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Abstract

The problem of sorting an intransitive total ordered set, a generalization of regular sorting,

is considered. This generalized sorting is based on the fact that there exists a special linear

ordering (also called a generalized sorting sequence) for any intransitive total ordered set, or

equivalently, the existence of a Hamiltonian path in a tournament. A new data structure called

semi-heap is proposed to construct an optimal �(n logn) sorting algorithm. In [7] we propose

a cost-optimal parallel algorithm using semi-heap. The run time of this algorithm is �(n) with

�(logn) processors under the EREW PRAM model.
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1 Introduction

Sorting is one of the fundamental problems in computer science for which di�erent solutions have

been proposed [4]. Given a sequence of n numbers (n1; n2; :::; nn) as an input, a sorting algorithm

generates a permutation (reordering) (n
0

1; n
0

2; :::; n
0

n) of the input sequence such that n
0

1 � n
0

2 �

::: � n
0

n.

We consider a generalization of the sorting problem by replacing � with �, where � is a total

order without the transitive property, i.e., it is intransitive. That is, if ni � nj and nj � nk, it is

not necessary that ni � nk. The total order requires that for any two elements ni and nj, either

ni � nj or nj � ni, but not both (antisymmetric).

The set N of n elements exhibiting intransitive total order can be represented by a directed

graph, where ni � nj represents a directed edge from vertex ni to vertex nj. The underlying graph

is a complete graph. This graph is also called a tournament [1], representing a tournament of n

players where every possible pair of players plays one game to decide the winner (and the loser)

between them. Sorting on N corresponds to �nding a Hamiltonian path (also called a generalized

sorting sequence, or simply, a sorting sequence) in the tournament. The existence of a Hamiltonian

path in any tournament was �rst proved in [5]. Other properties related to tournament can be

found in [6].

Hell and Rosenfeld [3] proved that the bound of �nding a Hamiltonian path is �(n logn), the

same bound as the regular sorting. They also considered bounds on �nding some generalized

Hamiltonian paths. It is easy to prove that many regular sorting algorithms can be used to �nd a

Hamiltonian path in a tournament, such as bubble sort, insertion sort, binary insertion sort, and

merge sort.

In this paper, we propose a new data structure called semi-heap, which is an extension of a

regular heap structure. We introduce an optimal �(n log n) algorithm to determine a Hamiltonian

path in a tournament based on the semi-heap structure. In [7], we propose a cost-optimal parallel

algorithm based on the semi-heap structure that takes �(n) in run time using �(logn) processors

in the EREW PRAM model. An implementation of the cost-optimal parallel algorithm in the

network model with a linear order of processors is also shown.

The rest of the paper is organized as follows: Section 2 shows a constructive proof of the existence

of a Hamiltonian path in any given tournament, and then, proposes the semi-heap structure.

Section 3 demonstrates why the regular heapsort cannot be directly applied to the semi-heap

structure, and then, presents an optimal generalized sorting algorithm using semi-heap. Section 4
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summaries our results.

2 Semi-Heap Data Structure

In this section, we �rst show the existence of a Hamiltonian path in any given tournament, and

then, propose the semi-heap data structure. Unlike proofs presented in many textbooks of graph

theory, we provide a constructive proof which serves as the base for insertion sort.

Proposition [5]: Consider a set N (jN j = n) with any two elements ni and nj, either ni � nj

or nj � ni, but not both. Then elements in N can be arranged in a linear order n
0

1 � n
0

2 � ::: �

n
0

n�1 � n
0

n:

Proof: We prove this theorem by induction. When n = 1, the result is obvious. Assume that the

theorem holds for n = k, i.e.,

n
0

1 � n
0

2 � ::: � n
0

k

When n = k + 1, any k elements can be arranged in a linear order as above. We then insert the

(k + 1)th element n
0

k+1 in front of n
0

i, where i is the largest index such that n
0

k+1 � n
0

i. That is,

n
0

1 � n
0

2 � ::: � n
0

k+1 � n
0

i::: � n
0

k

If such an index i does not exist, n
0

k+1 is placed as the last element in the linear order:

n
0

1 � n
0

2 � ::: � n
0

k � n
0

k+1

The proposition states that a Hamiltonian path may exist in any given tournament, but not

necessary for a Hamiltonian circle. That is, we can always arrange n players in a linear order from

left to right such that each player beats the one to its right. Figure 1 shows a directed graph

with �ve vertices. One sorting sequence is n3 � n4 � n2 � n5 � n1. When � is transitive, the

sorting sequence arrangement is reduced to a regular sorting problem. Unlike the regular sorting

problem, more than one solution may exist for the generalized sorting problem. For example,

n1 � n3 � n2 � n5 � n4 is another sorting sequence for the example of Figure 1. The insertion sort

with a complexity of �(n2) can be easily constructed based on the above proof. In the following,

we propose the semi-heap data structure, and then, present a sorting algorithm with a complexity

of �(n logn) based on the semi-heap.
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Figure 1: A directed graph with a complete underlying graph.

