filter is used to represent the collection of attribute value
pairs for all event types at each replica node. This protocol
differs from our approach because bloom filters are not used
for offering probabilistic hints.

III. HR-SDBF PROTOCOL - OVERVIEW

This section outlines the overall design of the HR-SDBF
routing protocol. The design details will be discussed in the
next section. The basic idea in the HR-SDBF protocol is to
route the query based on probabilistic hints about the desired
events. To obtain these probabilistic hints, we spread the
knowledge about an event from the event source such that
the amount of information about the event does not decay
within the k-hop neighborhood but decreases outside thek-
hop neighborhood as the distance increases.

HR-SDBF protocol includes two types of searching,1-
thread best HR-SDBFand N-thread HR-SDBF. The first ap-
proach is pictured in Figure 1(a). A query is always forwarded
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Fig. 1. HR-SDBF routing overview.e1, e2: detected events.A, B, C, D:
event sources.

to the best neighbor that has the maximum amount of hints
among all neighbors. If multiple neighbors tie, we can select
one randomly. We can also break the tie based on some SDBF
component. To control scope decay, each SDBF bit segment is
equipped with a TTL counter. A counter for a segment is set to
k at an event source if an event hashes to a bit in that segment.
A TTL counter decreases by 1 at an advertisement. Ties can
be broken by choosing the neighbor with the maximum TTL
counter value associated with the desired event (i.e. selecting
the one closest to an event source). A sink can control which
neighbors are qualified for receiving queries by stipulating
the minimum amount of hints that a neighbor must have.
This design choice is for finding at least one desired event
efficiently.

The second approach is demonstrated in Figure 1(b). A
query is redirected to all neighbors whose SDBF sets all
bits of an event. A neighbor does not receive the query if
it does not have the full amount of hints. This scheme is
targeted at efficiently locating all events within the no-decay
k-neighborhood.

The hint update is accomplished as follows. A sensor first
creates a local SDBF, encoding the set of events detected
by itself. This SDBF is broadcast to all its neighbors. A
neighbor combines this SDBF with the SDBFs from its own
neighbors and propagates the aggregated SDBF. To reduce
the routing traffic further, incremental updates to SDBFs are
actually disseminated.

We consider two options for decreasing the information
about an event, exponential decay and linear decay. In the
exponential decay model, each bit that is currently 1 in an
SDBF remains 1 at a constant probabilityp. The amount
of information about an event at a node outside thek-hop
neighborhood is an exponential function of the distance from
the boundary of thek-hop neighborhood of the event source.
In the linear decay model, the information about an event
is approximately a linear function of the distance from the
boundary of thek-hop neighborhood. Neither decay model
couples the amount of decay with the particular event source
and the particular distance; therefore they do not need to

Encoding:

0 1 1 0 0 0 0 1 0 0 0 1 0 0 10

0 1 1 0 0 0 0 0 0 1 0 0 10 00

0 3 7 8 151242 9
Decayed
SDBF

Decoding:            I(e1) = 2

Decaying

Initial

SDBF

0 3 7 8 151242 9 non−decayed   

Decoding:            I(e1) = 3

h1(e1) h2(e1) h3(e1)

Fig. 2. The structure of Scope Decay Bloom Filter (SDBF).

memorize those states.

IV. HR-SDBF PROTOCOL- DETAILED DESIGN

This section presents the design details of the HR-SDBF
routing protocol. We first introduce our SDBF bloom filter.
Then we discuss how to use the SDBF to build up and maintain
the probabilistic routing hints. At the end, we describe how to
route queries intelligently with the help of these probabilistic
routing hints. We make the following assumptions about the
wireless sensor network we are concerned about. The event
source model is random source model where event sources
are selected uniformly at random from all sensors. Each
sensor may potentially initiate event queries. An event query
is considered successful if at least one desired event is found.

