954 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.7, JULY 2008

Free-Riding on BitTorrent-Like Peer-to-Peer
File Sharing Systems: Modeling
Analysis and Improvement

Minglu Li, Jiadi Yu, and Jie Wu, Senior Member, IEEE

Abstract—BitTorrent has emerged as a very popular peer-to-peer file sharing system, which uses an embedded set of incentive
mechanisms to encourage contribution and prevent free-riding. However, BitTorrent’s ability to prevent free-riding needs further study.
In this paper, we present a fluid model with two different classes of peers to capture the effect of free-riding on BitTorrent-like systems.
With the model, we find that BitTorrent’s incentive mechanism is successful in preventing free-riding in a system without seeds but may
not succeed in producing a disincentive for free-riding in a system with a high number of seeds. The reason for this is that BitTorrent
does not employ any effective mechanisms for seeds to effectively guard against free-riding. Therefore, we propose a seed bandwidth
allocation strategy for the BitTorrent system to reduce the effect of seeds on free-riding. Finally, simulation results are given that
validate what we have found in our analysis and demonstrate the effectiveness of the proposed strategy.

Index Terms—Bandwidth allocation strategy, BitTorrent, free-riding, incentive mechanism, modeling.

1 INTRODUCTION

PEER—TO—PEER (P2P)applications have shown their popular-
ity on the Internet for file sharing. The P2P file sharing
application allows users to distribute and obtain a file to be
shared cooperatively. However, most P2P collaborative
systems that rely on voluntary contributions from individual
participants potentially face the problem of free-riding. Free-
riding behavior has the negative effect of using up the service
resources of a system while contributing nothing to the
system. Empirical studies [1], [2], [3] have shown that most
P2P systems consequently suffer from free-riding.

Cooperation is essential to a P2P file sharing system.
However, it is difficult to promote cooperation among all
individual participants without an effective incentive me-
chanism. BitTorrent [4] is a P2P file-distribution tool that has
incentive mechanisms [5] to reduce free-riding and increase
user cooperation. Each peer can maximize its benefit within
the constraints of the incentive mechanism. The BitTorrent
system is extremely popular and is accountable for 35 percent
of all of the traffic on the Internet [6].

In a BitTorrent system, a file to be shared is divided into
multiple small pieces, and peers can serve other peers as soon
as they have downloaded one piece of the file. In the
BitTorrent system, there are two types of peers: seeds and
downloaders. Seeds are peers who have all pieces of the file,
whereas downloaders are peers who simultaneously down-
load and upload pieces of the file with others. BitTorrent

o M. Li and |. Yu are with the Department of Computer Science and
Engineering, Shanghai Jiao Tong University, Shanghai 200030, P.R.
China. E-mail: {li-ml, jdyu}@cs.sjtu.edu.cn.

o |. Wu is with the Department of Computer Science and Engineering,
Florida Atlantic University, Boca Raton, FL 33431.

E-mail: jie@cse.fau.edu.

Manuscript received 22 Nov. 2006, revised 23 June 2007; accepted 12 Sept.
2007; published online 26 Sept. 2007.

Recommended for acceptance by C. Shahabi.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0376-1106.
Digital Object Identifier no. 10.1109/TPDS.2007.70783.

1045-9219/08/$25.00 © 2008 IEEE

employs the tit-for-tat peer selection strategy to prevent free-
riding and promote fairness, where each peer uploads to a set
of peers from which it has the highest downloading rates. In
addition to the tit-for-tat strategy, BitTorrent also incorpo-
rates an optimistic unchoking process to probe a new connec-
tion, where each peer randomly chooses a requesting peer to
upload.

A distinguishing feature of BitTorrent is its policies for
cooperation and preventing free-riding. However, the effec-
tiveness of these policies in reducing free-riding and
unfairness has not yet been carefully examined under
practical conditions. Some studies, [7], [8], indicated that
BitTorrent mechanisms cannot prevent free-riding and
unfairness. For example, Bharambe et al. [7] indicated that
some peers uploaded 6.26 times as many pieces as they
downloaded in BitTorrent. Jun and Ahamad [8] showed that
low-bandwidth peers complete downloads in about the same
amount of time as high bandwidth peers in BitTorrent.
However, they did not analyze whether there was a
reduction in free-riding in BitTorrent systems. In [9], Qiu
and Srikant briefly discussed the effect of optimistic unchok-
ing on free-riding and found that optimistic unchoking can
induce free-riding. However, they failed to analyze the
impact on free-riding that optimistic unchoking has in the
BitTorrent system.

In this paper, we study the level of free-riding on
BitTorrent-like P2P file sharing systems and the effect of
free-riding on the performance of the BitTorrent system
through a fluid model with two different classes of peers. Our
contributions in this paper can be summarized as follows:

o We develop a fluid model with two different classes
of peers (non-free-riders and free-riders) to capture the
effect of free-riding on a BitTorrent system. With the
model, we find that although optimistic unchoking
may induce free-riding, free-riders do not impose a
major impact through optimistic unchoking on the
performance of the BitTorrent system. BitTorrent’s

Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

LI ET AL.: FREE-RIDING ON BITTORRENT-LIKE PEER-TO-PEER FILE SHARING SYSTEMS: MODELING ANALYSIS AND IMPROVEMENT 955

incentive mechanism could prevent free-riding
effectively in a system without seeds.

e Applying the fluid model with two classes of peers,
we study the effect of seeds on free-riding. It is seen
that BitTorrent mechanisms may fail in preventing
free-riding in a system having a large number of
seeds. This is because free-riders can benefit signifi-
cantly from seeds, and BitTorrent does not provide an
effective policy for seeds to guard against free-riding.

e A seed bandwidth allocation strategy based strictly
on the uploading rate of peers in the BitTorrent
system is proposed. We prove that there exists a
Nash equilibrium point with this strategy, under
which each peer achieves its maximum uploading
bandwidth. From the results of the simulation, we
find that this allocation strategy not only penalizes
free-riding but also quite effectively improves the
performance of contributors.

The remainder of this paper is organized as follows: In
Section 2, related works on free-riding and BitTorrent file
sharing systems are surveyed. Section 3 provides a brief
introduction for the BitTorrent system and its preliminaries.
In Section 4, we analyze the incentive mechanism of
BitTorrent. In Section 5, a fluid model with two classes of
peers is presented to recapitulate the effect of free-riding on
a BitTorrent system. A seed bandwidth allocation strategy is
proposed in Section 6. In Section 7, simulation results are
presented. Finally, we conclude this paper in Section 8.

2 RELATED WORK

P2P systems, as collaborative computing systems, inevita-
bly confront the problem of free-riding. Empirical studies
[1], [3] have shown prevalent free-riding in P2P file sharing
systems. Research has been conducted to study free-riding
on P2P file sharing systems [10], [11], [12].

Several existing P2P systems have some mechanisms
built-in to encourage information sharing. For example,
KaZaA [13] considers the participation level, which is
calculated as the ratio between a peer’s recent uploads and
downloads. eMule [14] establishes a credit system where
credits are exchanged between two specific nodes. BitTorrent
systems, however, are built with information sharing as one
of the main objectives. Some studies have been performed
on the measurement and modeling of BitTorrent-like net-
works. Many measurement studies [7], [15], [16], [17], [18]
based on real-world applications and simulations for
BitTorrent show that the BitTorrent system has very good
properties to support a large number of downloaders.

