
A Probabilistic Voting-based Filtering Scheme in Wireless
Sensor Networks

Feng Li and Jie Wu ∗

Department of Computer Science and
Engineering

Florida Atlantic University
Boca Raton, FL 33431

{fli4@, jie@cse.}fau.edu

ABSTRACT
In this paper, we study the fabricated report with false votes attack
and the false votes on real reports attack in wireless sensor net-
works. Since most of the existing works addresses the first attack
while leaving an easy way for the attackers to launch the second
attack, we propose a probabilistic voting-based filtering scheme
(PVFS) to deal with both of them simultaneously. On the ba-
sis of the en-route filtering scheme, PVFS combines cluster-based
organization, probabilistic key assignment, and voting methods.
Through both analysis and simulation, we demonstrate that PVFS
could achieve strong protection against both attacks while main-
taining a sufficiently high filtering power.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols, Wireless Communications

General Terms
Algorithms, Design, Security, Performance

Keywords
Wireless sensor networks, node compromise, probabilistic key as-
signment, voting method

1. INTRODUCTION
One core functionality of wireless sensor networks (WSNs) is

to detect and report events. A WSN is suitable for tasks such as
military surveillance, and forest fire monitoring. We usually use
sensors to detect events in an unattended or even hostile environ-
ment, in which the adversary may capture and compromise several
sensors and launch insider attacks.

One such attack is the fabricated report attack, which means
compromised nodes can pretend to have detected a nearby event or
∗This work was supported in part by NSF grants ANI 0073736, EIA
0130806, CCR 0329741, CNS 0422762, CNS 0434533, and CNS 0531410.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWCMC’06, July 3–6, 2006, Vancouver, British Columbia, Canada.
Copyright 2006 ACM 1-59593-306-9/06/0007 ...$5.00.

forward a report supposedly originating from a remote location. If
no security counter-measure is provided, our adversary may claim
non-existent events happening at an arbitrary location. This kind
of attack will not only cause false alarms that waste real-world re-
sponse efforts such as sending response teams to the event location,
but also drains the finite amount of energy in a battery-powered
WSN. Detecting and purging fabricated reports injected by com-
promised nodes is a great research challenge, since our adversary
knows all of the security information of the compromised nodes.

Several recent research efforts [1], [2], and [3] have proposed
mechanisms to filter out injected fabricated reports in the forward-
ing process. Their basic idea is: every node is preloaded with some
symmetric keys. When an event occurs, multiple surrounding sen-
sors collectively generate a report that carries multiple message au-
thentication codes (MACs). A MAC is generated by a node using
one of its symmetric keys and represents its agreement on the re-
port. As a report is forwarded towards the sink over multiple hops,
each forwarding node verifies the correctness of the MACs carried
in the report probabilistically. A report with an inadequate number
of MACs will not be delivered. Once an incorrect MAC is detected,
that report is dropped.

These mechanisms offer a base to solve the fabricated report with
false votes attack and keep improving the efficiency. But they also
facilitate the attackers to launch the false votes on real reports at-
tack. False votes on real reports attack means that the attacker may
inject a false MAC for every real report. If the methods in [1], [2],
or [3] are used, all these true event reports will be dropped during
the routing process.

In this paper, we design a scheme that could address these two
types of attacks simultaneously, and maintain the filtering power at
a sufficiently high level. To this end, we exploit a voting method
together with a cluster-based organization and a probabilistic key
assignment. We break WSNs into clusters, bind a set of keys to
each cluster, and use a designed probability to select intermediate
cluster-heads as verification nodes. A verification node will not
drop a report immediately after it finds a false vote, instead it will
record the result of current verification. Only when the number of
verified false votes reaches a designed threshold will a report be
dropped. The vote in this paper has a similar format as the MAC.

The contributions of this paper are as follows:

1. We use a cluster-based organization in our design. By doing
so, compromised nodes from different clusters can not col-
lude. It limits the scope that compromised nodes can abuse
their keys.

