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Abstract

!\ We propose a sufficient condition for minimal routing
in 3-dimensional (3-D) meshes with faulty nodes. Unlike
many traditional models that assume all the nodes know
global fault distribution or just adjacent fault information,
our approach is based on the concept of limited global fault
information. First, we propose a fault model called faulty
cube in which all faulty nodes in the system are contained in
a set of faulty cubes. Fault information is then distributed to
limited number of nodes while it is still sufficient to support
minimal routing. The limited fault information collected at
each node is represented by a vector called extended safety
level. The extended safety level associated with a node can
be used to determine the existence of a minimal path from
this node to a given destination. Our results show that any
minimal routing that is partially adaptive can be applied in
our model as long as the destination node meets a certain
condition. We also propose a dynamic planar adpative rout-
ing scheme that offers better fault tolerance and adaptiv-
ity than the planar adaptive routing scheme in 3-D meshes.
Our approach is the first attempt to address adaptive and
minimal routing in 3-D meshes with faulty nodes using lim-
ited fault information.

1. Introduction

The mesh-connected topology [3, 6] is one of the most
thoroughly investigated network topologies for multicom-
puter systems. Mesh-connected topologies, also called
k-ary n-dimensional meshes, have an n-dimensional grid
structure with k£ nodes in each dimension such that every
node is connected to two other nodes in each dimension by a
direct communication. Mesh-connected topologies include
n-dimensional meshes, tori, and hypercubes.
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The safety-level-based (or safety-vector-based) routing
[9, 11], a special form of limited-global-information-based
routing, is a compromise between local-information- and
global-information-based approaches. In this type of rout-
ing, a routing function is defined based on current node,
destination node, and limited global fault information gath-
ered at the current node. Our approach differs from many
existing ones where information is brought by the header of
the routing message [1] and the routing function is defined
based on header information and local state of the current
node [5]. In our approach, neighborhood fault information
is captured by an integer (safety level) or a binary vector
(safety vector) associated with each node. For example, in
a binary hypercube, if a node’s safety level is { (an integer),
then there is at least one Hamming distance (or minimal)
path from this node to any node within [-Hamming-distance
[11). Using the safety level (or safety vector) associated
with each node, a routing algorithm normally can obtain
an optimal or suboptimal solution and requires a relatively
simple process to collect and maintain fault information in
the neighborhood. Therefore, limited-global-information-
based routing can be more cost effective than routing based
on global or local information.

In this paper, we extend the safety level concept for 3-D
meshes. First, we propose a novel fault model called faulty
cube in which all faulty nodes in the system are contained in
a set of faulty cubes. Fault information is then distributed to
limited number of nodes while it is still sufficient to support
minimal routing. The amount of limited-global-information
should be kept minimum and it should be easy to obtain
and maintain. In this paper, the limited fault information
collected at each node is represented by a vector calied ex-
tended safety level. The extended safety level associated
with a node can be used to determine the existence of a min-
imal path from this node to a given destination. Specifically,
we address the issues of the existence of a minimal path at
a given source node, limited distribution of fault informa-
tion, minimal routing, and deadlock-free and livelock-free
routing.



Our main results include the following: (1) A novel fault
model called faulty cube is introduced in 3-D meshes. A
simple labeling scheme is introduced to classify nodes into
faulty, enabled, and disabled. A faulty cube consists of ad-
jacent faulty and disabled nodes. (2) A new limited global
information model called extended safety level associated
with each node is proposed. The safety level information
can be used to determine the existence of a minimal path for
a given pair of source and destination nodes in 3-D meshes.
(3) We formally define the concepts of fully and partially
adaptive routing. We also show that the planar-adaptive
routing [2] fails to meet the proposed partially adaptive re-
quirement. {4) We propose a dynamic planar adaptive rout-
ing scheme as an extension of Chien and Kim'’s planar adap-
tive routing scheme. We show that within the context of
minimal routing in 3-D meshes, dynamic planar adaptive
routing offers better fault tolerance and adaptivity without
using extra virtual channels compared with planar adaptive
routing. (5) We prove that any minimal routing that is par-
tially adaptive can be applied in our model as long as the
destination node meets a certain safety requirement. (6)
We propose a simple deadlock-free and livelock-free rout-
ing based on the use of virtual network. This approach can
be implemented using only three virtual channels.

