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Abstract

This paper presents a Java framework for high performance computing (HPC)
on networks of workstations (NOWs). We introduce a new lottery-based work
stealing algorithm for e�cient scheduling of large-scale multithreaded computations
on NOWs. In the proposed algorithm, idle workstations actively search out work to
do rather than wait for work to be assigned. In the lottery game, each workstation
is equipped with a set of tickets and the number of tickets is proportional to the age
of the oldest thread in the ready pool of the workstation. A winning ticket is drawn
at random and the workstation with the winning ticket becomes the victim from
which the idle workstation steals work. The proposed selection procedure serves for
two purposes. First, we try to lower communication costs by stealing large amounts
of work, with the logic behind being that old-aged computations are likely to spawn
more work than relatively young computations. Second, we would like to bias the
search to obtain favourable results while at the same time avoid system bottleneck.
Our approach has been implemented and tested on NOWs under the Solaris OS.
Several examples have been used to demonstrate the potential performance gain.

Keywords: High Performance Computing (HPC), Java, Network of Workstations
(NOWs)
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1.1 Introduction

For the past twenty years parallel computing has been used successfully in many
applications such as weather forecasting, molecular modeling, air
ow modeling, tax
return, etc [20]. Despite some success and he fact that parallel processing have been
conjectured to be the most promising solution to the computing requirements of
many problem domains [26], parallel computing is not widely accepted in industry.
Parallel computers conjure images of sophisticated and expensive multiprocessor
architectures, running obscure operating systems, and executing programs written
in non-portable special-purpose languages. The on-going technological convergence
of local area networks (LANs) and massively parallel computers augments the ef-
fect of the reverse computing food chain law [1], where in contrast to biology, the
smallest �sh, personal computers, is eating the market of workstations, which has
consumed the market for minicomputers and now is eating away the market for
larger mainframes and supercomputers. The driving force behind this \law" is the
better price/performance ratio of networks of workstations (NOWs) over parallel
systems. We increasingly �nd NOWs making inroads into domains once monopo-
lized by supercomputers [11].

We can identify the following motivating factors for using NOWs for high per-
formance computing (HPC): (1) Surveys show that the utilization of CPU cycles of
desktop workstations is typically less than 10%. (2) Performance of workstations
and PCs is rapidly improving. (3) As performance grows, percent utilization will
decrease even further. (4) Organizations are reluctant to buy large supercomputers,
due to the large expense and short life span. (5) The communication bandwidth
between workstations increases as new networking technologies and protocols are
implemented in LANs and wide area networks (WANs). (6) NOWs are easier to
integrate into existing networks than special parallel computers. (7) The devel-
opment tools for workstations are more mature than the contrasting proprietary
solutions for parallel computers - mainly due to the non-standard nature of many
parallel systems. (8) NOWs are cheap and really available alternative to specialized
HPC platforms. (9) Use of NOWs as a distributed computing resource is very cost
e�ective (incremental system growth). Therefore, one could expect HPC on NOWs
to become more and more attractive as time goes on. This gives a new impulse to
the �eld of parallel computing.

A model of parallel computation is an abstract machine, providing a set of
primitives to the programming level above. It is designed to separate software de-
velopment concerns from e�ective parallel execution concerns. According to the
abstraction they provide, models for parallel computing can be classi�ed in �ve
categories [25], see Table 1.1, based on the ways decomposition, mapping, commu-
nication, and synchronization are done. Table 1.1 also shows some representative
language/libraries for each model.

Decomposition of a program into threads (column 1 of Table 1.1) and mapping
of threads to processors (column 2 of Table 1.1) are known to be computationally
expensive. Communication requires placing two ends of the communication in the
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correct threads and at the correct place. Synchronization requires the understanding
of the global state of the computation, which is immense for practical purposes.

Given the aforementioned reasons for using NOWs for HPC, we might expect
NOWs to have rapidly moved into the mainstream of computing. This is clearly
not the case. We could identify the following problems and di�culties with using
NOWs, which explain why its advantages have not (yet) led to its widespread use:
(1) In principal, NOWs have much unused compute power to be exploited. In prac-
tice, the large latencies involved in communicating among workstations make them
low-performance parallel computers. Typically larger-grain processes are used to
help conceal the latency. The increasing use of optical interconnection and ATM
for connecting workstation changes the situation. (2) Models for NOWs include
systems such as MPI [22] and PVM [26], which belong to the lowest level of the
model hierarchy. Most importantly, these models do not hide much of the decom-
position and communication. The developer must specify in thorough detail the
implementation, which makes building software extremely di�cult. (3) The models
used must address the heterogeneity of the processors (architecture, OS, GUI) on
typical NOWs. (4) Workstations must trust the programs being executed on their
machines. (5) The system must secure the application from spying by participating
workstations. (6) The system must be able to mask the intentional (or uninten-
tional) data loss and data corruption caused by the inherent partial failures. (7)
The system must reward (economic incentive) the participation of workstations in a
distributed computing infrastructure. (8) The theory required for parallel computa-
tions is immature [25]. Skillicorn and Talia argue that our knowledge about abstract
representation of parallel computations and reasoning about them is insu�cient and
rudimentary.