A. Scope decay bloom filter (SDBF)

A SDBF is designed as a lossy channel coding scheme to
reduce the amount of network traffic. An SDBF can represent
the set membership information and the different amount of
information about an element in the set. Similar to a BF, an
SDBF also has a bit string of widthm andd hash functions,
h1, h2, ..., andhd. An SDBF encodes the information about
an element similarly to the way a BF inserts an element.
Given an elemente, the SDBF sets all bitsh1(e), h2(e), ...,
and hd(e) in the bit string. An SDBF differs from the basic
BF in the decoding procedure. A BF obtains the membership
information by checking whether all mappedd bits are set or
not. An SDBF decodes the information about an elemente by
computing the number of 1s among thed mapped bits, denoted
by I(e). This number ranges from0 to d. The more bits are
set to1, the largerI(e) is, and there is more information about
e.

Fig 2 shows an example of an SDBF wherem = 16 and
d = 3. The SDBF is composed of a 16-bit stringbstr and
3 hash functions,h1, h2, and h3. When the SDBF initially
encodes the information about elemente1, h1, h2, and h3

hashe1 to bits 3, 8, and 12 respectively and set these bits
to 1s. When we decodee1 from this initial SDBF, we apply
these three hash functions toe1, and compute the number
of 1s, I(e1) , in bit positions 3, 8, and 12. ClearlyI(e1)
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Fig. 3. Event hint update fromA to its neighborE. B, C, D and E are
A’s neighbors.LOCAL: A’s local SDBF.IMPi: the SDBF hint imported
(received) from neighbori.

has the maximum value3 that corresponds to the maximum
information aboute1.

During the decay process, some bits in the initial SDBF are
probabilistically reset to 0s. In the decayed SDBF in Fig 2,
bit 8 is reset to 0, bits 3 and 12 remain 1s. When we decode
e1 from this decayed SDBF,I(e1) = 2, which means that this
decayed SDBF probably has less information aboute1 than
the initial SDBF.

There are many design choices for decreasing the infor-
mation about an element in an SDBF. To simplify the decay
process, we choose two stateless decay schemes that do not
need to remember the specific event contributing to a particular
bit. These two models arethe exponential decayandthe linear
decay.

The exponential decay model.The information about an
element (e.g. an event) decreases exponentially as the distance
from the boundary of thek-hop neighborhood of the element
source (e.g. the sensor detecting an event) increases assuming
that there is no hash collision. Specifically, if any bit in an
SDBF is currently 1, it remains 1 at a constant probability
p during each decay. The number of 1s corresponding to an
element (an evente) at i-hop from the element source is

I(e) = d ∗ (pi−k).

The linear decay model.The information about an element
decreases in a linear fashion as the distance from thek-hop
boundary of the element source increases. LetsumI denote
the current total number of 1s in the SDBF andr be a random
number in the range[c1, c2], where c1 and c2 are system
parameters. Randomly selectr bits among thesumI bits and
reset these bits to 0. The total number of 1s in the SDBF after
the decay, denoted bysumI ′, is

sumI ′ = sumI − r.

Assuming no hash collision, a bit currently being 1 is reset to
0 with the probabilitypl.

pl = r/sumI.

Obviously, a bit is more likely to be reset to 0 (i.e. decay
faster) when the SDBF has a smaller number of 1s.

The SDBF can also be used to represent probabilistic

SDBF 0 1 1 0 0 0 0 1 0 0 0 1 0 0 10
0 3 7 8 151242 9

TTL
counters c0 c1 c3c2

Fig. 4. Control no decay withink-hop neighborhood of an event source: 1
TTL counter per SDBF segment (segment size = 4 bits).

sets. The number of 1s corresponding to an element can be
considered as the probability of the element being in the set.
The more 1s in the correspondingd bits, the more likely the
element is in the set.