2. Notation and Preliminaries

A k-ary n-dimensional mesh with N=k™ nodes has
an interior node degree of 2n and a network diameter of
n{k — 1). Each node u has an address (uj,us, ..., un),
where u; = 0,1,...,k — 1. Two nodes (v;,v2, ", V)
and (uy,us2, ..., u,) are connected if their addresses differ
in one and only one element (dimension), say dimension ¢;
moreover, |u; — v;] = 1. Basically, nodes along each di-
mension are connected as a linear array. Normally, we do
not specify the size of a mesh, i.e., the value k. A k-ary
n-dimensional is simply denoted as an n-mesh. Each u; in
u: (ug, Uz, ..., Up) is an integer.

A 3-D mesh can be drawn in a three-dimensional (3-
D) space. Each node in a 3-D mesh is labeled as (2, 7, k).
We define the six directions in a 3-D mesh as follows:
The direction along positive X is East, along negative X
is West. The direction along positive Y is North, along neg-
ative Y is South. The direction along positive Z is Front,
along negative Z is Back. A 3-D space can be partitioned
into eight regions based on positive and negative directions
along three dimensions. To simplify our discussion, we as-
sume that source is (0, 0, 0) and destination is (i, j, k), with
1> 0,7 > 0and k > 0. The other seven regions can be
defined in a similar way.

Routing is a process of sending a message from a source
to a destination. A routing is minimal if the length of the
routing path from source (0,0, 0) to destination (3, j, k) is
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the distance between these two nodes, i.e., [i| + |j] + |&|.
Throughout this paper, we focus only on minimal routing in
a 3-D mesh with faulty components. The challenge is to find
a minimal path (if there exists one) by avoiding faults in the
system. The simplest routing algorithms are deterministic
which define a single path between the source and destina-
tion nodes. The X-Y-Z routing is an example of determin-
istic routing in which the message is first forwarded along
the X dimension, then along the Y dimension, and finally
along the Z dimension. Adaptive routing algorithms, on the
other hand, support multiple paths between the source and
destination nodes. Fully adaptive and minimal routing al-
gorithms allow all messages to use any minimal paths.

3. Faulty cubes

We consider node faults only (link faults can be treated
as node faults by disabling the corresponding adjacent
nodes). Moreover, we have the following classification of
nodes in a 3-D mesh and propose a fault model based on
this classification.

Definition 1: In a 3-D mesh, a healthy node is marked dis-
abled if there are two or more disabled or faulty neighbors
along different dimensions; otherwise, it is marked enabled.
A faulty cube contains all the connected disabled and faulty
nodes.

Based on Definition 1, there are three types of nodes:
faulty nodes, enabled nodes, and disabled nodes. To deter-
mine the status of a node in a 3-D mesh using Definition 1,
all the healthy nodes are initially marked enabled. In this
way, there is no need to perform any calculation when a
given 3-D mesh is fault-free; that is, all healthy nodes are
marked enabled by default. We assume that both source
and destination nodes in a routing process are healthy and
enabled. A cube is a solid that has six surfaces and any two
cross sections perpendicular to the same surface generate
two rectangles of the same size and shape.

Theorem 1: In a 3-D mesh, a faulty cube defined by Defi-
nition 1 has the following properties: (1) Each faulty cube
is a cube. (2) Each of the six surfaces of the faulty cube is
perpendicular to an axis in 3-D meshes. (3) The distance
berween any two faulty cubes is at least two.

With the second property in Theorem 1, the address of
a faulty cube can be simply described by the range along
each dimension, e.g., z; : z specifies the range along the
x axis. A general faulty cube can be represented by [z, :
Tg,Y1 © Y2,%21 : 22] which covers (z2 — 21 + 1) X (y2 —
11+ 1) X (22 — z1 + 1) nodes. When the range along an axis
is one, say z1 : I, the corresponding cube is reduced to a
block. When there are unit ranges along two dimensions,
the corresponding cube becomes a line, and for three unit
ranges, a point (a single faulty node). For example, suppose



there are three faulty nodes in a 3-D mesh: (3,4,2), (3,5,1),
(3,5,2) and (5,4,2). Based on Definition 1, these four faulty
nodes generate two separate cubes: [3:3, 4:5, 1:2}, a block,
and [5:5, 4:4, 2:2}, a single node.