In order to understand the performance of the P2P file
sharing system and BitTorrent system, many models have
been presented. Ge et al. [19] and Ramachandran and Sikdar
[20] present an analytic framework to study the P2P file
sharing system. In [21], Yang and de Veciana discuss a
branching process for studying the transient regime of the
BitTorrent system and propose a Markov chain model. Qiu
and Srikant [9] present a simple fluid model based on the
Markov chain model proposed in [21] to describe the
dynamics of the BitTorrent system. In [22], a simple
mathematical model is developed, which models the
behaviors of peers differently according to the state they
are in. In [23] and [24], a multiclass fluid model of
BitTorrent-like networks based on [9] is proposed, some-
what similar to the model discussed here. The work in [23]

focuses on parallel downloads in the case of a symmetric
access link, and that in [24] studies static resource allocation
for service differentiation and bandwidth diversity, which
have significant differences with our work. We propose a
fluid model with two classes of peers (free-riders and non-
free-riders) to study free-riding behavior on BitTorrent-like
networks. Our model studies the dynamic resource alloca-
tion, where the resource assignment criteria depend com-
pletely on BitTorrent mechanisms.

Several analytical studies of BitTorrent’s incentive
mechanisms are presented in [7], [8], [9], and [22]. In [7],
it is found that BitTorrent mechanisms cannot prevent a
systematical fairness through a set of simulations. Jun and
Ahamad [8] provide a game-theoretic framework to explore
BitTorrent’s incentive mechanism. They show that free-
riders are not punished properly, and contributors are not
rewarded appropriately. Qiu and Srikant [9] prove that a
Nash equilibrium point exists with the tit-for-tat strategy,
under which each peer will upload at its maximum
uploading bandwidth. Tian et al. [22] find that the original
tit-for-tat strategy cannot improve file availability, and an
innovative tit-for-tat strategy is proposed.

However, the capability of BitTorrent in preventing free-
riding is still not fully studied. Our work differs from the
above studies in that we analyze the level of free-riding
found in BitTorrent systems and the impact of free-riding
on the performance of the BitTorrent system through a fluid
model and determine the effect of seeds on free-riding
within a BitTorrent system.

3 PRELIMINARIES

BitTorrent is a P2P application that aims to enable fast and
efficient distribution and downloading of large files. The
basic idea in BitTorrent is to break down a shared file into
equal-sized segments (typically 256 Kbytes), which are
called pieces. A peer can download different pieces
concurrently from multiple peers while uploading various
pieces to other peers.

In a BitTorrent system, the sharing file provider creates a
metafile called a .forrent file, which contains the metainfor-
mation, for example, the piece size and IP address of the so-
called tracker, and then puts the file on a Web server. There are
three components in the system: trackers, seeds, and down-
loaders. The tracker is a central server, which keeps track of all
peers currently in the system and collects statistics to help
peers find each other to exchange the file pieces. All peers in
the system, including seeds and downloaders, self-organize
into a P2P network, which is known as a torrent.

To download a file, peers download a .torrent file from a
Web server to access the tracker and join the system. The
peer asks the tracker for a list of other peers so that it can
build up its peer set. The tracker then returns a random list
of peers (which typically consists of 50 peers). This peer will
establish connection directly to peers in the peer set, which
become its neighbors. In the peer set, each peer knows the
distribution of the various pieces for each peer. All the peers
in the torrent will periodically report their progress to the
tracker. Each peer looks for opportunities to download
pieces from and upload pieces to its neighbors in its peer
set. It chooses the pieces that are rarest among its neighbors
in a local rarest first policy in order to maximize the diversity
of content in the system.

BitTorrent attempts to induce fairness and guard against
free-riding through a tit-for-tat policy. Under the tit-for-tat

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

956 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.7, JULY 2008

policy, each peer uploads to a fixed number of other peers
(the default being four) from which it could download at
the highest downloading rate for a given time. The
corresponding algorithm is called the choking algorithm. A
refusal to upload to a neighbor is called choking, and the
connections to the chosen neighbors are unchoked. Every
10 seconds, a peer recalculates the download rate (a rolling
20-second average) that it is receiving from its neighbor to
decide who it wants to choke and who it wants to unchoke.
It then leaves the situation as is until the next 10-second
period is up. However, the seeds do not play by this
strategy, because they are done downloading and no longer
have useful download rates to decide which peers to
upload to. For a seed, it will simply choose download peers
to upload, which is called upload only. In addition to this
peer selection policy, BitTorrent also incorporates an
optimistic unchoking policy. The optimistic unchoking
policies are further detailed in Section 4.

In [9], a fluid model, which is based on the Markov chain
approach in [21], was developed for BitTorrent-like file
sharing systems. The model assumes that all peers are
homogeneous, with all peers having the same upload and
download capacity. There are two states in the system: the
download state and the seed state. Qiu and Srikant [9] use a
Markovian description of the system in relation to the two
states to develop the fluid model. The model is presented in
[9], where the expressions of the numbers of downloaders
and seeds and the average download time could be
obtained as functions of the parameters as the peer
arrival/leave rate and the upload/download rate, etc. The
model gives insight as to how the average download time
and the network performance of a BitTorrent-like system is
affected by different parameters. The analysis proves that
BitTorrent achieves very good scalability. However, the
model in [9] focused only on obtaining performance indexes
for homogeneous peers.

In practical applications, BitTorrent confronts the pro-
blem of free-riding, in which free-riders occupy service
resources while contributing nothing. In order to capture
the effect of free-riding on a BitTorrent system, we
introduce a free-riding class of peers into the fluid model
in [9] that only takes into account one class of peers with
equal service capacity. Our model takes into account two
different classes of peers: one provides service capacity, and
the other contributes nothing to the system. Furthermore,
we adopt dynamic resource allocation to two different
classes of peers, where the resource assignment criteria
depend completely on BitTorrent’s mechanisms.

4 MECHANISM ANALYSIS

BitTorrent peers utilize a tif-for-tat strategy to select the
upload/download peers: Each peer uploads to a set of peers
that provide it with the highest downloading rates. This
mechanism is employed to encourage the user to upload
and guard against free-riding. In [9], it has been proved by
the game theory that there exists a Nash equilibrium point
with the tit-for-tat strategy under which each peer will
upload at its maximum uploading bandwidth.

BitTorrent also adopts a strategy called optimistic unchok-
ing. In optimistic unchoking, each peer randomly chooses a
requesting downloader to upload regardless of its down-
loading rate, in addition to maintaining connections with
those peers selected by the choking algorithm. The purpose
of optimistic unchoking is that a peer could upload to

another peer that has a better downloading rate than the
ones currently downloading, and the newcomer (who has
no share yet) can get bootstrapped by downloading the first
piece. However, the random selection of optimistic unchok-
ing provides an opportunity for free-riders to download the
file. For example, free-riders can get a downloading rate
through optimistic unchoking. We need to analyze the effect
of optimistic unchoking on free-riding.

Let G{p()7pl7 <3Pz, —1,490,915 - - - q.T/—l} be a set of peers
in a BitTorrent system, where z,, is the number of non-free-
riders, and z; is the number of free-riders. We assume all
non-free-riders have the same uploading bandwidth,
and there are no seeds in G. Let u be the uploading
bandwidth of a non-free-rider. The total uploading rate of
the system can be expressed as px,. Let u be the number of
uploading connections of a non-free-rider, one of which is
an optimistic unchoking uploading connection. The down-
loading rate of a connection is limited to &. According to
optimistic unchoking, each non-free-rider randomly selects
a peer to upload regardless of its downloading rate.
Consequently, the total expected downloading rate of
free-riders in G is

Zn k z,—k
) Ty T, —U 1
ED{ =S CF : (k—)
pi=3e (ot (i)
I N e PO o) N
Tpnt+xf—u u Tp+Tf U

(1)

when z,, + 25 > u. We can see in (1) that free-riders can still
get the downloading rate of =L -4 despite the fact that
they have nothing to contribute to the system. Let p be the
ratio of the total downloading rate of free-riders to the total

uploading rate of non-free-riders. We have

ElDs] _1
p= L=
U, U

s
: 2
ot (2)

where p € [0,1]. We can see in (2) that free-riders may
obtain a fraction of the total downloading rate of the system.