B. Probabilistic routing hints creation and maintenance

Probabilistic routing hints are represented by SDBFs. Each
sensor maintains an SDBF for each neighbor. An SDBF en-
codes hints about events that may be found through a neighbor.
To create these hints, each sensor first creates a local SDBF
that encodes all local events detected by itself. Then these
local SDBFs are propagated according to the decay model.
At each sensor, the SDBF hints from different neighbors are
first decayed if they contain information outside thek-hop
neighborhood of event sources, then aggregated (including the
non-decayed local SDBF), and propagated further to other
neighbors. Fig 3 shows how a nodeA propagates updates
to its neighborE. A ORs its own SDBF and the SDBFs it
receives from neighborB, C, andD, and sends the combined
SDBF as hints to neighborE. If a sensor notices some change
to its local SDBF, the changes are incrementally spread out to
nearby nodes.

The control of no-decay withink-hop is illustrated in Fig 4.
An SDBF is partitioned inton segments and one TTL counter
is equipped for each SDBF segment. The counter for a segment
takes the maximum TTL value from an advertising source that
contributes to the segment. In the example, the SDBF is 16-
bit and the segment size is 4 bits. Only 4 TTL counters are
required.

Fig 5 shows how to create a local SDBF and hint update
at a sensors. To create a local SDBFLRs for the local event
setLEs, s first checks whetherLEs is empty. If not,s hashes
each evente usingd hash functions and sets the corresponding
d bits in LRs to 1s.s also initializes the TTL counter for each
segment to the maximum valuek. If LEs is empty,LRs has
all 0s in its bit array and counter array. To create a hint update
URni to a neighborni, s first includesLRs into URni if LEs

is not empty. Then for each segment in the SDBF of each
neighbornj other thanni, s calls the procedureDecay() to
process the SDBF segment according to the pre-defined decay
model.

C. Query routing based on SDBF hints

In the 1-thread best search, the sink first finds all neighbors
whose SDBFs have at leastminBits set among the bits for
evente. These qualified neighbors are ranked according to the
number of bits set fore. The query is routed to the top-ranked



Create a local SDBF LRs for the local event set
LEs:

// Assume: one TTL counter per SDBF segment.
// g: the segment size
// LRs.barr: the bit array for encoded elements
// LRs.carr: the TTL counter array

1. if !empty(LEs)
2. ResetLRs;
3. ∀e ∈ LEs

4. Set bitsLRs.barr[h1(e)], ..., LR[hd(e)] to 1;
5. ∀i ∈ {1, · · · , m/g};
6. if Count Ones (LRs.barr, i) > 0;
7. LRs.carr[i] = k;
8. else
9. LRs.carr[i] = 0;

Create a hint update URni to neighbor ni:
1. if !empty(LEs)

// Include the non-decayed local SDBFLRs

2. URni = LRs;
3. else
4. ResetURni .barr andURni .carr;

// Process each segment in each SDBF from a neighbor.
5. ∀nj ∈ my neighbors such thatni 6= nj

6. ∀i ∈ {1, · · · , m/g};
7. if Count Ones (URnj .barr, i) > 0;
8. if URnj .carr[i] - 1 > URni .carr[i]
9. URni .carr[i] = URnj .carr[i] - 1;
10. if URnj .carr[i] == 0
11. seg = extractSeg(URnj .barr, i);
12. seg = Decay(seg);
13. URni .barr = OR(URni .barr, i, seg);
14. ReturnURni ;

Fig. 5. Algorithms for creating local hints and hint updates.

neighbor. On receivingQe, a neighbor checks if the query is a
duplicate. If so,Qe is dispatched to a random neighbor. Ife is
a local event at this neighbor, the query forwarding terminates.
If not, Qe is redirected similarly if the query TTL does not
expire.

During query forwarding, there may be top one ties. If tie
breaking is random, a neighbor among all ties is randomly
selected as the best neighbor. If the tie breaking is TTL
counter, a max-min strategy is used to select the best neighbor.
First, for each neighbor, the minimum TTL counter value
among those of all segments in association withe is chosen
as the TTL counter value for that neighbor. Then the neighbor
with the maximum TTL counter value with respect toe is
considered the best.