4. Extended Safety Level

The following shows an important theorem that leads to
our extended safety level definition in 3-D meshes and it
serves as a basis of our approach.

Theorem 2: Assume that node (0,0,0) is the source and
node (1, 3, k) is the destination. If there is no faulty cube that
goes across the X, Y and Z axes, then there exists at least
one minimal path between (0,0,0) and (1, 7, k). This result
holds for any location of the destination and any number
and distribution of faulty cubes.

Proof: Without loss of generality, we assume that ¢, j,
and k are non-negative integers. We prove this theorem
by induction on m, the number of faulty cubes in region
R:[0:4,0:40: k] Clearly, if region R does not con-
tain any faulty cube, routing would be a regular one without
faults. If m = 1, starting from node (3, j, k) and going
straight along negative X until reaching plane z = 0. If it
is able to reach plane z = 0 without hitting the faulty cube,
the problem is reduced to routing in a 2-D mesh. The result
in [ 10] shows that a minimal routing path exists in z = 0 as
fong as both Y and Z axes are clear of faulty blocks (cross
sections of faulty cubes in plane z = 0). On the other hand,
if it hits the faulty cube before reaching plane x = 0, then
it must reach one of the six adjacent surfaces (of the faulty
cube) that is perpendicular to the X axis. In this case, the
routing message turns South and goes along the negative Y
direction. There are two cases: (1) If the faulty cube inter-
sects with plane ¥y = 0, then the message will eventually
hit plane y = 0 and the problem is then reduced to rout-
ing in a 2-D mesh. (2) If the faulty cube does not intersect
with plane z = 0, the message will eventually reach a node
u that is on the edge of two adjacent surfaces of the faulty
cube. At node u, the faulty cube becomes irrelevant, since
it will not block any minimal path between  and (0,0, 0).
The remaining routing from = to (0, 0,0) is like a regular
one without faulty cubes. .

Assume that the theorem holds for m = k — 1. When
m = k, we use the same approach for the m = 1 case.
When the message reaches plane z = 0, the problem is re-
duced to routing in a 2-D mesh. Therefore, we only need
to consider the case when the routing message hits a faulty
cube. The routing message turns South when it hits a faulty
cube. If the cube intersects with plane y = 0, the message
will eventually reaches plane y = 0 and the problem is then
reduced to routing in a 2-D mesh; otherwise, the routing
message will eventually reach a node u that is on the edge
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of two adjacent surfaces of the faulty cube. At node u, the
faulty cube becomes irrelevant and remaining routing be-
comes a routing in a 3-D mesh with no more than & — 1
faulty cubes. Based on the induction assumption, the re-
maining routing should be able to find a minimal path from
u to (0,0,0). Combining two minimal paths, the resultant
path is a minimal one between (4, 4, k) and (0, 0, 0). =

The above result can be strengthened by including the
location of destination (i, j, k).

Corollary: Assume that node (0,0,0) is the source and
node (i,7,k) is the destination. If there is no faulty cube
that goes across the sections of 0 < © < 1,0 <y < j, and
0 < z < k along the X, Y and Z axes, respectively, then
there exists at least one minimal path between (0,0,0) and
(Z.? j’ k)

Note that the role of source and destination can be ex-
changed if there exists a minimal path between them. How-
ever, their roles cannot be exchanged in Theorem 2 and its
Corollary. Because if a source node is extended safe with
respect to a destination, it does not imply that the destina-
tion is extended safe with respect to the source.

The following definition gives an extended safety level
definition for 3-D meshes. Node (0,0,0) is associated with
a vector (E, N, F) to represent the distance to the closest
faulty cube along East (positive X), North (positive Y), and
Front (positive Z) directions.

Definition 3: The extended safety level of node (0,0,0) in
a given 3-D mesh is a 3-tuple: (E,N,F). This node is
extended safe with respect 1o a destination (i, j, k), with
1,5,k > 0, ift < E, j < N,andk < F, that is,
(i,5,k) <(E,N, F).

An intuitive explanation of the extended safe node is the
following: A node (0,0,0) is extended safe to a destination
node as long as there is no faulty cube that goes across the
sections between the source and destination nodes along
each axis. Based on the Corollary of Theorem 2, there al-
ways exists a minimal path between two nodes as long as
one node is extended safe with respect to the other. There-
fore, vector (¥, N, F) at source (0,0,0) can be used to check
the existence of a minimal path between the source and a se-
lected destination.