2. We propose a probabilistic key assignment. On average, the
cluster-head stores less verification keys than the verification

27

nodes in other methods. The false votes tend to be detected
in the first few steps.

3. We present a voting method. The decision on whether to
drop a report depends on whether the recorded result reaches
a designed threshold. By adjusting the threshold, we could
offer protection for both attacks and accommodate different
application scenarios.

The remainder of this paper is organized as follows. Section 2
discusses several related solutions and the general en-route filtering
framework. Section 3 introduces the detailed design of the PVFS
scheme. We analyze our scheme and present the simulation results
in Section 4. Finally, Section 5 concludes this work and outlines
future work.

2. BACKGROUND
Node compromise presents severe security threats, as WSNs usu-

ally serve mission-critical applications. Three recent proposals, a
statistical en-route filtering mechanism (SEF) [1], an interleaved
per hop authentication scheme (IHA) [2], and a location-based re-
silient security solution (LBRS) [3], provide some protection against
the fabricated report attack. SEF [1], IHA [2] and LBRS [3] use
general en-route filtering framework as the base of their scheme,
which is also the base for the PVFS in this paper.

2.1 Related Work
SEF [1] is the first paper that addresses false sensing report de-

tection problems in the presence of compromised sensors. It also
presents the general en-route filtering framework, which serves as
the base of IHA, LBRS, and PVFS. SEF suffers from the major
drawback that if a certain number of nodes, no matter where they
locate, have been compromised, the adversary may claim fabricated
events at an arbitrary location without the risk of being detected.
We use a cluster-based organization where we bind the generation
key to the cluster’s id in this paper to address this problem.

IHA [2] verifies the reports in a deterministic and hop-by-hop
fashion. There are two major drawbacks in IHA. First, the pro-
tection breaks down when more than a certain number (over the
threshold) of nodes along a path are compromised. Second, it relies
on deterministic key sharing. Each node must know one predeter-
mined upstream and one predetermined downstream neighbor and
establish symmetric keys with them. IHA presents us the idea to
associate nodes along a routing path together and also leads us to
use probabilistic key sharing in our design.

In LBRS [3], the terrain is divided into a regular geographic grid,
and each cell on the grid is associated with multiple keys. An at-
tacker that has compromised multiple nodes may obtain keys bound
to different cells, but he cannot combine such keys to fabricate any
event without being detected. LBRS improves the resiliency of en-
route filtering, but it requires additional information such as sensor
location information.

Although there are obvious innovations in these three mecha-
nisms, all of them make false votes injection attack easier while
offering protection against the fabricated report attack. This paper
aims to find a way to address both of them, while maintaining a
comparatively high filtering power.

2.2 General En-route Filtering Framework
The general en-route filtering framework has three main compo-

nents: report generation using message authentication codes (we
refer to MACs as votes in this paper), en-route filtering, and sink
verification.

Table 1: List of notations
N Number of nodes in the WSN.
Nc Number of compromised nodes.
Cid Unique cluster ID.
L Number of keys for one cluster.
n Number of keys in the global key pool.
Ki The key with the index i.
s Required number of votes for a legitimate report.

d0/di The hops from the original/ ith CH to the sink.
Tt/Tf Threshold of true/false votes to accept/drop a report.

The general en-route filtering framework requires a legitimate
report to carry s (s is the required number of votes a legitimate
report should carry) distinct votes, where each vote is generated by
a sensor using a symmetric key (the generation key) and represents
the node’s endorsement on the content of the report. When a real
event occurs, multiple detecting nodes jointly generate a complete
report with the required s votes and the associated key indices.

The intermediate nodes detect and discard bogus reports injected
by compromised nodes. When a node receives a report, it verifies
those votes in that report as long as it stores the corresponding ver-
ification keys. It follows designed rules (we introduce our rules in
Section 3.3) to decide whether to drop a report or further forward
it.