From the above analysis, we find that current BitTorrent
mechanisms fail to completely eliminate free-riding, and free-
riders can get service resources provided by non-free-riders
through optimistic unchoking. Motivated by this observa-
tion, we first analyze the impact of free-riding to a BitTorrent
system through a fluid model with two different classes of
peers.

5 MODELING AND ANALYSIS

Our model is an extension of the model in [9]. In our model,
download peers are divided into two classes in a BitTorrent
system: non-free-riders and free-riders. Non-free-riders can
provide equal service capacity, whereas free-riders contri-
bute nothing to the BitTorrent system. In addition, seeds also
provide equal service capacity to the system. We assume that
free-riders will depart from the system immediately after
they have finished their download and have all the pieces of
the sharing file, because they do not provide any service
resources to others even if they were to stay in the system.
Therefore, there are three states in the system: the non-free-
rider download state, the free-rider download state, and the
seed state. We can obtain a Markovian description of the
system in relation to the three states.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

LI ET AL.: FREE-RIDING ON BITTORRENT-LIKE PEER-TO-PEER FILE SHARING SYSTEMS: MODELING ANALYSIS AND IMPROVEMENT

TABLE 1
Notations and Model Parameters

957

number of non-free-riders in the system at time t
t) | number of free-riders in the system at time t

y(t) | number of seeds in the system at time t

A the arrival rate of the new non-free-rider

Af the arrival rate of the new free-rider

0 the uploading bandwidth of a peer, include non-free-riders and seeds
e the downloading bandwidth of a peer, ¢ > p!

0 the abort rate of downloaders

y the departure rate of seeds

i the effectiveness of the file sharing [9]

p(t) | the ratio of the total downloading rate of free-riders to the total uploading
rate of non-free-riders in the system at time t
k(t) | the ratio of the number of free-riders to the sum number of free-riders

and non-free-riders in the system at time t

LIt is realistic that the uploading bandwidth of a host is less than its downloading bandwidth, which is consistent with the current access technologies.

5.1 Modeling

A glossary of the model notations and parameters is listed in
Table 1. Fig. 1 shows a general model of three states (the non-
free-rider download state, the free-rider download state, and
the seed state), the rate at which users flow into and flow out
of the three states, and the fraction of allocated bandwidth of
users in the three states on a BitTorrent file sharing system.
In our model, the arrival process of the new non-free-rider
and free-rider is modeled as a Poisson process with an
arrival rate of)\, and Ay, respectively, that is, new non-free-
riders and free-riders flow into the non-free-rider download
state and the free-rider download state, respectively, with
the rate A\, and Ay. The parameter 7 is used to indicate the
efficiency of the file sharing, and it has been proved to be
close to 1 in [9]. The efficiency of the file sharing of free-
riders is equal to 0. At time ¢, the total uploading rate of the

\
A ‘ An

(1-pyxn
i [,H,\an v

the free- rlder \

~the nonfree-rider ™|
/’Q download state)

= download state %
=y OWH0aTTEE " npnxn /\ b
g v / iR
-
< /J»—f —
\\ the seed state) — HK”HY
Y |
] v

Fig. 1. General model of the three states on a BitTorrent file sharing
system.

system is pu(nz, (t) + y(t)). All non-free-riders and free-riders
share the total uploading bandwidth provided by the non-
free-riders and seeds. p(t) gives a non-free-rider uploading
bandwidth assignment criterion for free-riders. Applying
the expression of (2), we have

L ()
) R p— A — 3
pt) =~) + 270 (3)
where p(t) €[0,1]. A seed will uniformly assign its
uploading bandwidth to every downloader no matter if it
is the free-rider or not. Hence, the seed uploading
bandwidth assignment criterion for free-riders is

s(t)
Ta(t) +x4(t)’
where k(t) € [0,1]. Therefore, the total downloading rate
of non-free-riders is u[(1 — p(t))nz,(t) + (1 — &(¢)y(t)],
and the total downloading rate of free-riders is
ulp(t)nz, (t) + k(t)y(t)]. The total downloading rate of
non-free-riders and free-riders cannot exceed cx,(t) and
cxs(t), respectively, so we have

w1 = p()n,(t) + p(1 — K(1)y(t)},
min{cx(t), pp(t)nz,(t) + pr(t)y(t)},

K(t) = (4)

D, (t) =
Dy(t) =

=min{cz,(t),

()

where D, (t) and D¢(t) denote the total downloading rate of
non-free-riders and free-riders, respectively, at time ¢, that
is, the rate at which non-free-riders and free-riders flow out
of the non-free-rider download state and the free-rider
download state, respectively, after they have finished their
download. 6z, (t) and 6z (t) are the rate at which non-free-
riders and free-riders depart from the non-free-rider

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

958 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.7, JULY 2008

download state and the free-rider download state, respec-
tively, without having downloaded the entire file. The non-
free-rider will flow into the seed state with the rate D,,(¢)
after they have downloaded the sharing file completely.
Seeds leave the system according to an exponential
distribution with the rate 7. Hence, the rate of change of
the number of non-free-riders, free-riders, and seeds is
given by the following equations:

dx,(t)

T =)\n - an(t) - D'n(t)v
dmft(t) = p — 0z (1) — Dy(1), (©6)
dy(t)

g = Du(t) = y(®).
These (6) define a simple description of the evolution for
the three states of the system dynamics.

5.2 Steady-State Performance Analysis and
Discussion

To study the steady-state system performance, we assume

that limy oo (1), limy_.o x¢(t) and limy_.o y(t) exist, that is

lim z,(t) = &, lim z(t) = z;, lim y(t) = g,
t—o00 t—o00 T t—o0

where Z,, Ty, and § are the equilibrium values of z,(t),
x¢(t), and y(t), respectively. Under the steady state ¢t — oo,
we have

dx,,(t) _ dzs(t) _ dy(t)
dt dt dt

To simplify the model, we assume that the download
peer will never abort the system (§ = 0). We first examine
the situation when the download peer will leave the system
immediately upon completing the sharing-file download
(v — o0), that is, there are no seeds to provide uploading
bandwidth in the system. We are interested in the worst
situation, where peers are not willing to cooperate and
provide more service capacity. Hence, the steady-state
equations are given by

=0.

0 =X\, — min{cZ,, u(l — p)nz,)},

7
0 =X — min{cZs, ppnz,}, 0
where
1z
__1 =z 8
P T+, (3)

where p is the equilibrium value of p(t), and p € [0, 1].

Theorem 1. When ¢ > p and x,,z; € [0,400), we have
CTn { /L(l - ﬁ)nfm and C-ff { 1PNy,

Proof. If cz, < pu(1 — p)nz,, we have ¢ < un(l — p) because
Z, is nonnegative. It is easy to see that ¢ < un(1 —p) < p
because 0 < (1 —p) <1 and 0 < n <1, which contradict
with ¢ > p.

1

UT,+3s

L% because

U Ty +ITf

because

If cz; <ppnz,, we have c<pun
~ 1%
p= UT,+Tf
0< Tﬂrf@ <1 and u > 1, which contradict with ¢ > p.

Therefore, Theorem 1 is true. O

. It is easy to see that ¢ < un

The implication of Theorem 1 is that the downloading
rate is not a bottleneck for either non-free-riders or free-
riders when the uploading bandwidth of a peer is less than
its downloading bandwidth (¢ > p). In other words, there is
no constraint on the downloading rate in a realistic
situation. Solving (7) under the condition that ¢z, >
w(1 = p)nz, and czy > ppnt,, we obtain
A1 A1

= , T ; (9)
pn 11—« = T-a

Tn

where a = #f/\f, and 1> a. In (9), we see that (7) has a
unique solution, and there exists an equilibrium point
(@, Ty). However, if % < a, the value of Z; is negative,
which does not exist in a realistic situation, that is, the free-
rider does not have an equilibrium value, and limy . z (%)
does not exist. Hence, we consider that % is the threshold
value of o, where the equilibrium value of free-riders exists.