For a general routing where the source node can be
in any location, each node is associated with a vector
(E,W,N,S, F, B) to represent the distance to the clos-
est faulty cube along East (positive X), West (negative X),
North (positive Y), South (negative Y), Front (positive Z),
and Back (negative Z) directions. The extended safe node
can be defined in a similar way. Symbol oo is used if there
is no faulty cube in the corresponding direction.

The extended safety level of each node can be calculated
through iterative rounds of message exchange ameng neigh-
boring nodes. Assume that each node knows the status of



|
I“'"“ -
\ Path A 1
| -y " i
)
. | | ! Path B
_Y
I
m_ -
Y
~—Y
| R
y
d: 400y X

Figure 1. A sample RMP.

its neighbors (faulty, enabled, and disabled). When a node
identifies a faulty or disabled neighbor, it passes informa-
tion to the neighbor in the opposite direction. For example,
if the neighbor to its East is faulty or disabled, the current
node passes information (distance: 2 and direction: pos-
itive X) to the neighbor to its West. Once a node receives
fault information it keeps a copy and increments its distance
value by one before forwarding it to the neighbor in the op-
posite direction. Clearly, each node will receive up to six
distance values together with their directions from six dif-
ferent directions. The default value for each direction is oo;
that is, there will be no overhead when there is no fault in a
3-D mesh. Since information is transmitted along one direc-
tion in a dimension. The number of (synchronous) rounds
needed is bounded by k in an k x k£ x k mesh.

5. Fault-Tolerant Routing Algorthms

Fully adaptive and minimal routing

For the convenience of discussion, we now use (0, 0,0) as
a destination with a safety vector (E, N, F) and (i, j, k) as
a source with ¢, j, k > 0. Although each node still holds a
safety vector (E, W, N, S, F, B), we use here only a sub-
vector (E, N, F') because of the specific locations of source
and destination in the assumption.

The routing algorithm consists of two parts: feasibility
check and routing. Feasibility check at the source is used to
check if it is possible to perform a minimal routing. This
can be easily done by comparing the relative coordinates
between the source and destination nodes with the safety
vector of the destination.

Before presenting a simple fault-tolerant and minimal
routing in 3-D meshes, we first review a fault-tolerant rout-
ing algorithm in 2-D meshes [10]. Again, assume that (0, 0)
is the destination and node (¢, j) is the source, with s, j > 0.
If there is no faulty block that goes across the X and Y axes,
then there exists at least one minimal path from (Z,j) to
(0,0), i.e., the length of this path is |i| + |;|. Results in {10]
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also show that any fully adaptive and minimal routing in a
2-D mesh can still be applied if the above condition holds
and there is no need of additional fault information during
the routing process. Whenever a message reaches a faulty
block, it just goes around the block towards the destination
and it will never be forced to a detour path or a trap where
backtracking is required.

Actually, given a source s and a destination d in a 2-D
mesh, all the intermediate nodes of a minimal path between
s and d is enclosed in a region of minimal paths (RMP) as
shown in Figure 1. RMP is constructed by determining two
special paths (Path A and Path B) from source to destina-
tion. Starting from source, Path A is constructed by going
West (negative X) until reaching the Y axis and then along
the Y axis going towards the destination. If the path hits a
faulty block, it goes around the faulty block by going South
(negative Y). Make a south-west turn whenever possible and
continue going West (negative X). Path B is constructed in
a similar way. Starting from source and going South (nega-
tive Y) until reaching the X axis and then going along the X
axis toward the destination. If the path hits a faulty block,
it goes around the faulty block by going West (negative X).
Make a west-south turn whenever possible and continue go-
ing South.

It is clear that any fully adaptive and minimal routing for
regular 2-D meshes can still be applied to find a minimal
path as long as the destination meets the above condition.
An intuitive explanation is that because of the convex na-
ture of a faulty block, each faulty block can block at most
one dimension. Therefore, at least one dimension remains
free for any source and destination pair that spans two di-
mensions. When the source (or an intermediate node) and
destination pair spans only one dimension, the condition as-
sociated with the destination ensures that there is no faulty
block along that dimension. The routing algorithm in 2-D
meshes can be directly extended to 3-D meshes.