Even though the filtering power at each node may be limited, the
collective filtering power along the forwarding path can be signifi-
cant. The more hops a forged report traverses, the higher the chance
that it is dropped en-route. Consequently, one can effectively use
the resources of WSNs without being hampered by forged reports.
The en-route filtering performed by sensor nodes is probabilistic in
nature, thus cannot guarantee to detect and drop all forged reports.
The sink serves as the final guard in rejecting any forged reports
that get through.

3. DESIGN
To achieve better resilience against node capture and offer pro-

tection for both the fabricated report with false votes attack and the
false votes on real reports attack, we propose a new probabilistic
voting-based filtering scheme (PVFS). PVFS takes the general en-
route filtering framework as its base and significantly improves it
through three mechanisms: cluster-based key organization, proba-
bilistic key assignment, and voting method. Notations are listed in
Table 1.

3.1 System Model and Assumptions
We consider a large-scale sensor network in which the nodes do

not move after initial deployment. Most nodes in that network be-
have normally, so we can always collect enough true votes for true
reports, and the adversary could not generate enough true votes for
a fabricated report. If our adversary has captured most of the sen-
sors, they do not need to launch these two kinds of attacks.

The cluster-based model is naturally suitable for the filtering
mechanisms. It breaks the network into clusters. We choose the
cluster-based model to organize sensors in PVFS. When sensors
are dense enough, with a cluster merge method, we can make each
cluster include approximately L nodes. Let L ≥ s, which guaran-
tees that a real report could collect enough votes. In a cluster, one
node is elected to be the cluster-head represented by CH . Each
cluster has a unique cluster ID Cid. There are many ways to form

28

clusters, elect CHs, and generate unique cluster IDs [4]. We use
a simple cluster formation method in our scheme: a node with the
smallest node ID in all its one-hop neighbors is elected as the CH ,
and its one-hop neighbors join that cluster. The node ID is unique
and predetermined before sensor deployment. We assume all the
sensors in one-hop cluster are able to detect the same event hap-
pening within one-hop of the CH . In most WSNs, the sensing
range of a sensor is much larger than its transmission range. So it
is reasonable that we make such an assumption. Each CH uses a
larger transmission range than other nodes and discovers a route to
the sink which only consists of CHs. Each CH could discover c
paths to the sink in case of node failure.

We focus on two types of attacks: the fabricated report with false
votes attack and the false votes on real reports attack. So the com-
promised nodes in this model would either fabricate a report and
fabricate some false votes to support that report, or cast a false vote
on a real report. Compromised nodes may launch several other at-
tacks. For example, it may simply drop every report or modify the
report it receives. However, the WSN may employ mechanisms
such as Watchdog [10] to solve these attacks. They are out of the
scope of this paper. To simplify the discussion, we also assume
that at the beginning of sensor deployment, for a very shot period
of time, no node is compromised, we could complete cluster formu-
lation, key distribution, and route discovery without been attacked.

3.2 Initialization and Key Assignment
The PVFS requires a pre-generated global key pool of n keys
K = {Ki : 0 ≤ i ≤ n−1}. After the sensors have been organized
into clusters, we divide the global key pool into cn non-overlapping
partitions KCid = {Ki : L · Cid ≤ i ≤ L · (Cid + 1) − 1}. Here
L represents the number of keys in each partition and cn is the
number of clusters in the WSN, L ≥ s and n = cn · L.

Each sensor in a cluster selects one key from the partition KCid .
The key will be stored in the following format: (i, Ki) where i is
the key’s index. We can decide a key Ki belongs to which partition
by using function Cid ← 	i/L
. So KCid is bound to the cluster
identified by Cid. A node will use this key as the generation key to
generate a vote for an event report. We can use a method similar to
the idea in [5] to complete the key dissemination in each cluster.