Theorem 2. Let T,, and T be the average download time of non-
free-riders and free-riders, respectively, and T be the average
download time of the system. When there are no seeds in the
system, we have the following results:

1
il } .

11 11 1
=— , Tr=—-5 , T =—
pn 1—a pn oL -« B

n
uo

(10)

Proof. In [9], Little’s law [25] was used to evaluate the
average download time for a peer in the steady state as
203 = (N—06z)T (T is the average download time).
Similarly, in our model, the average download time of
non-free-riders and free-riders in the system is given
respectively by T, = i— and Ty = i—; The probability that
a peer who just completed its download job is a free-
rider is p, and the probability that it is a non-free-riding
peer is (1 — p). Therefore, the average download time of
the system is given by T' = (1 — p)T}, + pTy. Based on the
expression of (8) and (9), the results of Theorem 2 can be
easily derived. O
The model coupled with an efficient method provides us

with the ability to explore the performance of the system and

capture the effect of free-riding on a BitTorrent system. Fig. 2a
plots the average download time of non-free-riders, free-
riders, and a system with varying values of a, given that the
number of uploading connections of a peer wis 5. In Fig. 2a, we
find that the average download time of free-riders T is
always larger than the average download time of non-free-

riders T},, and there is a sharp increase in Ty with increasing o.

T, also increases, but it is not dramatic, and there is little

change when « is not very large. In addition, when o > 0.2,

that is, %, the average download time of free-riders does not

exist because some free-riders cannot finish their download
job. This is because with an increasing «, there will be fewer
peers to contribute service resources so that free-riders cannot
get enough service resources to download the entire file.

However, non-free-riders can always get enough service

resources to finish its download job, except at o = 1. It is

shown that BitTorrent mechanisms are capable of guarding
against free-riding effectively in a system without seeds, and

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

LI ET AL.: FREE-RIDING ON BITTORRENT-LIKE PEER-TO-PEER FILE SHARING SYSTEMS: MODELING ANALYSIS AND IMPROVEMENT 959

50

s
[

S
S

w
a

w
S

The Average Download Time
N N
S o

[

10

o

(@)

50

IS
[l

S
S

w
&

w
=

The Average Download Time
N N
o 4

@

10r

(b)

Fig. 2. (a) The average download time of non-free-riders, free-riders, and a system with varying a. (b) For different the values of u, the average

download time of the non-free-rider with varying values of a.

free-riders do not impose a major impact through optimistic
unchoking on the performance of non-free-riders.

Fig. 2b plots the average download time of free-riders
with varying values of o when u is given a value of 1, 2, 5,
or 10. From the figure, we find that as u increases, the
average download time of free-riders increases as well, and
the threshold value of o decreases. When u = 1, non-free-
riders and free-riders can gain the same service resources.
All free-riders can finish their download job the same as
non-free-riders. However, as u increases, service resources
that free-riders can gain will decrease sharply, so that it is
more and more difficult for free-riders to finish their
download job. For example, the value of « has to be less
than 0.1 when the value of u is 10. Therefore, it is easily seen
that increasing u can better guard against free-riding.
However, the large number of uploading connections of a
peer will lead to more time-outs and result in poor
performance because multiple TCP connections have to
share the same bandwidth [9]. In a BitTorrent system, the
value of u is set to 5, which not only better guards against
free-riding but also avoids more time-outs and poor
performance, a result of multiple TCP connections.

We have previously assumed that v — oco. However, in
practical applications, many peers are likely to stay in the
system after they have completed their download and act as
a seed to serve others. Hence, free-riders can get the
downloading rate from seeds to finish the download job
even if BitTorrent mechanisms can prevent them completely
from getting service resources from other downloaders.
Based on this consideration, we will now discuss the effect
of free-riding when parameters v should be introduced. To
simplify the model, we assume that each peer has a limited
upload capacity, and network capacity is assumed to be
unconstrained, that is, ¢ = co [21]. Hence, the steady-state
equations are given by

0=X, — [u(1 = p)nz, + pu(1 — &)yl
0=)‘f - (ﬂﬁni‘n =+ /U%:UL
0 =[u(l — p)nz, + u(l — &)y] — 7,

where

where p and & are the equilibrium values of p(t) and «(t),
respectively, and p, & € [0, 1]. Solving (11), we obtain

ST - Y
"um\l-a)’ N el)l R

(12)
when v > £ We set ¢ = co previously. However, if the

seed-leaving rate v is smaller than -/, then downloading
bandwidth ¢ will determine the network performance even
though ¢ may be very large [9]. Hence, we have

. _A

Tn =, xf:?f (13)
when y < £ The system has an equilibrium point (z,,, 7, 7).
If o < 1— 15, the free-rider does not have an equilibrium

value, that is, lim;_, z;(t) does not exist.
Theorem 3. Let T,, and T be the average download time of non-

free-riders and free-riders, respectively, in a BitTorrent system
with seeds. We have the following results:

1 1
when v > H , T, =— _ﬁ7
11—« m\l—a v

14
.) (14)
T |- =)
Ta 7
o 1 1
h < T,=-, T;=-. (15
when =1y c I=¢ (15)
Proof. See proof of Theorem 2. O

We know that when the departure rate of seeds
decreases, the number of seeds will increase in the system,
and more service resources are provided to downloaders. In
Fig. 3a, we plot the ratio of the average download time of
non-free-riders and free-riders with varying departure rate
of seeds v, given that the number of uploading connections
of a peer u is 5. We observe that the ratio between T,, and 7
will increase when the departure rate of seeds v decreases.
When v decreases to ﬁu, free-riders and non-free-riders

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

960

o

=01
-==-a=02
o=04

o
o

The nonfreerider / freerider average download time (T N ! T')

o

i i i i i
0.5 1 15 2 25 3

=)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.7, JULY 2008

0.1}

Fig. 3. (a) The ratio between the average download time of non-free-riders and free-riders as the departure rate of seeds ~ varies. (b) The threshold

value of « as the departure rate of seeds ~ varies.

have the same average download time (the average down-
load time is determined by downloading bandwidth c¢). As
v decreases, free-riders may get more service resources from
seeds and download faster, whereas non-free-riders will get
less service resources from seeds and download slower. It is
shown that BitTorrent mechanisms may not succeed in
producing a disincentive for free-riding in a system having
a large number of seeds, and free-riders can get a great deal
of benefit from seeds. In addition, when « increases, the
ratio between T;, and Ty will decrease because the average
download time of free-riders will increase just like in the
system without seeds.

Fig. 3b plots the threshold value of « as the departure
rate of seeds vy varies. As in a no-seed system, when « is
increased to a threshold value, the free-rider cannot down-
load the sharing file completely. In Fig. 3b, we find that the
threshold value of a will increase as the departure rate of
seeds v reduces. It is shown that when there is a greater
number of seeds, it is more helpful to free-riders to
download the sharing file.

From the above modeling analysis, in a BitTorrent
system, although optimistic unchoking can potentially
result in unfairness and induce free-riding, free-riders can
only obtain a few service resources under optimistic
unchoking. However, the majority of service resources for
free-riders is from seeds. The tit-for-tat strategy does not
adapt to seeds, and there is no policy to guard against free-
riding. Seeds will uniformly assign their resources to every
downloader. Although seeds are volunteered to serve
others whether they are free-riders or not, the potential
for directly harming non-free-riders if free-riders occupy
many service resources provided by seeds still exists, which
is unfair to non-free-riders. In [26], the authors developed a
scenario that the free-riders can completely ignore down-
loaders and only attempt to connect and download pieces
from seeds by modifying an existing BitTorrent client.
Motivated by this observation, we believe it is important for
the system to establish an effective mechanism to prevent
free-riders from getting more service resources from seeds.