The rationale for the max-min TTL counter strategy is as
follows. When an SDBF segment is only used by one event,
the TTL counter for that segment is set tok at the event source
and decreased by one (until0) at each advertisement. When
two events share a segment, if the TTL counter for the segment
is set according to one event, the other event can only cause
the shared TTL counter to stay the same or increase but not
to decrease. Therefore, in each neighbor’s SDBF, among all
segments of an event, if at least one segment’s TTL counter
value is not changed by other events, the minimum TTL value
is the correct value for that event. If TTL counters of all
segments that are related to an event are false, the minimum
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Fig. 6. Scenarios for Theorem 1 (k = 3). (a) Error due to shared TTL
counters (g > 1) alone. (b) Error due to hash collision (g = 1) alone (c) Best
scenario in 1-thread forwarding.

TTL counter value has the smallest error.
If all neighbors’ TTL counter values are correct with respect

to an event, the neighbor with the maximum TTL counter
value is closest to the event source. Otherwise, there is no
way to distinguish between true and false TTL counter values.
Choosing the neighbor with the maximum TTL counter value
is like a random selection.

In the N-thread search, theminBits must be the same as
d and the maximum query TTL must equal tok. The sink
forwards a queryQe to all neighbors with alld bits set for
evente. When a neighbor receives a non-duplicate queryQe

for a local evente, the detailed information aboute is returned
to the sink. The neighbor continues to sendQe similarly to
the sink until the query TTL expires. Duplicate queries are
discarded at the receiving neighbor.

V. A NALYSIS

In this section, 1-thread HR-SDBF with the exponential
decay model is analyzed.

Theorem 1 (Best query performance withink-hop): In
the best scenario, the 1-thread query forwarding withink-hop
of an event source follows the shortest path if the max-min
TTL counter strategy is used to break ties.

Proof: Within k-hop of an event source, a query may
be forwarded to a neighbor that is not actually the best due
to two factors, sharing one TTL counter (g > 1) and hash
collision. Wheng > 1, as shown in Fig 6(a),A is the query
source,S has the desired evente1. At nodeC, a local event
e2 hashes to a different bit in each segment of evente1. This
causes the TTL counter value forC with respect toe1 to be
3. The max-min TTL counter strategy incorrectly choosesC
as the best neighbor. Wheng = 1, hash collision may still
cause a false selection of the best neighbor. For example in
Fig 6(b), a local evente2 at nodeC hashes to the same set of
bits as the desired evente1, which causesI(e1) at C to bed
and the TTL counter value forC with respect toe1 to be 3.C
is incorrectly selected by the max-min TTL counter strategy
to be the best neighbor.



Notation Definition Value

m The width of SDBF filter 12kbits
d The number of hash functions 16
g The SDBF segment size 8
k The no-decay scope 3
p The exponential decay rate 1/8
(c1, c2) The linear decay control range (3, 6)

TABLE I

MAJOR SYSTEM PARAMETERS

There are four scenarios in which the two factors together
cause a false selection of the best neighbor.

• g = 1 and no hash collision.
• g = 1 and hash collision.
• g > 1 and no hash collision.
• g > 1 and hash collision.

The best scenario is the first one, where there is one TTL
counter per bit and no two events ever hash to the same
bit. As illustrated in Fig 6(c), the TTL counter values for
all neighbors are true values for the desired event. And they
represent the shortest distance between neighbors and the event
source. Therefore, the best 1-thread query forwarding within
k-hop follows the shortest path.