Each CH then represents the cluster to select the verification
nodes in the upstream CHs. Upstream CHs means those CHs
on one or more paths between the CH which starts the selection
process (original CH) and the sink. In the route discovery phase,
each CH may get all the upstream CHs’ IDs and their distance to
the sink in hop count, including its own distance to the sink. Let d0

represent the distance between the original CH and the sink, and
di represent the distance between the upstream cluster-head CHi

and the sink.
The original cluster will select an intermediate cluster-head CHi

to be a verification node with a probability: P = di/d0.
After it has selected a verification node, the original CH will

notify one node in its cluster to exchange its generation key with
the selected intermediate CH . As we assume that no node will
be compromised during the initialization phase, the key could be
directly sent to the intermediate CH . However, to relax this as-
sumption, we can use pairwise key establishment protocols such as
[6] to establish a session key, and use this session key to securely
transmit the generation key to the selected intermediate CH . Each
selected intermediate CH will then have a key from the partition
KCid to be its verification key, where the Cid is the original clus-
ter’s id. Each CH also shares another symmetric key Kbc with the
sink to generate the signature of its verification decision.

3.3 Report Generation
The voting method is the core of our design. When an event oc-

curs, the clusters nearby compete with each other, and the winner
prepares a report. The CH of that cluster generates a report de-
scribing the event and broadcasts it in that cluster. Other nodes in
that cluster will compare and decide whether the report is consis-
tent with its observation. If so, it casts a vote using its generation
key Ki, and the vote should be:

V ote : (i, EKi(H(Report)))

After a vote has been generated, the node sends it to the CH . We
could utilize methods such as radio resource testing [8] to ensure
that each node could cast only one vote for each report to protect
our system from the Sybil attack[7], which means a compromised
node can present multiple identities.

When CH has received all the votes, it randomly selects a fixed
number of votes, including the vote generated by itself, and ap-
pends them to the report. That fixed number is s, which is the
required vote-set length in our scheme.

Cid, Report, {V otei}
The CH will then forward the report to its upstream neighbors.

Algorithm 1 demonstrates actions of CHs in the report generation
phase. Here NCid represent the node set of the cluster identified
by Cid, R is the report and V is the set that contains the received
votes.

Algorithm 1 ReportGen(NCid , R, V, Cid, s)

1: Generate R to describe the event;
2: Broadcast R in the cluster;
3: Wait;
4: for node ∈ NCid do
5: Collect one vote;
6: Add vote to V ;
7: end for
8: Select s votes from V , Add to R;
9: Forward R, EXIT;

3.4 En-route Filtering
After a CH receives a report, it will check whether all the votes

belong to the same cluster that generated the report, by comparing
Cid in R with 	i/L
 for each vote in the vote-set. It will then ver-
ify the vote if it holds the corresponding verification key and record
the verification result using two binary sequences Binv and Binr .
Binv and Binr record the verified votes and the verified true votes
by setting corresponding bits to 1. The length of these two se-
quences are decided by s. The node will also check if the number
of recorded true or false votes has reached the threshold, and de-
cide whether to drop the report or set the accepted flag F lagr to 1.
It will generate a signature of the report and its verification result
using its Kbc and forward the report if Tf has not been reached. A
report in forwarding will be in the form:

Cid, Report, {V ote}, Binv , Bint, F lagr, {SIG}
Algorithm 2 shows actions of intermediate CHs in the report

forwarding phase. Here DSK represents the database of verifica-
tion keys stores in a CH .

The sink performs final verification on the received reports. It
knows all the generation keys, thus it is able to verify every vote in

29

Algorithm 2 ReportVeri(R, DSK , Tf , Tt, Kbc)

1: if R.F lagr = 1 then
2: Forward R, EXIT;
3: end if
4: for each vote (i, Ki) in R.{V ote} and R.Binv = 0 do
5: if 	i/L
 �= Cid then
6: R.Binv[i]← 1;
7: else if (i, Ki) ∈ DSK then
8: if Dki(V ote) = H(R.Report) then
9: R.Bint[i]← 1;

10: end if
11: R.Binv[i]← 1;
12: end if
13: end for
14: Count the number of verified true and false votes;
15: Drop R and EXIT if Tf has been reached;
16: R.F lagr ← 1 if Tt has been reached;
17: Add EKbc(H(R)) to R.{SIG};
18: Forward R, EXIT

the report. It can verify those unverified votes, and make the final
decision. It will also verify each CH’s signature. In this way, the
sink serves as the final guard.