6 PROPOSED BITTORRENT MODIFICATION

In this section, we propose a seed bandwidth allocation
strategy, where seeds provide service differentiation based
on the contribution of individual peers. Our strategy target
is that a downloader that provides more service to the

system will be granted a higher benefit than downloaders
that provide less service when some downloaders asks for a
downloading file from a seed.

To provide an incentive, the seed bandwidth allocation
strategy takes into account the contribution of down-
loaders. We define the uploading rate of downloaders as
the contribution of the downloader. Decisions to allocate
the bandwidth of seeds are based strictly on the current
uploading rate of downloaders. When some downloaders
attempt to establish connections to a seed for down-
loading the file, the seed retrieves the uploading rate (a
rolling 20-second average uploading rate) of every re-
questing downloader from neighbors of downloaders
though a tracker that maintains the information of
neighbors of downloaders and then allocates its uploading
bandwidth to requesting downloaders based on their
uploading rate. Like BitTorrent’s choking algorithm, each
seed reallocates its uploading bandwidth every 10 seconds.
To ensure the trustworthiness of feedback from neighbors
of downloaders, we assume that there is a reputation
mechanism in the BitTorrent system to monitor peers,
such as DRBTS [27] or EigenTrust [28]. Therefore, each
peer is truthful in reporting, and there is no collusion
among peers. This way, no issue of false praise (over-
reporting) or badmouthing (underreporting) will occur,
and the neighbors will accurately report the behavior of
their peers.

In the remainder of this section, we discuss how a seed
implements a mechanism to distribute its uploading band-
width among all its requesting downloaders. Note that the
network capacity is assumed to be unconstrained, that is,
there are no constraints on the downloading bandwidth.

6.1 Allocation Mechanism

We begin with N downloaders requesting a seed with fixed
upload bandwidth. Let W be the uploading bandwidth of
the seed. Downloaders that request a file download from
the seed are denoted as Ny, Ns,..., Ny, where N is the
number of requesting downloaders. The uploading band-
width W of the seed is allocated depending on the
contribution of requesting downloaders. We assume that
¢; is the contribution value of the requesting downloader N;.
Then, ¢ =c;...cn] represents all contribution values of
requesting downloaders. If ¢; € R, then ¢ is a vector of
N elements. Fig. 4 shows the framework of the seed
bandwidth allocation.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

LI ET AL.: FREE-RIDING ON BITTORRENT-LIKE PEER-TO-PEER FILE SHARING SYSTEMS: MODELING ANALYSIS AND IMPROVEMENT 961

Downloaders

Fig. 4. Framework of the seed bandwidth allocation.

Letz; (z; > 0) denote the uploading bandwidth of the seed
allocated to the downloader N;, and then, © = [z; ...zy] is a
vector of the bandwidth allocation for all N requesting
downloaders. In our design, we want our allocation to be
proportionally fair by the contribution value ¢, that is, a
downloader receives a downloading rate from the seed in
proportion to its own uploading rate to the system. This holds
if for any other bandwidth allocation vector 2/, the aggregate
of the weighted proportional changes is zero or negative [29]:

EAI
E C; L ! S 0
=1 Zi

where Z;L z; = W, and ¢; denotes the weights, that is, the
contribution values.

We assume that each downloader has a utility function,
which represents the degree of satisfaction for receiving
a certain allocated uploading bandwidth. Let U;(z;) be
the utility of the downloader N;, given an uploading
bandwidth allocation z;. The utility may be a characterization
of the estimated performance as a function of a given
uploading bandwidth. We make the following assumption
regarding U;:

For all i€ {1,2,...,N}, the utility function U;(x;) is
continuously differentiable, monotonically increasing
(Ul(z;) > 0), and concave (U (z;) < 0).

Given complete knowledge, the objective for the seed
bandwidth allocation can be solved as follows:

N

i=1,2,...,N,

max
=1
(16)
st. Y w=W i=12..,N.
=1
An optimal solution z* = [z}, x5, ..., x| exists for (16),

because the objective function SV Uj(z;) is continuous,
strictly increasing, and concave.

The utility function that we have chosen for down-
loader N; is

Ui(z;) = ¢;log(1 +), (17)

which satisfies our assumption and closely resembles the
utility function of proportionally fair allocation in [29] but has
U;(0) = 0.

Theorem 4. There exists the unique optimal solution z* =

(@}, 25,...,xy] to solve the following optimization problem:
N
max cilog(l+ ;)
=1
(18)
s.t. in:W 1=1,2,...,N
=1
Proof. For all i, ¢ = 1,2,..., N, we have
0*U; ;
S <0 i=12,...,N,
ox; (14 z;)
*U;
— = ,j=1,2,...,N.
The Hessian matrix of the utility function U; is
Uy Uy Uy
07 Or10 Ox10x N
Uy U, > Us
VU? _ 02011 a2 Qx0T N
Uy Uy Uy
drnOx, OxnOrg " E):E?\,
_ Ci
T 0 e 0
_ Ci
0 TP 0
0 0

G
(14zy)?

It is now easy to see that VU? is negative definite, and
thus, U; is strictly concave. Therefore, the optimization
problem (18) allows a unique optimal solution.

We have the following Lagrangian function:

N N
L(z,)\) = Zci log(1 + x;) — A(ZgEL _ W),
i=1 =1

where) is the Lagrangian multiplier.

oL C;
Bwi7(1+wz‘)7>\70

N
%:fofW:O.

=1

i=1,2,...,N,

There exists a nonnegative Lagrangian multiplier A
such that the above conditions are satisfied:

C(L+))
When z; >0,¢=1,2,...,N, it follows that

A i=1,2,...,N.

C; Cj

_ = . i,j=1,2,...,N.
(1+z) (1+xj)

This can be rewritten as

A+25) ¢

Sl 14 . j=1,2,...,N.
14z ¢ bJ

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

962 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.7, JULY 2008

To determine the bandwidth allocation strategy, we have

ilerk Nﬁ that is (A+e) _ o
—(1+z;) o’ ’ N N
B 2 (l+ap) Do
=1 k=1
and then, z} can be expressed as
N
o =— <Z$;+) —1l=— L (W+N)—1. (19)
3 Sa

zj(t=1,2,...,N) is the unique optimal solution of the

optimization problem (18). 0

Equation (19) provides a bandwidth allocation policy of
the seed among all requesting downloaders. In (19), since
x} > 0, we note that ¢; should not be too small and far from
the average contribution value. The downloader who
provides a smaller contribution value will be dropped. If
Jx; < 0,4 € {1,2,..., N}, the requesting downloader NN; will
be dropped, and then, the seed reallocates its uploading
bandwidth to other requesting downloaders except N;.
This step will be repeated until all allocated uploading
bandwidths are not smaller than zero, that is, z; >0,
i=1,2,..., N.

The seed bandwidth allocation policy

Instance: All requesting downloaders set N = {Nj,
Ny, ..., Ny}, the contribution value set ¢ =c;...cy], and
the bandwidth allocation set « = [z ... zy].

1. The seed retrieves the uploading rate c of every
requesting downloader N;, N; € N from the neigh-
bors of downloaders.

2. The seed assigns its uploading bandwidth W to the
requesting downloader N;,VN; € N according to the
(19) and gets z;,z; € .

3. Ifdx; <0,z €x,then N=N—N,;, and z; = 0.

4. Repeat step 2 until Vz; > 0,z; € z.

Note that the requesting downloader whose contribution
value is zero (that is, contributes nothing to the system)
will be dropped for certain and cannot obtain any
downloading rate from the seed. Thus, the contribution
value of downloaders must be larger than zero (at least) in
order to obtain a downloading rate from the seed, that is,
c; > 0.