FEASIBILITY_CHECK_3D-MESHES

{At source (3, j, k), a destination (0, 0, 0)

with a safety vector (E, N, F)}

Minimal routing is feasible if (¢, 7, k) < (E, N, F)
and returns YES; otherwise returns NO.

FT-ROUTING_IN_.3D-MESHES

{Atsource (4, 5, k)}

if Feasibility Check_3D-Meshes = YES

then use any fully adaptive and minimal routing
else this approach cannot be applied.

The correctness of the above algorithm can be described
as follows: In 3-D meshes, we assume that a source (or an
intermediate node) and destination pair spans three dimen-
sions; otherwise, the problem is reduced to minimal rout-
ing in 2-D meshes and its correctness follows directly. In
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Figure 2. A routing example.

other word, at each intermediate node the message can be
forwarded along any one of the three directions. When an
intermediate node is adjacent to a faulty cube, since the sur-
face of the cube is perpendicular to an axis, the message can
still be forwarded along either one of the other directions (a
fully adaptive routing algorithm allows this). The disjoint
property of faulty cubes ensures that the routing process can
still enjoy 2-D freedom until either the faulty cube becomes
irrelevant (it does not block any minimal path) and the rout-
ing process still enjoys 3-D freedom or it hits one of the
three planes, i.e., z = 0, y = 0, or z = 0 and the remaining
routing process resembles the one in a 2-D mesh.

Note that a faulty cube may intersect with one of the
three planes (z = 0,y = 0, or z = 0). However, it does not
cause any problem and the cross section becomes a faulty
block in the plane. The routing process itself does not use
any fault information, except local fault information of ad-
jacent nodes. In addition, there is no need of faulty cube
information, i.e., size and orientation of a faulty cube.

Figure 2 shows a routing example with two faulty cubes.
The routing starts from node (11, 7, 4) and goes West (nega-
tive X). Once the routing message hits faulty cube C;: [6:9,
5:8, -3:6] at node u, it turns South (negative Y) and makes
a south-west turn at node v (which is the intersection of two
adjacent surfaces of faulty block C1). The routing message
then goes West until it hits another faulty cube Cs: [3:5, -
3:6, 3:6] at node w. It then turns Back (negative Z). Once
the routing message passes the intersection of two adjacent
surface of faulty block Cs, the remaining routing resembles
the one in a regular 3-D mesh without faulty cubes.

Minimal routing based on planar-adaptive routing

Planar-adaptive routing [2] is one of the popular partially
adaptive routings. It offers cost-effectiveness while still
keeps a certain degree of adaptivity. Planar-adaptive rout-
ing restricts the way the routing message is routed. Specifi-
cally, the routing message is routed following a series of 2-
D planes Ag, Aj, ... Ap—1 in an n-D mesh. Each 2-D plane
A; is formed by two dimensions d; and d; ;. Planes A; and
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A1 share dimension d; ;. However, the order of dimen-
sions is arbitrary. If the offset in dimension d; is reduced
to zero, then routing can be immediatedly shifted to plane
A;+1. Apply this routing approach to 3-D meshes, we first
construct two planes Ag and A;. Assume that Ag contains
dimensions Y and Z and plane A4 contains Z and X (see
Figure 3 (a)). Again, assume that the source is (7, 7, &) and
the destination is (0,0, 0). The routing starts from (7, 5, k)
along plane Ay which is plane z = 4, once the offset in di-
mension Y is reduced to zero it switches to plane A; which
is plane y = 0 (see Figure 3 (a)).

Unfortunately, planar-adaptive-routing cannot be di-
rectly applied to achieve fault-tolerant and minimal routing
using our model. Consider a routing example with source
(3,3,3) and destination (0,0,0). Assume that there is a
faulty cube {2 : 4,1 : 2, -1 : 4]. Node (0,0, 0) is extended
safe with respect to (3, 3, 3). However, all the minimal paths
from (3,3,3) in plane z = 3 to any node along adjacent
line, x = 3 and y = 0, of Ag and A; are all blocked by the
faulty cube. That is, the offset in dimension ¥ cannot be
reduced to zero in Ag in order to switch to A;.

However, if we strengthen the constraint at destination
(0,0,0) to: There is no faulty cube that goes across planes
z =0,y = 0, and 2 = 0, then the planar-adaptive routing
can still be applied.