3.5 Example
Fig.1 illustrates our idea. All nodes report to the sink S. We

consider L = 9, s = 5 and Tf = 2. In the initializing phase,
all sensors are organized into clusters. In Fig. 1(a), we use C0 to
represent the cluster with Cid = 0. CH0 is the cluster-head of C0.
Each node in the cluster gets a key from the partition K0 = {Ki :
9 · 0 ≤ i ≤ 9 · 1 − 1} bound to that cluster. C0 then picks up
its verification nodes. As CH2 is on the path that connects S and
CH0, d1 = 3 and d0 = 4, CH2 has a probability P = 3

4
to be a

verification node of C0. We can compute the probability of CH3

and CH4 similarly. Fig. 1 (a) shows that both CH2 and CH4 get a
verification key of C0. CH2 gets the key (4, key4), and CH4 gets
the key (7, key7).

When an event occurs near C0, CH0 generates a report, and
broadcasts it in C0. If a node finds that the report is in accordance
with its observation, it will sign the report. After collecting all the
votes, CH0 randomly selects the votes with i = 1, 4, 5, 7, 8 as
s = 5, and send the report. CH2 verifies the vote with i = 4. As
this vote is true, CH2 sets the corresponding bit in Binv and Bint

to 1 and forward it.
Let us consider another situation. If CH0 fabricates a report

about a non-existing event, it has to fabricate some votes. For ex-
ample, it fabricates votes with i = 4, 5, 7, 8. CH2 will find the
vote with i = 4 is a false vote. So it will set the corresponding bit
in Binv to 1, let the corresponding bit in Bint remain 0 and send
it to CH3. CH4 will drop the report after it finds another false vote
with i = 7, as Tf = 2 has been reached.

Consider a node in cluster C1 with (10, key10) colludes with
CH0 and gives a vote using key10. This will not raise the chance
for CH0’s fabricated report to escape filtering. As an intermediate
node finds 	10/9
 = 1 �= 0, it will treat it as a false vote.

If a node that owns key4 has been compromised and launches
the false votes on real reports attack. It may give a false vote to a
real report of CH0. If CH0 still selects votes with i = 1, 4, 5, 7, 8,
CH2 will find the vote with i = 4 is a false vote. But it won’t
drop the report as Tf = 2 has not been reached yet. The real report
could still reach the sink S.

{7,key_7}

0

CH2

CH1

CH3

CH4 S

3/4

2/4

1/4

8

7 6 5

4

3
2

1

{4,key_4}

CH

(a)

{7,key_7}

0

CH1
R,{V}

S

V_7

7

{4,key_4}

CH

(b)

Figure 1: Illustration of PVFS: (a) CH0’s verification key assignment,
(b) Report generation and verification

4. ANALYSIS
In this section, we analyze the merits and the performance of

PVFS. The analysis results quantify the resiliency, efficiency, and
scalability of PVFS. To simplify the analysis, we consider a 2-D
terrain, over which N sensor nodes are randomly spread. The sink
is located at the center of the terrain.

4.1 General Analysis of PVFS
The cluster-based organization constrains the degree to which

compromised nodes could abuse their keys, as it becomes mean-
ingless for nodes in different clusters to collude. To successfully
forge a fabricated report that could not be detected, the attacker
must collect enough keys, s − (Tf − 1) distinct keys, from one
single cluster, because each report must be endorsed by multiple
distinct votes using keys bound to one cluster. It also reduces the
storage consumption of the keys, as nodes only store their genera-
tion key except for the CHs.