VI. EVALUATIONS

A. Experimental setup

The sensor network is generated by randomly deploying 500
sensors in the field of size200m× 200m. It is assumed that
each node can reliably send packets to any node withinR = 15
meters. The event model is random source. 250/1000/2500
events are randomly distributed among all sensors to simulate
small/medium/large event scenarios. Each unique event has
5 replicas. Queries are generated by randomly selecting a
sensor as a sink and an existing event as the desired one. In
each simulation run for HR-SDBF, hints about events are first
propagated according to the scope decay model, then queries
are processed. The performance metrics are routing energy
efficiency and routing quality. We assume that it costs more
to set up a connection than transmitting a single message.
The routing energy efficiency is computed in terms of the
average number of query messages and the average number
of amortized messages. The latter is defined as the sum of
the total number of query messages and the routing update
messages divided by the number of queries. The routing
quality is evaluated based on the query success rate. A query
is considered successful if at least one desired event is found.
Table1 lists the major system parameters.

B. Decay models: exponential vs linear

One tradeoff in HR-SDBF design is exponential decay or
linear decay. Fig 7 shows the performance contrast between
these two choices. The number of events are 2500. The search
type is 1-thread HR-SDBF with tie breaking by max-min TTL
counter policy. In the simulation, max-min TTL tie-breaking
performs significantly better than random tie-breaking. The

results are not included here due to space limitation. Fig 7(a)
indicates that the two decay models generate approximately
the same amount of query traffic. Exponential decay incurs
less routing overhead than linear decay, as shown in Fig 7(b).
In addition, slightly more queries are successfully resolved
with exponential decay than with linear decay, as illustrated
in Fig 7(c). Therefore, exponential decay is slightly better than
linear decay.

C. 1-thread HR-SDBF vs SQR

The 1-thread HR-SDBF with tie-breaking using max-min
TTL counter values is compared to SQR routing. We first
compare their performance by varying the number of queries
(i.e. varying the frequency of an event being queried) and the
number of events. This is shown in Fig 8.

Each line in Fig 8(a) plots the average number of query
messages per query when the number of queries increases
and the maximum TTL for a query is fixed at 50. Different
lines correspond to the performances of different algorithms
under three different event scenarios, 2500 events, 1000 events,
and 250 events. Each unique event has 5 replicas. The figure
indicates that in the same event scenario, the average query
traffic in neither scheme increases as events are queried
more frequently. 1-thread HR-SDBF incurs about 33% less
query traffic than SQR in all three event scenarios. This is
because HR-SDBF does not decay event hints withink-hop
neighborhood of event sources and therefore can propagate
hints further.

The amortized messages including the update overhead is
illustrated in Fig 8(b). In the 250-event scenario, 1-thread HR-
SDBF always has a lower amortized traffic than SQR. This is
because HR-SDBF generates about the same amount of hint
propagation traffic as SQR but significantly less query traffic
than SQR. In the other event scenarios, both schemes generate
decreasing amortized traffic with increasing queries. 1-thread
HR-SDBF has a higher amortized traffic than SQR when the
number of queries is small. However, the difference decreases
dramatically as the number of queries increases. In the 1000-
event/2500-event scenario, HR-SDBF generates less amortized
traffic than SQR when the number of queries is greater than
3000/6000. This means that the extra hint propagation traffic
caused by no-decay withink-hop in HR-SDBF is effectively
amortized with the increase in query frequency.

Fig 8(c) shows the query success rates of both schemes
when the number of queries increases. It is observed that in the
same event scenario, the number of queries does not impact
the query success rate in both schemes. 1-thread HR-SDBF
achieves a dramatically higher query success rate than SQR
in all three event scenarios. The query success rate of HR-
SDBF is about twice as much as that of SQR in the same
event scenario. This significant increase is due to the fact that
HR-SDBF can push event hints further than SQR.

To compare the performance of 1-thread HR-SDBF and
SQR when they incur the same per-query traffic. We gathered
data with varying maximum query TTLs and plot the query
success rate in terms of the amortized per-query traffic, as
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Fig. 7. 1 thread HR-SDBF: exponential decay vs linear decay.
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Fig. 8. 1-thread HR-SDBF compared to SQR, varying number of queries (R = 15).
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Fig. 9. 1-thread HR-SDBF vs SQR, query success rate in terms of amortized
per-query traffic (R = 15)

shown in Fig 9. The number of queries is 8000. Clearly,
1-thread HR-SDBF is superior to SQR. It can achieve a
higher query success rate than SQR with the same amount
of amortized traffic in all three event scenarios.