Theorem 3: Consider a 3-D mesh with faulty cubes. Ifthere
is no faulty cube that goes across planes ¢ = 0, y = 0, and
z = 0, then the planar-adaptive routing can be applied to
any source (i, j, k) to generate minimal path to (0, 0,0).

Proof: Without loss of generality, assume that plane Ag
contains dimensions Y and Z and plane A4; contains dimen-
sions Z and X. The routing starts from (7, j, k) along plane
Ap (which is plane z = 7). Plane Ag can be represented
by the one in Figure 1 by treating Y and X as Y and Z,
respectively. The condition at destination (0,0, 0) ensures
that there is no faulty block (a cross section of a faulty cube)
along the Y or Z axis. The minimal routing in this plane
tries to reach any node along the Z axis (the X axis in the
figure). The existence of Path B ensures its feasibility. Once
the routing message reaches a node along the Z axis (mean-
ing the offset in dimension Y has been reduced to zero), the
routing process is then switched to plane A;. The problem
is then reduced to a minimal routing in a 2-D mesh. ]

The above result shows that the planar-adaptive routing
can still be applied in a 3-D mesh with faulty cubes under a
strengthened constraint (i.e., a weaker sufficient condition
associated with the destination node). That is, it is less
likely for a destination to meet the strengthened constraint
than the one based on the extended safety level. Moreover,
it is more difficult and expensive for each node to calcu-
late its safety status under the sirengthened constraint: Each
node has to collect information in three adjacent planes in-
stead of nodes along three dimensions.
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Figure 3. Planer-adaptive routing

Clearly, the above problem stems from the planar-
adaptive routing itself which is too restrictive. The question
is the existence of other partially adaptive and minimal rout-
ing that can still be used under the original extended safety
level model.

Partially adaptive and minimal routing

The proposed fault-tolerant and minimal routing applies to
any fully adaptive routing (in a regular 3-D mesh) but fails
to apply to the planar-adaptive routing unless the constraint
on faulty cube distribution is strengthened. Before consid-
ering other possible solutions based on partially adaptive
approaches, we formally define the concepts of fully and
partially adaptive routing.

Minimal routing only consider minimal paths between a
given source and destination pair. A preferred direction is
one along which the corresponding neighbor is closer to the
destination. In a 3-D mesh, there are at most three preferred
directions, out of six possible directions, for a routing pro-
cess. Actually, the number of preferred directions is equal
to the number of dimensions spanned by the source and des-
tination pair. For example, suppose in a routing the source is
(2, -2, —4) and the destination is (1, 2, —3), then preferred
dimensions at the source are West, North, and Front. Dur-
ing a minimal routing, the number of preferred directions
from an intermediate node to the destination reduces and it
eventually becomes zero upon reaching the destination.

Definition 4: A minimal routing is fully adaptive if it can
select any preferred direction at any stage of the routing
process. A minimal routing is partially adaptive if it can
select from at least two preferred directions at any stage
whenever there are two or more preferred directions.

The X-Y-Z routing is not a partially adaptive routing,
since at any stage the routing process can have only one
choice. The planar-adaptive routing also fails to meet the
partially adaptive routing requirement. In 2-D plane A;,
when it happens that the offset in dimension d;1 is first
reduced to zero. It is forced to reduce offset of d; before
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switching to 2-D plane A;y;. That is, only one preferred
direction can be selected even though more than one may
exist.

Among minimal routing approaches that are partially
adaptive, we can also rank them in terms of degree of adap-
tivity. For a given partially adaptive routing, a set of pre-
ferred directions that can be selected at an intermediate node
(including the source) is called a set of legitimate preferred
directions at this node. A partially adaptive routing R; is
more restrictive than another one Rs if at any intermediate
nade (including the source) the set of legitimate preferred
directions of R; is a subset of the one of Ry. In addition,
the set of legitimate preferred directions of R; is a proper
subset of the one of R at at least one intermediate node (in-
cluding the source). Note that the relation “more restrictive”
is a partial order; that is, not every two partially adaptive
routing algorithms can be compared under this relation.