The probabilistic key assignment method has three desirable fea-
tures: First, the verification CHs are chosen in a probabilistic man-
ner. It would become harder for the attackers to avoid being de-
tected as they could not predict which nodes actually are the veri-
fication nodes. Second, it would reduce the key storage overhead,
because the nodes closer to the sink will have less chance to have
a key for remote clusters while they tend to be intermediate nodes
of more paths. Third, this method brings higher probability to filter
out or accept a report with votes in the first few steps.

We use the voting method to deal with both kinds of attacks.
Each intermediate node will not decide whether to drop a report
independently. This brings advantages such as when the number of
verified true votes reaches the Tt, we would stop further verification
and save more energy. But when some intermediate CHs have
been compromised, it would also bring more security challenges.
When Tf > 1, an obvious drop in filtering power occurs. We
consider this to be the obligatory cost as we want to deal with these
two attacks simultaneously.

4.2 Filtering Effectiveness and Key Storage
Overhead

We use the number of hops a forged report can traverse before the
first false vote is detected as the first metric. We name it detecting
position h1, which is also the filtering position when Tf = 1. Con-
sider a setting where there is a single compromised node (or equiv-
alently, non-colluding compromised nodes). Let node Z be the
compromised node, with a distance (in hop count) of d0 to the sink.
A forged report injected by node Z is forwarded along a multi-hop
path to the sink, denoted by Z → . . . → CHi → . . . → S, in

30

which the CHi(1 ≤ i ≤ d0) are intermediate CHs. Because a
compromised node has at most one key for any cluster, it has to
forge s− 1 votes.

THEOREM 1. The detecting position h1, defined as the expected
number of hops a forged report can traverse before the first false
vote is detected is:

h1 = 1 +

d0X

i=2

(i · pi ·
i−1Y

j=1

(1− pj))

where px =
(s− 1) · (d0 − x)

d0 · L
PROOF. The distance from Z to the sink is d0, and the distance

from CHi to the sink is di. We know that di = d0 − i. For
any intermediate node CHi, it has a probability of di/d0 to have
a key of the cluster detecting the event. The forged report has a
probability of (s−1)/L to carry a vote that it claims to be generated
by the same key. Therefore, the probability that node CHi detects
on false vote is:

pi =
(s− 1)

L
· di

d0

Because all the intermediate CHs perform the same checking
task, the probability that a fabricated report elude the check by
CH1 to CHi−1 but one false vote be detected by CHi is:

pi ·
i−1Y

j=1

(1− pj)

So h1 could be expressed as above.

Then we consider there are Nc nodes in a cluster that have been
compromised, which is the worst case. If Nc nodes come from
different clusters, it is useless for them to collude. If the Nc nodes
are located along the path to sink, each of them will only have a
probability di/d0 to have a key of the cluster detecting the event.

THEOREM 2. In the worst-case, with Nc compromised nodes,
h1 is:

h1 = 1 +

d0X

i=2

(i · pi ·
i−1Y

j=1

(1− pj))

where px =
(s−Nc) · (d0 − x)

d0 · L
Here Nc < s, otherwise the detecting ratio would be 0. As we

use the voting scheme, our filtering power is quite different from
existing en-route filtering methods. It highly depends on the value
of Tf , and we may illustrate this point by h2, which means the
expected filtering hops when Tf = 2.

h2 = 1 +

d0X

i=2

(i · pi·
d0−i−1X

j=2

(pj ·
d0−i−1Y

k �=j,k=1

(1− pl)))

where px =
(s−Nc) · (d0 − x)

d0 · L
In PVFS, each node stores only one generation key, except for

the CHs. We assume that CHs are uniformly distributed in a 2-D
terrain to facilitate this analysis. Then we could get the following
theorem:

THEOREM 3. The average number of verification keys stored
by an intermediate node is:

Nv key = c · (dmax − di)