Java [21], an object-oriented language, has become popular because of its plat-
form independence and safety. It has greatly simpli�ed network programming by
providing elegant TCP/IP API, object serialization, network class loading (code
mobility), RMI (remote method invocation) [16], Servlets, JSP (Java server pages)
[18] and built-in concurrent constructs. Java is a shared memory thread-based lan-
guage with built-in monitors and binary semaphores as a means of synchronization
at the object and class level. Though Java is �rmly �xed at the lowest level of the
parallel computing model hierarchy, it addresses concerns (3) and (4) above. This
along with its phenomenal growing popularity entails a rapidly expanding body of
projects that use Java as a language for HPC on NOWs and clusters [3], [4], [11],
[12], [13], [14], [17], [20], [23], [24]. Invariably, their aim is to hide one or more of
the characteristics of the language, see Table 1.1, that make it ill-suited for parallel
programming.

Next, we discuss the existing Java-based systems according to the criteria out-
lined in Table 1.1. JPVM [12], IceT [14] and MPIJ [23] are systems based on
message passing using sends and receives to specify the message to be exchange,
process identi�ers and address. They implement models from the bottom-level of
the model abstraction hierarchy.

JavaSpaces [17] stands one level higher than message passing systems. It is
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a new realization of Linda \tuple spaces" [10]. In essence, JavaSpaces simpli�es
process communication by using a large pool into which data values are placed by
processes, and from which they are retrieved associatevely. Charlotte [4] is one of
the �rst systems to use Java for parallel computing. Charlotte programs are written
for a virtual parallel machine where the runtime system automates the mapping of
threads, called routines, to processors and communication is done through shared
variables allocated from a distributed shared memory. The system implements
the fork-join model of parallel programming and introduces fault-tolerance through
\eager scheduling." With eager scheduling the manager assigns a job repeatedly
until it is executed to completion by at least one worker. The authors introduce
a new memory management technique, called \two-phase idempotent execution
strategy," to ensure the correct execution of of shared memory programs under
eager scheduling. What we see as a disadvantage is the centralized association of
workers and computations.

Next, in the model hierarchy comes Atlas [3], a Java realization of the Cilk [5]
programming model, which is best suited for tree-like computations, see below. The
system automates the placement of computations and communication and achieves
near-optimal load balancing. Bayanihan [24] implements a generic set of compo-
nents that support master-worker programming style similar to Charlotte through
a form of barrier synchronization and eager evaluation. In addition, the generic
objects of the runtime system can be changed for performance optimization of dif-
ferent distributed algorithms and even for implementation of new programming
paradigms. Javelin [11] is a seminal infrastructure for global computing based on
Java-enabled Web technology (applets, Web servers, and HTTP). It achieves load
balancing through a distributed task queue (scheduler) using work stealing. The
developer is abstracted both from mapping of threads to processors and from inter-
thread communication. In Javelin communication layer, communication between
applets is routed through their associated servers, which further increases the net-
work latency, making the system suitable for running mainly coarse-grain parallel
applications.

Further, the projects using Java could be divided into applet-based and stan-
dalone. This classi�cation is orthogonal to the classi�cation based on the model
abstraction. Both approaches have advantages and disadvantages. The former
is severely restricted by the applet security model. Load balancing is di�cult to
achieve since there is always the bottleneck created by virtue of the centralized node
(the Web server). These systems target the Internet and its unlimited resources.
Standalone implementations target both NOWs and the Internet. They require that
either the clients (users) have access privileges to the participating machines or the
workstation owners download and install the runtime system. The chief problem to
overcome in the latter approach is having to prove to and convince the owners that
their privacy and security would not be violated by executing foreign computations.
For a comprehensive discussion of some other considerations to be addressed when
choosing between applet-based and standalone implementations refer to [19].

The aims of this research work are to develop a Java runtime system for e�cient
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Decomp. Mapping Comm. Sync. Languages

1. implicit implicit implicit implicit Haskel
2. explicit implicit implicit implicit Concurr. Prolog, Multilisp, Cilk
3. explicit explicit implicit implicit BSP, LogP, Linda
4. explicit explicit explicit implicit Emerald, Concurrent Smalltalk
5. explicit explicit explicit explicit Java, PVM, MPI, Ada

Table 1.1. Models for parallel computations.

scheduling of multithreaded Java applications on NOWs and to improve the random
work stealing algorithm used in Cilk-NOW [5], [6], [7], [8]. Cilk-NOW is a runtime
system based on a C thread package designed for multiprocessor architectures. The
runtime system can be ported to and used on a NOW. However, it su�ers from the
inherent limitations of the C programming language: nonportability, lack of re
ec-
tion API, lack of serialization, and lack of network loading. The former restricts
the portability of the runtime system as well as its deployment to homogeneous
environments. The lack of network loading decreases the scalability of the system,
e.g., the participating workstations should share a common �le system in order to
load the code of the applications.