We introduce here a most restrictive partially adaptive
routing called dynamic planar-adaptive routing. Like reg-
ular planar-adaptive routing, the routing message is routed
through a series of 2-D planes. Two adjacent planes still
share a common dimension. The difference is that the
planes in the series are dynamically generated. Again we
use 3-D meshes to illustrate this approach. Suppose we se-
lect dimensions Y and Z in Ay, then there are two possible
choices in selecting dimensions in A;. One possibility is
dimensions Z and X and the other one is dimensions Y and
X. Again, the routing starts from plane £ = ¢ and within
this plane randomly reduces offsets in dimensions Y and Z.
If the offset in dimension Y is reduced to zero before the
one in dimension Z, A; that spans dimensions Z and X is
selected (see Figure 3 (a)); otherwise, Ay that spans dimen-
sions Y and X is used (see Figure 3 (b)).

Theorem 4: Consider a 3-D mesh with faulty cubes. If
there is no faulty cube that goes across the axes X, ¥, and Z,
then the dynamic planar-adaptive routing can be applied to
any source (i, j, k) to generate a minimal path to (0,0,0)
(assuming that destination (0,0, 0) is extended safe with re-
spect to the source).

Proof: Without loss of generality, assume that plane Ag
contains dimensions Y and Z and plane A, contains dimen-
sions Z and X or dimensions Y and X. The routing starts
from (3, 7, k) along plane Ag (which is plane = ). Plane
Ap can be represented by the one in Figure 4. Some faulty
blocks (cross sections of faulty cubes) may go across both
the Y and Z axes. The minimal routing in this plane tries
to reach any node along either the Y or Z axis. The exis-
tence of such a minimal path can be proved by induction
on m, the number of faulty blocks in this plane. When
m = 1, the routing process starts from (i, j, k) and goes
straight along negative Z until reaching the Y axis. If it hits
the only faulty block, it turns South and goes along negative
Y until reaching the Z axis. Assume that the theorem holds
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Figure 4. Routing in plane 4, (i.e. plane z = i).

form = k—1. When m = k, we use the same approach for
the m = 1 case. Again, the routing process starts FROM
(,7,k) and goes straight along negative Z until reaching
the Y axis. If it hits a faulty block, say B, There are two
cases: (1) If faulty block B intersects with the Z axis, then
the routing message turns South and goes along negative Y
until reaching the Z axis. (2) If faulty block B does not in-
tersect with the Z axis, it still turns South to the lower-right
corner u of the faulty block (see Figure 4). Clearly, faulty
block B becomes irrelevant to the remaining minimal rout-
ing from u to (0, 0,0). Since the number of faulty blocks is
reduced to no more than k — 1, a minimal path exists from
u to (0,0, 0) based on the induction assumption. ]

Based on the result of Theorem 4, we conclude that any
partially adaptive and minimal routing (which is less re-
strictive than the dynamic planar-adaptive routing) can be
applied in our model.

6. Extensions

Extensions to 3-D meshes with boundary

Our approach can also be applied to k-ary 3-dimensional
meshes. That is, the number of nodes along a dimension is
bounded by k. We can add healthy “ghost” nodes along the
boundary of each dimension. In this way, a given mesh with
boundary is converted to the one without boundary. Faulty
cubes can still be defined in the same way. For example,
the southwestern and front corner (a node with three adja-
cent “ghost” nodes along West, South, and Front) has an
extended safety level (-, 0o, -, 00, 00, -), where - represents
a component that depends on fault distribution in the given
3-D mesh.

Notice the deference between our approach and the one
proposed by Chien and Kim [2]. In [2], “ghost” nodes along
the boundary of each dimension are considered faculty. Ac-
tually, the rule for enabled/disabled nodes is more compli-
cated. Corner nodes (including ones with two or more ad-
jacent “ghost” nodes) are considered to have only one ad-
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jacent “ghost” node. Based on the Chien and Kim’s faulty
region definition which is the same as the faulty cube defi-
nition, a faulty boundary node (a node with at least one ad-
jacent “ghost” node) will disable the whole 2-D boundary
plane that contains this node (one of the six 2-D boundary
planes of a 3-D mesh)! We can prove that if there is one
fault in each cross section (along an axis) of a given 3-D
mesh, all the nodes in the 3-D mesh will be marked disabled
based on Chien and Kim’s model.