PROOF. In this equation, dmax represents the distance between
the furthest cluster and the sink. The number of CHs that are h
hops away from the sink is 4 · 2h. Consider how many CHs that
are h + j hops away selects the CHs that are h hops away as the
intermediate nodes, on the average, the number should be: 8·(di+j)

8·di

if each CH selects one path. Any CH that is h + j hops away
selects a CH that is h hops away and already on the path to the sink
with a probability: di

di+j
. As each CH selects c paths, the average

number of verification keys a CH that is h hops away from the
sink stores for the CHs that are h + j hops away from the sink is
c. And the total number of verification keys is:

Nv key =

dmax−diX

j=1

c

Though PVFS does not require uniform distribution of CHs, this
theorem still reveals PVFS’s advantage on key storage overhead.

4.3 Simulation Evaluation
We consider three existing approaches for comparison: (1) SEF

[1], (2) LBRS [3] and (3) our scheme PVFS. All approaches are
simulated on a custom simulator which generates random deploy-
ment. Nodes are homogeneous and can be deployed in this area
arbitrarily. N = 4000, the number of clusters cn = 400, L = 10,
s = 5, and Tt = 5. We consider the following tunable parame-
ters: (1) Tf , the threshold of false votes to drop a report. In our
experiments, we vary Tf between 1 and 3. (2) Nc, the number of
compromised nodes. (3) d0, the hops between the report generation
cluster to the sink.

As shown in Fig.2 (a), our PVFS is resilient to increasing the
number of compromised nodes. Even when Nc = 10, two or more
compromised nodes belonging to the same cluster rarely occur. So
these three lines are very close to each other. It indicates that
cluster-organization and probabilistic key assignment effectively
constrain the level that the key of a compromised node could be
abused.

Fig.2 (b) shows the fact that the filtering power of PVFS drops
sharply with the increase of Tf , which is in accordance with our
anticipation. When Tf = 2, it requires more than twice the number
of hops to drop a fabricated report. And the longer a report travels,
the lower the probability that an intermediate CH has a verification
key for that cluster.

Fig.2 (c) compares the percentage of dropped fabricated reports
of SEF [1], and our PVFS (Tf = 1), when Nc = 1. Our method
always has a higher filtering power when the report travels the same
hops and Tf = 1. When the application only cares about the fab-
ricated report with false votes attack, we would set Tf = 1. Our
PVFS is a highly efficient filtering scheme in this situation. So we
could adjust Tf to accommodate different user scenarios.

Fig.2 (d) illustrates the key storage overhead of SEF [1], LBRS
[3], and PVFS. Here we do not use uniform distribution, so the
simulation result is different from Theorem 3. But it clearly shows
our advantage on both maximum and average key storage overhead.
Although more paths would contain CHs closely deployed around
the sink, they have a smaller probability to be chosen as verification
nodes.

31

 0

 2

 4

 6

 8

 10

 5 10 15 20

A
ve

ra
ge

 H
op

s
to

 d
et

ec
t 1

st
 F

ab
ric

at
ed

 V
ot

e

Hops to sink d0

Nc = 1
Nc = 5

Nc = 10

(a)

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20

H
op

s
to

 fi
lte

r
ou

t a
 fa

br
ic

at
ed

 r
ep

or
t

Hops to sink d0

Tf=1
Tf=2

(b)

 0

 20

 40

 60

 80

 100

 5 10 15 20

P
er

ce
nt

ag
e

of
 d

ro
pp

ed
 r

ep
or

ts

Hops to travel

SEF
PVFS(Tf=1)

(c)

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20

N
um

be
r

of
 k

ey
s

st
or

ed

Hops to sink d0

PVFS
SEF

LBRS

(d)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

E
ne

rg
y

co
ns

um
pt

io
n

ra
tio

(%
)

Hops to sink d0

Tf=1 & Nc=1
Tf=1 & Nc=3
Tf=2 & Nc=1

(e)

Figure 2: (a) Filtering performance with Nc. (b) H1 and H2 when Nc = 3. (c) Portion of dropped fabricated reports. (d) Key storage
overhead. (e) Energy saving of PVFS.