Consider three elements n1; n2; n3 in N , denote n1 = maxfn1; n2; n3g if n1 � n2 and n1 � n3.

Note that in a total order without the transitive property, the maximum element may not exist

among three elements. For example, if n1 � n2, n2 � n3, and n3 � n1, maxfn1; n2; n3g does not

exist. Next we introduce a new concept of the maximum element based on �.

De�nition 1: n1 = max�fn1; n2; n3g if both n2 = maxfn1; n2; n3g and n3 = maxfn1; n2; n3g are

false.

Note that when ni = maxfn1; n2; n3g are false for all i = 1; 2; 3, every ni is a maximum element.

A semi-heap is any array object that can be viewed as a complete binary tree, like a regular

heap. A complete binary tree of height h is a binary tree that is full down to level h� 1, with level

h �lled in from left to right. However, the regular heap property is changed. Let L(n
0

) and R(n
0

)

represent left and right child nodes of n
0

, respectively. When a child, say R(n
0

), does not exist, the

relation n
0

� R(n
0

) automatically holds.

De�nition 2: A semi-heap for a given intransitive total order � is a complete binary tree. For

every node n
0

in the tree, n
0

= max�fn
0

; L(n
0

); R(n
0

)g.

When an array A is used to represent a semi-heap, l(i) and r(i) are used as indices of the left

and right child nodes of i; they can be computed simply by l(i) = 2i and r(i) = 2i+1. Figure 2 (a)

shows a semi-heap with 10 elements. A semi-heap can be viewed as a set of overlapping triangles,

with each triangle consisting of A[i], A[l(i)], A[r(i)]. Figure 3 shows four possible con�gurations
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1 i 2i 2i+1 heapsize

A[i]  A[l(i)] *  ... *A[r(i)]... ... ...
A[i]

A[l[i)] A[r(i)]

(a) (b)

Figure 2: A semi-heap structure as a set of overlapping triangles.

of a triangle under relation �. In this �gure, if A[i] � A[l(i)] is true, a directed edge is drawn

from A[i] to A[l(i)]. Note that A[i] = max�fA[i]; A[l(i)]; A[r(i)]g for all cases. In cases (a) and (b)

condition A[i] = maxfA[i]; A[l(i)]; A[r(i)]g also holds.

To simplify the presentation, we �ll in a special symbol � representing a smaller value than

any one in the semi-heap for entries that are outside the semi-heap. That is, A[i] � A[j] is true

for any i inside the semi-heap and any j outside the semi-heap. Speci�cally, A[i] is an element of

the semi-heap if 1 � i � heapsize (see Figure 2 (b)). A[j] is an element outside the semi-heap if

j > heapsize.

3 Generalized Sorting Using Semi-Heap

Although a semi-heap resembles a heap, the traditional heapsort algorithm cannot be directly

applied to a semi-heap to generate a generalized sorted sequence. Recall that with the transitive

property, root A[1] of the heap is always the maximum element in the heap, i.e., the player at the

root \beats" all the other players in the tournament. When we \discard" the root, it is \replaced"

by the last element A[n] in the heap, and then, the heap is reconstructed by pushing A[n] down in

the heap so that the new root is the maximum element among the remaining elements. However,

in a semi-heap, we may face a situation in which A[n] beats all A[1], A[2], and A[3], which is an

impossible situation in a regular heap. A[n], the new root, cannot be selected (and be removed

from the semi-heap) in the next round to be placed after A[1], the previously selected element,

because A[n] beats A[1]. On the other hand, because A[n] beats A[2], its left child, and A[3], its
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A[i]

A[l(i)] A[r(i)]

A[i]

A[l(i)] A[r(i)]

A[i]

A[l(i)] A[r(i)]

(a) (b)

(c) (d)

A[i]

A[l(i)] A[r(i)]

Figure 3: Four possible con�gurations of a triangle in a semi-heap.

right child, A[n] cannot be pushed down in the semi-heap. Therefore, a di�erent strategy has to

be developed for semi-heap.