Consider an example of a k£ x k x k mesh as shown in
Figure 5. Suppose there is one column of faulty nodes (the
black column in Figure 5 (a)) in z = ¢ cross section. Based
on Chien and Kim’s faulty region definition, the complete

= ¢ cross section will be disabled. Then for each cross
sectiony = 4,0 <4 < k — 1, as shown in Figure 5, since
one strip (marked gray) is marked disabled, the correspond-
ing cross section is also disabled. Therefore, all the nodes in
the given 3-D mesh are marked disabled, although there are
only as few as k faulty nodes among k® nodes! However,
using our faulty cube model, all nonfaulty nodes are marked
enabled in the example of Figure 5. In other word, any par-
tially adaptive and minimal routing can still be applied as
long as the destination meets the safety requirement.

Note that Chien and Kim’s planar adaptive routing can-
not be applied using the fault model proposed in this paper,
not even for non-minimal routing. Consider again the ex-
ample of Figure 5, with two planes Ag (X and Y) and A;
(Y and Z). Suppose the source is on cross section z c
and is at the east side of the faulty column, and the destina-
tion is at the southwestern corner of another cross section
z = ¢ (c # ¢). Clearly, regular planar adaptive routing
fails, since the offset in dimension X cannot be reduced to
zero in plane z = ¢, although there exists a minimal path.
Applying adaptive planar adaptive routing, the offset in di-
mension Y will be first reduced to zero and then the routing
process continues on A; (X and Z) to the destination.

Deadlock and livelock freedom

Deadlock due to dependencies on consumption resources
(such as channels) is a fundamental problem in routing
[4]. A deadlock involving several routing processes oc-
curs when there is a cyclic dependency for consumption
channels. Livelock occurs when a routing message travels
around its destination node, never reaching it because the
channels required to do so are occupied by other messages.
Livelock is relatively easy to avoid, actually, any minimal
routing is livelock-free [4].

Unlike many non-minimal fault-tolerant routing algo-
rithms, the deadlock issue in the proposed model can be
easily solved through the use of virtual network {7} where a
given physical network consists of several virtual networks.
Each virtual network is partitioned into several virtual chan-
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Figure 5. (a) Plane z = ¢, and (b) plane y = 1,
with0<i:<k-1linak x k x k mesh.

nels arranged in such a way that no cycle exists among chan-
nels, i.e., there is no intra-virtual-network cycle.

A partition of a 3-D mesh into eight subnetworks:
X+Y+Z+, X+Y+Z—, X+Y-Z+, X+Y-Z—, X-Y+Z+,
X-Y+Z~, X-Y—-Z+, X-Y—Z—. Depending on the rela-
tive location of the source and destination nodes, one of the
eight virtual subnetworks is selected and the correspond-
ing routing can be completed within the selected subnet-
work without using any other subnetwork. In this way, any
inter-virtual-network cycle is avoided. Converting to virtual
channel usage, our approach needs four virtual channels. To
reduce the number of virtual channels, eight subnetworks
can be pairwised to form four subnetworks: X—-Y—Zx,
XxY+Z—, XxY+Z+, X+Y—7Zx, where * stands for + and
—, 1.e., a bidirectional channel. Clearly, at most three virtual
channels are required along each dimension. We can show
that three virtual channels are required for dynamic planar
adaptive routing for minimal routing. For minimal routing,
since fully adaptive and minimal routing needs only three
virtual channels, the dynamic planar adaptive routing, a spe-
cial partially adaptive routing, needs no more than three vir-
tual channels. Note that the planar adaptive routing also re-
quires three virtual channels. Therefore, within the context
of minimal routing in 3-D meshes, dynamic planar adaptive
routing offers better fault tolerance and adaptivity without
using extra virtual channels compared with the planar adap-
tive routing.

7. Conclusion

In this paper we have proposed a sufficient condition for
minimal routing in 3-D meshes with faulty cubes. Unlike
many traditional models that assume all the nodes know
global fault distribution or only adjacent fault information,
our approach is based on the concept of limited global fault
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information. Specifically, we have proposed a simple fault-
tolerant adaptive and minimal routing approach based on
the proposed extended safety level information associated
with each node in 3-D meshes. We also have shown that
any partially adaptive and minimal routing can be applied
in our approach as Jong as the destination node meets a cer-
tain condition. Our future research will focus on extend-
ing the proposed approach to high-dimensional meshes and
to collective communications [8] which include multicast,
broadcast, and barrier synchronization.
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