Theorem 5. For any two requesting downloaders N;,

N; (i,5 €{1,2,...,N}), we have
then

if o >c Ui(zi) = Uj(z;).

Proof. According to (19), if ¢; > ¢;, then x; > z;. Therefore,
(14z;) > (1+z;) =log(1+z;) >log(1+z;) = ¢; log(1+z;) >
¢jlog(l+ z;) = Ui(z:) > Uj(x;). O
In Theorem 5, we know that the seed bandwidth

allocation policy provides a higher utility for requesting

downloaders who have the higher uploading rate. There-

fore, our allocation policy provides an incentive in the
BitTorrent system.

6.2 Nash Equilibrium

We now consider whether all requesting downloaders are
satisfied under our seed bandwidth allocation policy. In
the game theory, this is determined by seeing whether
there exists a Nash equilibrium c¢" =[c,c,...,cyl,
where ¢* > 0. At the Nash equilibrium, no single down-
loader wishes to deviate from its contribution value or has
an incentive to change its strategy because the contribu-
tion value of each requesting downloader is the best
response to the contribution value of other requesting
downloaders.

We adopt the notation c_; to denote the vector of all
requesting downloaders other than ¢;, that is,
,Ci—1,Cit1, - - -, CN]. Suppose that all request-
ing downloaders have the same physical uploading
bandwidth p (that is, maximum uploading bandwidth),
and then, ¢; € [0, 4],Vi € {1,2,...,N}. A Nash equilibrium
of a game defined by (Uy,Us,...,Uy) for all requesting
downloaders N; is

c_i = ey e, ..

Ui(cjs¢ty) > Ui(eiz cy),

where ¢; € [0,pu], i =1,2,...,N,and ¢*;, > 0

Because the utility function U;(z;) is continuously
differentiable, monotonically increasing, and concave, every
requesting downloader’s optimal response is captured in its
bandwidth allocation function z;(c), that is, (19). Therefore,
we can use z; (¢) as a tool to evaluate the existence of a Nash
equilibrium. Therefore, we have

zi(cfscty) > wi(es; ey),
where ¢; € [0,p], i =1,2,...,N,and ¢*, >0
Therefore, the game defined by (Ui, Us,...,Uy) can be
expressed as the following constraint optimization problem:

(W4 N) —1

maz x;(c,c;) =

7+Z
1:1727...,1\7.

(20)
st ¢ €0,y

Theorem 6. z;(c)(i =1,2,.
¢ > 0. Forany c*
in ¢; €0, pl.

Proof. From (19), we know that z;(c;,c";) is continuously
differentiable in ¢; > 0. For any ¢*;, > 0, we have

.., N) is a continuous function of
; > 0, z;(c) is strictly increasing and concave

i(cis €y 1 i

rilenct) _ oy 4 SR ——
de; Gt cl (e+Y)

Pxi(ci, 2¢; 2

Falen) _ 4wy S - <o.
dc; (ci+22c)” (a+2c)
Thus, z;(c;, ¢*;) is strictly i 1ncreasmg and concave for

€ [0,), which implies that z;(¢;,¢";) has a unique
ptimal solution ¢} in¢; € [0,], wherei =1,2,..., N, that
satisfies z;(c;; ¢ ;) < z;(cf;¢t;) forVe; € [0711] and ¢ #c.0

Theorem 6 establishes the concavity and continuity of
zi(c), where i = 1,2,..., N, which guarantees the existence
of a Nash equilibrium c¢* for the game.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

LI ET AL.: FREE-RIDING ON BITTORRENT-LIKE PEER-TO-PEER FILE SHARING SYSTEMS: MODELING ANALYSIS AND IMPROVEMENT

70

= ’
——T,. A= ,,
go| —8— T %8 : Lo
g —o—T,A=16 ,
Eso -6 -T.0=4 - . . ¢
£ - .
E -8 -T, A8 o R
§40F -0 -T,A=16 e T
[3 e
H
& L% La--d
o 30 R e’ pi
4] PSs - -
g 7. —'a_‘a o
< 20f & - . -l R
s -a”
F _ T -6 <
e o e SR
& 1 — y
. G —o
0 02 04 06 08 1

(@)

963

EPSEYE
| s [{
=16 |

The nonfree-rider/ free-rider average download time(TnIT ,)

¥

(b)

Fig. 5. (a) The average download time of non-free-riders T,, and free-riders T with varying arrival rates of free-riders)y, and v — co. (b) The ratio
between the average download time of non-free-riders and free-riders T, /T as the departure rate of seeds ~ varies.

Theorem 7. The strategy c; = u for the requesting downloader
N;, where i =1,2,..., N, is a Nash equilibrium.

Proof. Let us consider the constraint optimization problem
(20). We have the following Lagrangian function:

Ci

Li(ci, A) :W

where A is the Lagrangian multiplier. The Kuhn-
Tucker condition requires that there exists a nonnega-
tive Lagrangian multiplier to satisfy the following
conditions:

8Li 1 ct
=(W+ N | _\N=
907_ () 7 A Oa

i=1 i=1

0=A(c — p).

If ¢ < p, then A = 0, and then, "V | ¢ = ¢;. However,
we have ¢*;, > 0, which is a contradiction. Therefore, an
optimal solution for ¢; < p does not exist. If ¢} = p, there
exists a nonnegative Lagrangian multiplier A\, and a
unique optimal solution exists in ¢; = . For any N;,
where i=1,2,...,N, if ¢, <p and ¢ € 0,4, then
zi(ciscty) < wi(ps; ;). Therefore, the strategy ¢ = p for
the requesting downloader V;, where i =1,2,..., N, is a
Nash equilibrium. O
To maximize the download rate from seeds, each

downloader will increase its uploading bandwidth to the
system until it reaches its maximum limit. At that point,
it will refrain from changing its uploading bandwidth.
When each requesting downloader achieves its maximum
uploading bandwidth, there exists a Nash equilibrium.
Therefore, our allocation policy implements an incentive
for downloaders to contribute its uploading bandwidth to
the system.

7 SIMULATION RESULTS

In this section, we present the results generated by
performing two sets of simulations. Our purpose is to

validate our analysis and support our seed bandwidth
allocation strategy, as discussed in Sections 5 and 6.

7.1 Model Validation

In this simulation, we study the results from a discrete-
event simulation of a BitTorrent-like network. In the
simulated network, we allow peers to dynamically join
or leave the system. The arrival process of peers is a
Poisson process. A peer can depart from the system after
finishing their download and obtaining all pieces of the
sharing file. We set the served file size as 50 Mbytes, which
is divided into 200 pieces and 256 Kbyte per piece. The
uploading bandwidth of non-free-riders and seeds is set as
500 Kbps, and there are no constraints on the downloading
bandwidth. The number of concurrent upload transfers of
each peer is 5. One initial seed is inserted into the system in
order to bootstrap the system, and 1,000 downloaders will
join the system.

In Fig. 5a, we plot the average download time of non-free-
riders T, and free-riders Ty with varying arrival rates of free-
riders Ay and set A, = 4,8, 16, respectively. We set v — oo,
thatis, non-free-riders will leave the system at once as soon as
they have downloaded the file completely. In the figure, we
can see that the average download time of free-riders T
increases sharply, whereas the average download time of
non-free-riders T;, remains nearly unchanged as the value of
Ay increases or the value of A, decreases, which implies that
BitTorrent mechanisms are successful in penalizing free-
riding, in effect by increasing the download time of free-
riders, which supports our modeling results.