We follow closely the notation used in Cormen, Leiserson, and Rivest's book [2]. The sort-

ing using semi-heap consists of four modules: SEMI-HEAPIFY(A; i), BUILD-SEMI-HEAP(A),

REPLACE(A; i), and SEMI-HEAP-SORT(A). SEMI-HEAPIFY(A; i) constructs a semi-heap rooted

at A[i], provided that binary trees rooted at A[l(i)] and A[r(i)] are semi-heaps (see Figure 3). The

cost of SEMI-HEAPIFY is the height of node A[i], measured by the number of edges on the longest

simple downward path from the node to a leaf. That is, the cost of SEMI-HEAPIFY is �(log n),

where n = heapsize. BUILD-SEMI-HEAP uses the procedure SEMI-HEAPIFY in a bottom-up

manner to convert an arbitrary array A into a semi-heap. The cost of BUILD-SEMI-HEAP is �(n),

which is the same cost of building a regular heap.

Generalized sorting is done through SEMI-HEAP-SORT by repeatly printing and removing the

root of the binary tree (which is initially a semi-heap). The root is replaced by either its leftchild or

rightchild through REPLACE. The selected child is replaced by one of its child nodes. The process

continues until reaching one of the leaf nodes and the entry for that leaf node is replaced by �, i.e.,

that leaf node is removed from the tree. A new tree derived is no longer a semi-heap; however,

each overlapping triangle in the tree still meets the maximum element requirement in De�nition

2. The cost of REPLACE is the height of the current tree, which is bounded by the height of the

original semi-heap, �(log n). Therefore, the cost of SEMI-HEAP-SORT is �(n log n). Without loss

of generality, we assume that n � 1.
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semi-heap

semi-heap semi-heap

A[r(i)]

A[l(l(i)]

A[l(i)]

A[r(l(i))]

A[i]

Figure 4: The construction of a semi-heap using SEMI-HEAPIFY.

SEMI-HEAPIFY(A; i)

1 if A[i] 6= max�fA[i]; A[l(i)]; A[r(i)]g

2 then �nd winner such that A[winner] � maxfA[i]; A[l(i)]; A[r(i)]g

3 exchange A[i] ! A[winner]

4 SEMI-HEAPIFY(A;winner)

BUILD-SEMI-HEAP(A)

1 for i  � bheapsize
2
c downto 1

2 do SEMI-HEAPIFY(A; i)

REPLACE(A; i)

1 if (A[l(i)] = �) ^ (A[r(i)] = �)

2 then A[i] � �

3 else if (A[i] � A[l(i)]) ^ (A[l(i)] � A[r(i)])

4 then A[i] � A[l(i)]

5 REPLACE(A; l[i])

6 else A[i] � A[r(i)]

7 REPLACE(A; r[i])

SEMI-HEAP-SORT(A)
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1 BUILD-SEMI-HEAP(A)

2 while (A[l(1)] 6= �) _ (A[r(1)] 6= �)

3 do print(A[1])

4 REPLACE(A, 1)

5 print(A[1])

Theorem 1: BUILD-SEMI-HEAP constructs a semi-heap for any given complete binary tree.

Proof: The procedure BUILD-SEMI-HEAP goes through nodes that have at least one child node

and runs SEMI-HEAPIFY on these nodes. The order in which these nodes are processed guarantees

that the subtrees rooted at child nodes of A[i] are semi-heap before SEMI-HEAPIFY runs at A[i].

When SEMI-HEAPIFY is called at A[i], if A[i] is the maximum element among A[i], A[l(i)],

and A[r(i)] based on �, the binary tree rooted at A[i] is automatically a semi-heap. Otherwise and

without loss of generality, one of the child nodes, say A[l(i)], is the winner among the three, i.e.,

A[l(i)] beats both A[i] and A[r(i)]. In this case, A[l(i)] is swapped with A[i], which ensures that

node A[i] and its child nodes satisfy the semi-heap property. However, node A[l(i)] now has the

original A[i], and thus, the subtree rooted at A[l(i)] may violate the semi-heap property. Therefore,

SEMI-HEAPIFY must be called recursively on that subtree.

A new problem (that does not appear in the original heap structure) is how to ensure that

the resultant root A[l(i)], after applying SEMI-HEAPIFY at A[l(i)], will not violate the semi-heap

property among A[i], A[l(i)], and A[r(i)]. In a regular heap, A[i] is the maximum element in the

tree rooted at A[i], the heap property among A[i], A[l(i)], and A[r(i)] automatically holds. In a

semi-heap, we need to prove that the newly selected root A[l(i)] (other than the original value A[i]),

which is either A[l(l(i))] or A[r(l(i))] in the original tree, cannot beat both A[i] (the original A[l(i)])

and A[r(i)]. In fact, we prove that A[i] (the original A[l(i)]) always beats the newly selected A[l(i)]

(the original A[l(l(i))] or A[r(l(i))]). We consider the following two cases in the original tree with

a semi-heap rooted at A[l(i)] (see Figure 4):

� If A[l(i)] beats both A[l(l(i))] and A[r(l(i))]. The problem is solved because in the resultant

tree node A[l(i)] becomes A[i] and either A[l(l(i))] or A[r(l(i))] becomes A[l(i)].