In summary, HR-SDBF generates less query traffic and
achieves a significantly higher query success rate than SQR.
This is because HR-SDBF does not decay event hints within
k-hop neighborhood of event sources. Therefore, hints can
propagate further. When there are many events, this no-decay
within k-hop also causes more traffic in spreading hints. But

the decrease in the query traffic outweighs the increase in the
hint maintenance traffic at high query frequencies.

D. N-thread HR-SDBF vs query flooding

The N-thread HR-SDBF is evaluated against query flooding.
Both schemes have the same query TTL, which isk, the no-
loss scope in HR-SDBF. Each query is flooded withink hops
in query flooding. In N-thread HR-SDBF, the minimum hint
percentage for forwarding a query is 100. A sensor forwards a
query to a neighbor only if all bits of the desired event are set
in that neighbor’s SDBF. Queries are not forwarded outsidek-
hop neighborhoods of sinks. We are interested in the number
of events that both approaches find and the query traffic and
the routing traffic that both approaches generate as the number
of queries changes (i.e. the event query frequency changes).

The simulation result shows that N-thread HR-SDBF and
query flooding locate all events within the samek-hop neigh-
borhood in three event scenarios. Therefore we only plot
the query traffic and the amortized traffic incurred by both
schemes in Fig 10. The average number of query messages
forwarded by N-thread HR-SDBF is always much smaller than
query flooding, as shown in Fig 10(a) because N-thread HR-
SDBF utilizes hints.

Fig 10(b) shows that query flooding has almost the same
amortized traffic when the number of queries changes. N-
thread HR-SDBF generates a larger amortized traffic than
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Fig. 10. N-thread HR-SDBF vs query flooding, varying number of queries (R = 15).

query flooding when the number of queries is small (<
1000). However, the amortized traffic in N-thread HR-SDBF
drops dramatically as the number of queries increases. When
the number of queries is greater than 1000, N-thread HR-
SDBF incurs less amortized traffic than query flooding. The
number of amortized messages delivered by N-thread HR-
SDBF decreases slowly when the number of queries is more
than 2000. At 9000 queries, HR-SDBF finds the same number
of events with almost three times less traffic. Fig 10 also shows
that the number of events does not make an impact on the
performance of N-thread HR-SDBF and query flooding.

In summary, when designing HR-SDBF, breaking ties ac-
cording to the Max-Min TTL counter strategy is significantly
better than random selection. The exponential decay model
is slightly better than the linear decay model. 1-thread HR-
SDBF accomplishes a higher query success rate with the same
amortized traffic than SQR. The N-thread HR-SDBF locates
all desired events withink-hop neighborhoods but incurs much
less amortized traffic than query flooding when events are
queried frequently.

VII. C ONCLUSIONS

In this paper, we proposed a routing protocol called HR-
SDBF and a data structure SDBF. The HR-SDBF protocol uses
SDBFs to advertise event hints such that the information about
an event does not attenuate within thek-hop neighborhood of
an event source but decreases outside thek-hop neighborhood
with increasing distance. In HR-SDBF, sinks can conduct two
types of searches: 1-thread best search or N-thread search. In
the 1-thread best search, a node always forwards a query to the
best neighbor that has the most hints about the desired event.
In the N-thread search, a node directs a query to all neighbors
with the full amount of information. Compared to existing
query-based routing protocols in WSNs, HR-SDBF increases
the query success rate with low amortized routing overhead
and reduces energy consumption by keeping probabilistic hints
instead of precise hints.

In the future, we plan to explore other decay models in
HR-SDBF, such as decaying based on node degrees. We also

intend to do analytical and simulation study in extending HR-
SDBF to clustered WSNs or actor-sensor model WSNs [17].
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