In Fig. 5b, we set A\, = 4,8, 16, respectively, and Ay = 1. It
can be observed that with the decrease of the departure rate
of seeds 7, the ratio between the average download time of
non-free-riders and free-riders will increase. Free-riders will
download faster as the number of seeds in the system
increases and may even download faster than non-free-
riders with a high number of seeds, as shown in our
modeling results in Fig. 3a. We believe that this is because
the BitTorrent system does not provide an effective
mechanism for seeds to guard against free-riding. More-
over, when), increases, the ratio between T, and T} will
increase, as our modeling analysis shows.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

964 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.7, JULY 2008

o
N

—e—\ =4

o
=

0.08
0.06 -

0.04¢

0.02

The nonfree-rider/ free-rider average download time(Tn/T ')

o

0.2 04 0.6 0.8 1
v

=)

Fig. 6. The ratio between the average download time of non-free-riders
and free-riders T,, /Ty as the departure rate of seeds ~ varies under each
seed playing the seed bandwidth allocation strategy.

7.2 Impact of the Seed Bandwidth Allocation
Strategy

In this simulation, we use the same discrete-event simulator
in the first simulation to study the seed bandwidth
allocation strategy based strictly on the contribution of
downloaders in a BitTorrent-like network. Our purpose is
to evaluate the performance of the system when the seed
employs the bandwidth allocation strategy and the original
BitTorrent mechanisms.

We have the same setting as the first simulation. From
Fig. 6, we find that when the seed bandwidth allocation
strategy is employed, the ratio between the average down-
load time of non-free-riders and free-riders will decrease as
the departure rate of seeds v decreases. Furthermore, we
observe that the average download time of non-free-riders
is apparently smaller than that of free-riders, that is,
non-free-riders always download faster than free-riders
regardless of the number of seeds.

We compare the effect of the two strategies, that is, our
bandwidth allocation strategy and the original BitTorrent
mechanisms, on the average download time of free-riders
and non-free-riders, and the results are shown in Figs. 7a
and 7b. We set A\, = 8 and Ay = 1. From Fig. 7a, we find that
the average download time of free-riders is not shortened
with the increase of the number of seeds by employing the

70

I Sced bandwidth allocation strategy|
I BitTorrent Mechanism

60

The Average Download Time of free-riders (min)

(a)

seed bandwidth allocation strategy, and the average down-
load time of free-riders is increased compared with that
using original BitTorrent mechanisms, which implies that
the seed bandwidth allocation strategy is successful in
penalizing free-riding and preventing free-riders from
getting the downloading rate from seeds. In Fig. 7b, it is
observed that the average download time of non-free-riders
with the seed bandwidth allocation strategy is apparently
shorter than that without this strategy, and non-free-riders
will download faster with a high number of seeds. From the
result found in the simulation, we can see that the seed
bandwidth allocation strategy not only penalizes free-riding
but also is helpful to contributing peers.

In the above simulations, we study the impact of the seed
bandwidth allocation strategy in a setting consisting of a
homogeneous collection of non-free-riders. In this simula-
tion, we evaluate the seed bandwidth allocation strategy
when the non-free-rider bandwidth is heterogeneous. The
uploading bandwidth of seeds is 500 Kbps, and the upload
rates of non-free-riders are distributed uniformly over
[200, 500]. We compare the effect of our bandwidth allocation
strategy and the original BitTorrent mechanisms on the
average download time of free-riders and non-free-riders,
and the results are shown in Figs. 8a and 8b. In Fig. 8, we can
see that just as in a homogeneous environment, the average
download time of free-riders is not shortened with an
increase in the number of seeds by employing the seed
bandwidth allocation strategy (Fig. 8a), whereas non-free-
riders will download faster than that without this strategy
(Fig. 8b), when the non-free-rider bandwidth is heteroge-
neous. Therefore, the seed bandwidth allocation strategy can
prevent free-riding effectively and improves the perfor-
mance of contributors not only in homogeneous environ-
ments but also in heterogeneous environments.

We compare the average download time of peers with
various uploading bandwidths. We set that there are an
equal number of peers with 100 Kbps, 200 Kbps, 500 Kbps,
and 800 Kbps uploading bandwidth. The uploading band-
width of seeds is 500 Kbps, and seeds do not leave the system
(v = 0). From Fig. 9, we find that the average download time
of peers with the high uploading bandwidth is shorter than
that of peers with the low uploading bandwidth. The
average download time of peers with the high uploading

I Sced bandwidth allocation strategy
I BitTorrent Mechanism

The Average Download Time of nonfree-riders (min)

Y

(b)

Fig. 7. The average download time of (a) free-riders and (b) non-free-riders under each seed playing the seed bandwidth allocation strategy and

BitTorrent mechanisms.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

LI ET AL.: FREE-RIDING ON BITTORRENT-LIKE PEER-TO-PEER FILE SHARING SYSTEMS: MODELING ANALYSIS AND IMPROVEMENT 965

~
=)

I Sced bandwidth allocation strategy
[BitTorrent Mechanism

IN) w S o =3
=] =] = =] S

=)

The Average Download Time of free-riders (min)

o

(@)

I Seed bandwidth allocation strategy|
8t | [BitTorrent Mechanism

The Average Download Time of nonfree-riders (min)

(b)

Fig. 8. In heterogeneous environment, the average download time of (a) free-riders and (b) non-free-riders under each seed playing the seed

bandwidth allocation strategy and BitTorrent mechanisms.

bandwidth is shortened, whereas the average download
time of peers with the low uploading bandwidth is
prolonged by employing the seed bandwidth allocation
strategy. From the results found in the simulation, we can see
that the seed bandwidth allocation strategy implements an
incentive to peers to contribute services to the system.

8 CONCLUSION

In this paper, we first investigate the choking algorithm and
optimistic unchoking of the BitTorrent mechanisms. We
find that BitTorrent mechanisms could not completely
eliminate free-riding. Free-riders can still get a down-
loading rate from contributors through optimistic unchok-
ing. To further elucidate the effect of free-riding, we
developed a fluid model with two different classes of
peers. We find that the effect of optimistic unchoking on
free-riding does not significantly impact the performance of
the BitTorrent system. BitTorrent’s incentive mechanism is
successful in preventing free-riding in a system without
seeds. However, BitTorrent mechanisms may not succeed in
producing a disincentive for free-riding in a system having
a large number of seeds, because free-riders can get a great
deal of benefit from seeds and BitTorrent does not have an
effective mechanism for seeds to guard against free-riding.

—©— BitTorrent Mechanism
Seed bandwidth allocation strategy|

The Average Download Time(min)

0 100 200 300 400 500 600 700 800
The uploading bandwidth

Fig. 9. The average download time of peers with various uploading
bandwidths.

Thus, we present a seed bandwidth allocation strategy
based strictly on the uploading rate of peers in the
BitTorrent system to prevent free-riders from getting benefit
from seeds. Our simulation results validate our analysis
and show that the seed bandwidth allocation strategy not
only guards against free-riding effectively but also quite
effectively improves the performance of contributors.

In the future, we plan to extend our model to hetero-
geneous peers with different utility functions. We will also
conduct more exhaustive simulations to confirm the
robustness of the seed bandwidth allocation strategy.
Further, we will validate our analysis and evaluate the
proposed policy through empirical experimentation under
a real environment.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grants 60628201,
60473092, 60433040, and 90612018, and by the National Basic
Research Program of China under Grant 2007CB310905.

REFERENCES

[1] E. Adar and B.A. Huberman, “Free-Riding on Gnutella,”
First Monday, vol. 5, no. 10, Oct. 2000.

[2] D. Hughes, G. Coulson, and]J. Walkerdine, “Free-Riding on
Gnutella Revisited: The Bell Tolls,” IEEE Distributed Systems
Online, vol. 6, no. 6, 2005.

[3] S. Saroiu, P.K. Gummadi, and S.D. Gribble, “A Measurement
Study of Peer-to-Peer File Sharing Systems,” Proc. Conf. Multimedia
Computing and Networking (MMCN ’02), Jan. 2002.