� If A[l(i)] beats only one child node, then without loss of generality, we assume that A[l(i)]

(which is now A[i]) beats A[l(l(i))], A[l(l(i))] beats A[r(l(i))], and A[r(l(i))] beats A[l(i)]. To

select a winner among the original A[i] (now A[l(i)]), A[l(l(i))], A[r(l(i))], other than A[l(i)],

A[l(l(i))] is the only choice (since A[r(l(i))] has lost to A[l(l(i))]). Consequently, A[l(l(i))]
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becomes the newly selected root of the left subtree of A[i], based on the assumption, A[i] (the

original A[l(i)]) beats A[l(i)] (the original A[l(l(i))]) in the resultant tree.

Consider a complete binary tree with eight vertices, i.e., heapsize = 8. The initial con�guration

of array A is n1, n2, n3, n4, n5, n6, n7, and n8. The tournament is represented by an 8� 8 matrix

M given below, where M [i; j] = 1 if ni beats nj (i.e., ni � nj) and M [i; j] = 0 if ni is beaten by nj

(i.e., nj � ni). M [i; i] = � represents an impossible situation. Note that M [i; j] = 1 if and only if

M [j; i] = 0.

M =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

� 0 1 0 1 0 1 1

1 � 0 1 0 1 0 1

0 1 � 0 0 1 0 0

1 0 1 � 1 1 0 1

0 1 1 0 � 1 1 1

1 0 0 0 0 � 0 0

0 1 1 1 0 1 � 0

0 0 1 0 0 1 1 �

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

Figure 5 (a) shows the initial con�guration of this complete binary tree in array A, where the

corresponding tree structure is represented by a set of overlapping triangles. Three edges among

three vertices in each triangle represent tournament results between three pairs of players in the

triangle. That is, an edge directed from ni to nj exists if M [i; j] = 1 in matrix M . Relationships

between two vertices from di�erent triangles are not shown in the �gure. Figure 5 (b) shows the

resultant semi-heap after applying BUILD-SEMI-HEAP. A[j] is �lled with � for j � 8. Actually, it

is su�cient to de�ne the size of A to be 2�heapsize. A step-by-step application of REPLACE(A; 1)

to the example of Figure 5 is shown in Figure 6, where the selected (printed) elements are placed

beside the root in a left-to-right order. In this example, the �nal output sequence is n1 � n7 �

n3 � n2 � n4 � n5 � n8 � n6. Once all elements are printed, all entries in array A are �lled with

�. The correctness of this result can be easily veri�ed through the given matrix M .

Note that although the REPLACE process destroys the semi-heap structure (since the resultant

tree is no longer a complete binary tree), each overlapping triangle in the corresponding binary tree

still maintains one of the four possible con�gurations of a semi-heap as shown in Figure 3. Therefore,
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(b)

Figure 5: An example tree: (a) the initial con�guration, (b) the semi-heap con�guration, after

applying BUILD-SEMI-HEAP.

it always generates a generalized sorted sequence for any given semi-heap.

Theorem 2: For any given semi-heap, SEMI-HEAP-SORT generates a generalized sorted sequence.

Proof: It su�ces to show that REPLACE always replaces the current root by an element beaten

by the root. In addition, each overlapping triangle in the binary tree is still one of the four possible

con�gurations of a triangle in a semi-heap, i.e., the root of each triangle is the maximum element

based on � in the triangle. Based on the de�nition of REPLACE, the current root A[i] is replaced

by A[l(i)] for cases (a) and (c) and by A[r(i)] for cases (b) and (d) of Figure 3. The replacing

element, say A[l(i)], is itself replaced by an element in the triangle rooted at A[l(i)]. This process

continues iteratively down the semi-heap. In addition, the new root A[i] beats both of its child

nodes (if any). This property ensures when a child node is missing (i.e., the corresponding triangle

contains only two nodes), A[i] can still be replaced by another child node without causing any

problem. Therefore, the root of each triangle is still the maximum element based on � in the

triangle.
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Figure 6: A step-by-step application of REPLACE(A; i) in the example of Figure 5.
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4 Conclusions

We have proposed a data structure called semi-heap which is a generalization of the traditional

heap structure. The semi-heap structure is used to solve a generalized sorting problem. We have

shown that the generalized sorting problem can be solved optimally using semi-heap. In [7] we

show a parallel solution based on the semi-heap structure.
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