The early dropping of fabricated reports leads to significant sav-
ings of energy in WSNs. Assume that report transmission con-
sumes the same amount of energy between any pair of nodes. Then
we can use h′/h to represent the energy consumption ratio between
PVFS-protected and unprotected paths. Fig.2 (e) shows that PVFS
saves a high percentage of energy that may be consumed by a fab-
ricated report. It also shows that the energy savings of PVFS de-
pends on the location of the generation cluster. Due to our prob-
abilistic key assignment, a fabricated report tends to be purged in
the first few steps. When the report generation cluster is far away
from the sink, the energy consumption of unprotected WSNs goes
up quickly, but the energy consumption of PVFS-protected WSNs
remains almost the same.

5. CONCLUSION AND FUTURE WORK
In this paper, we study the fabricated report with false votes at-

tack and the false votes on real reports attack in WSNs. As most of
the existing works deal with the first attack while leaving an easy
way to launch the second attack, we propose a probabilistic voting-
based filtering scheme. Under the framework of the en-route filter-
ing scheme, our PVFS combines cluster-based organization, proba-
bilistic key assignment, and voting methods. Through analysis and
simulation, we demonstrate that PVFS could address both attacks
while maintaining a sufficiently high filtering power.

We also consider the following extensions as possible future work.
First, introduce k-clusters into cluster-based organization, to fur-
ther improve the resiliency of our scheme. Second, use back check
key and drop report acknowledgement together, and modify Algo-
rithm 2 such as to conduct spot-check even after the accepted flag
F lagr = 1, to offer stronger protection for compromised interme-
diate CHs. We will further improve the scheme, by designing and
choosing the best methods in these aspects, make it more resilient
and efficient.

6. REFERENCES
[1] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical En-route

Filtering of Injected False Data in Sensor Networks,” IN
IEEE Proceedings of INFOCOM 2004, 2004, pp.839-850.

[2] S. Zhu, S. Setia, S. Jajodia, and P. Ning, “An Interleaved
Hop-by-Hop Authentication Scheme for Filtering False Data
in Sensor Networks,” IN IEEE Proceedings of Symposium on
Security and Privacy 2004, 2004, pp.259-271.

[3] H. Yang, F. Ye, Y. Yuan, S. Lu, and W. Arbaugh, “Toward
Resilient Security in Wireless Sensor Networks,” In ACM
Proceedings of MobiHoc 2005, 2005, pp.34-45.

[4] M. Jiang, J. Li, and Y. C. Tay, “Cluster Based Routing
Protocol (CBRP) Functional Specification Internet Draft,”
draft-ietf-manet-cbrp.txt, 1999.

[5] W. Du, J. Deng, Y. S. Han, and P. K. Varshney, “A key
management scheme for wireless sensor networks using
deployment knowledge,” In IEEE Proceedings of INFOCOM
2004, 2004, pp.597-608.

[6] C. Haowen and A. Perrig, “PIKE: peer intermediaries for key
establishment in sensor networks,” IN IEEE Proceedings of
INFOCOM 2005, 2005, pp.524-535.

[7] J. Douceur, “The Sybil Attack,” In Proceedings of
International Workshop on Peer-to-Peer Systems (IPTPS)
2005, 2002.

[8] J. Newsome, E. Shi, D. Song, and A. Perrig, “The Sybil
attack in sensor networks: analysis & defenses,” In
Proceedings of Third International Symposium on
Information Processing in Sensor Networks (IPSN), 2004,
pp.259-268.

[9] A. Wood and J. Stankovic, “Denial of Service in Sensor
Networks,” In IEEE Computer, vol.35, 2002, pp.54-62.

[10] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating Routing
Misbehavior in Mobile Ad Hoc Networks,” In ACM
Proceedings of MobiCom 2000, 2000, pp. 255-265.

32