[4] BitTorrent, Inc., BitTorrent Web Site, http://www bittorrent.com,
2001-2005.

[5] B. Cohen, “Incentives Build Robustness in BitTorrent,” Proc. ACM
SIGCOMM Workshop Economics of Peer-to-Peer Systems (P2PECON),
2003.

[6] A. Parker, The True Picture of Peer-to-Peer File Sharing, http://
www.cachelogic.com/, 2004.

[71 A.R. Bharambe, C. Herley, and V.N. Padmanabhan, “Analyzing
and Improving BitTorrent Performance,” Technical Report
MSR-TR-2005-03, Microsoft Research, Feb. 2005.

[8] S. Jun and M. Ahamad, “Incentives in BitTorrent Induce
Free Riding,” Proc. ACM SIGCOMM Workshop Economics of
Peer-to-Peer Systems (P2PECON ’05), Aug. 2005.

[9] D. Qiu and R. Srikant, “Modeling and Performance Analysis of
BitTorrent-Like Peer-to-Peer Networks,” Proc. ACM SIGCOMM '04,
Aug. 2004.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

966

(10]

[11]

(12]

[13]
(14]
[15]

(16]

(17

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

[20]

[27]

(28]

[29]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.7, JULY 2008

M. Yang, Z. Zhang, X. Li, and Y. Dai, “An Empirical Study of
Free-Riding Behavior in the Maze P2P File-Sharing System,” Proc.
Fourth Int’l Workshop Peer-to-Peer Systems (IPTPS '05), Feb. 2005.
R. Krishnan, M. Smith, Z. Tang, and R. Telang, “The Virtual
Commons: Why Free-Riding Can Be Tolerated in Peer-to-Peer
Networks,” Proc. Workshop Information Systems and Economics
(WISE "03), Dec. 2003.

M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica,
“Free-Riding and Whitewashing in Peer-to-Peer Systems,”
Proc. ACM SIGCOMM Workshop Practice and Theory of Incentives
in Networked Systems (PINS '04), Aug. 2004.

KaZaA, http:/ /www kazaa.com, 2006.

eMule, http:/ /www.emule-project.net, 2006.

L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang,
“Measurements, Analysis, and Modeling of BitTorrent-Like
Systems,” Proc. Internet Measurement Conf. (IMC '05), Oct. 2005.
M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Hamra, and
L. Garces-Erice, “Dissecting BitTorrent: Five Months in a
Torrents Lifetime,” Proc. Fifth Passive and Active Measurements
Workshop (PAM '04), Apr. 2004.

J.LA. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips,
“A Measurement Study of the BitTorrent Peer-to-Peer File-Sharing
System,” Technical Report PDS-2004-003, Delft Univ. of
Technology, The Netherlands, Apr. 2004.

J.LA. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips,
“The BitTorrent P2P File-Sharing System: Measurements and
Analysis,” Proc. Fourth Int’l Workshop Peer-to-Peer Systems
(IPTPS '05), Feb. 2005.

Z. Ge, D.R. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley,
“Modeling Peer-Peer File Sharing Systems,” Proc. IEEE
INFOCOM, 2003.

K. Ramachandran and B. Sikdar, “An Analytic Framework
for Modeling Peer to Peer Networks,” Proc. IEEE INFOCOM ’05,
Mar. 2005.

X. Yang and G. de Veciana, “Service Capacity of Peer to Peer
Networks,” Proc. IEEE INFOCOM, 2004.

Y. Tian, D. Wu, and K.-W. Ng, “Modeling, Analysis and
Improvement for BitTorrent-Like File Sharing Networks,”
Proc. IEEE INFOCOM, 2006.

F.L. Piccolo, G. Neglia, and G. Bianchi, “The Effect of Hetero-
geneous Link Capacities in BitTorrent-Like File Sharing Systems,”
Proc. Int’l Workshop Hot Topics in Peer-to-Peer Systems (HOT-P2P),
2004.

F. Clvenot-Perronnin and K.R.P. Nain, “Multiclass P2P Networks:
Static Resource Allocation for Service Differentiation and
Bandwidth Diversity,” Proc. 24th Int’l Symp. Computer Performance,
Modeling, Measurements and Evaluation (Performance), 2005.

D. Bertsekas and R. Gallager, Data Networks. Prentice Hall, 1987.
N. Liogkas, R. Nelson, E. Kohler, and L. Zhang, “Exploiting
BitTorrent for Fun (but Not Profit),” Proc. Fifth Int’l Workshop
Peer-to-Peer Systems(IPTPS '06), Feb. 2006.

A. Srinivasan, J. Teitelbaum, and J. Wu, “DRBTS: Distributed
Reputation-Based Beacon Trust System,” Proc. Second IEEE Int’l
Symp. Dependable, Autonomic and Secure Computing (DASC), 2006.
S.D. Kamvar, M.T. Schlosser, and H. Garcia-Molina, “The
EigenTrust Algorithm for Reputation Management in P2P Net-
works,” Proc. 12th Int’l World Wide Web Conf. (NWWW '03), May
2003.

F.P. Kelly, “Mathematical Modelling of the Internet,” Mathematics
Unlimited—2001 and Beyond, B. Engquist and W. Schmid, eds.,
pp- 685-702, Springer, 2001.

Minglu Li received the degree from the School
of Electronic Technology, University of Informa-
tion Engineering, in 1985 and the PhD degree in
computer software from Shanghai Jiao Tong
University (SJTU), Shanghai, in 1996. He is a full
professor and the vice chair of the Department
of Computer Science and Engineering and the
director of the Grid Computing Center at SJTU.
Currently, his research interests include grid
computing, services computing, and sensor
networks. He has presided over 20 projects supported by the National
Natural Science Foundation, National Key Technology R&D Program,
863 Program, 973 Program, and Science and Technology Commission
of Shanghai Municipality (STCSM). He has published more than
100 papers in academic journals and international conference proceed-
ings. He is also a member of the Expert Committee of the ChinaGrid
Program of the Ministry of Education, a principal scientist of Shanghai-
Grid, which is a grand project of STCSM, a member of the Executive
Committee of the ChinaGrid Forum, and a member of the Executive
Committee of the Technical Committee on Services Computing of the
IEEE Computer Society.

Jiadi Yu received the MS degree in computer
science from Xi'an Technological University,
Xi'an, China, in 2003 and the PhD degree in
computer science from Shanghai Jiao Tong
University, Shanghai, in 2007. He is a postdoc
in the Ad Hoc Network and Network Computing
Center and the Department of Computer
Science and Engineering at Shanghai Jiao Tong
University. His research interests include net-
working, P2P computing, mobile computing, and
wireless sensor networks.

Jie Wu is a distinguished professor in the
Department of Computer Science and Engineer-
ing, Florida Atlantic University, and a program
director at the US National Science Foundation.
His research interests are in the areas of
wireless networks and mobile computing, rout-
ing protocols, fault-tolerant computing, and
interconnection networks. He has published
more than 350 papers in various journals and

L 4) conference proceedings. He is the author of the
text Distributed System Design, published by the CRC Press. He was on
the editorial board of the IEEE Transactions on Parallel and Distributed
Systems and was a co-guest editor of Computer and the Journal of
Parallel and Distributed Computing. He served as a program cochair for
MASS 2004, a program vice chair for ICDCS 2001, and a program vice
chair for ICPP 2000. He was also the general chair for MASS 2006 and
is the general chair for IPDPS 2008. He was also the recipient of the
1996-1997, 2001-2002, and 2005-2006 Researcher of the Year Award
at Florida Atlantic University. He has served as an IEEE Computer
Society distinguished visitor and is the chairman of IEEE Technical
Committee on Distributed Processing (TCDP). He is a senior member of
the IEEE and a member of the ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