In our work we use the programming model developed by Robert Blumofe at
MIT [5]. This model requires that decisions about the breaking up of available
work into threads be made explicit while relieving the software developer of the
rami�cations of such decisions: mapping of threads to processors is done automat-
ically and e�ciently by the distributed scheduler that implements a random work
stealing algorithm; communication is done implicitly through shared variables; and
synchronization is achieved through continuation passing style [2]. In other words,
in writing a parallel application in Java, a programmer expresses parallelism by
coding instructions in a partial execution order by structuring the code into totally
ordered sequences called threads. The programmer need not specify the processor in
the system that executes a particular thread nor exactly when each thread should
be executed. These scheduling decisions are made by the run-time systems sched-
uler. In our work we use Java as an implementation language. The proposed model
allows Java to enjoy the bene�ts of being a member of the family of languages in the
second category in Table 1.1. Making the Java programming model more abstract
could reap tremendous spin-o�s. Parallel applications are easier to design, verify,
and debug while e�cient implementation is still possible.

The remainder of the paper is structured as follows. In Section 2 we review
the Cilk language and work stealing scheduler [6], [7], [8] adapted to our needs and
introduce a new work stealing algorithm. In Section 3 we describe the architecture
and the implementation of the proposed Java runtime system. Then, in Section
4 we present experimental results about the performance of the runtime system
employing the work stealing algorithm described in Section 2. In the �nal section
we outline plans for future work and conclude.
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1.2 The Cilk Programming Model and Work Stealing Scheduler

NOWs o�er a tremendous processing capacity. However, in order to realize this
computing capacity we need a good programming model and an e�cient distributed
scheduler for redistributing the load among the workstations. In Section 2.1 we
describe the Cilk programming model as well as its random work stealing algorithm.
In Section 2.2 we present a new distributed scheduler based on a victim selection
algorithm through lottery.

1.2.1 Java programming language and the Cilk programming model

The Cilk programming model contains a graph of instructions and a tree of threads
that unfold dynamically during program execution. A multithreaded computation
is composed of a set of threads, each of which is a sequential order of instructions.

During the course of execution, a thread may create, or spawn, other threads.
The spawning thread can operate concurrently with the spawned one. The spawned
threads are considered to be children of the thread that did the spawning, and a
thread may spawn as many children as it desires. In this way the threads are
organized into a spawn tree.

In addition to spawning threads, a multithreaded computation may also contain
dependency between the threads. As an example of a data dependency, consider an
instruction in one thread that produces a data value consumed by an instruction in
another thread. Dependencies allow threads to synchronize.

An execution schedule for a multithreaded computation determines the processor
in the system that executes a given instruction at each step. An execution schedule
must obey the spawning dependencies in that no processor may execute an instruc-
tion in a spawned child thread until after the spawning instruction in the parent
thread has been executed. It must also obey the data and control dependencies
among the threads in order to achieve proper thread synchronization.

In a strict multithreaded computation, every dependency goes from a thread
to one of its ancestor threads. In a fully strict multithreaded computation, ev-
ery dependency goes from a thread to its parent. Fully strict computations are
\well-structured" in that all dependencies from a subcomputation emanate from
the subcomputations root thread. A distinctive feature of strict computations is
that once a thread has been spawned, a single processor can complete the execution
of the entire subcomputation rooted at this thread even if no other progress is made
on the other parts of the computation.

A program in the Cilk programming model consists of one or more classes and
objects with one or more threads of control. Threads are nonsuspendable. The
runtime system manipulates and schedules the threads. A Java program generates
parallelism at runtime by instantiating a runnable object or a subclass of class
Thread and executing its run method. After this the parent and the child may
execute concurrently (asynchronous method invocation). After spawning one or
more children threads, the parent thread does not wait for its children to return.
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Instead, the parent thread additionally spawns a successor thread to wait for the
results from the children. Thus, a thread may wait to begin executing, but once
it begins execution there is no suspending it [2]. Sending a result to a suspended
thread is done via the sendArgmethod. The Java runtime system implements these
primitives using two types of classes: closures and continuations.

Closures are classes employed by the runtime system to keep track of and sched-
ule the execution of spawned threads. The runtime system associates one closure
object with each spawned thread. The absence of templates in Java does not allow
to hide the existence of closures from the software developer without an additional
preprocessing step. A closure consists of the class name of a runnable object, a slot
for each of the speci�ed arguments in the object's constructor, and a join counter
indicating the number of missing arguments that need to be supplied before the ob-
ject is ready to be instantiated and its run method executed in a separate thread.
If the closure has received all of its arguments, then it is ready; otherwise, it is
waiting. To run a ready closure, the runtime system uses re
ection API to �nd out
the object constructor having the same number and type of arguments as speci�ed
in the closure and then invokes it. When the run method of the instantiated object
dies, the closure is deleted (freed).

A Continuation is a reference to an empty argument slot of a closure. An
executing thread sends a value to a waiting thread by placing the value into an
argument slot of the waiting thread's (runnable object's) closure. The executing
thread uses the sendArg method of a Continuation object for this purpose. The
empty slot of the waiting closure is speci�ed by the argument passed as a parameter
to the constructor of the Continuation object.

At runtime, each processor maintains four pools of closures: ready pool , waiting
pool, assigned pool, and the pool of stolen closures. The ready pool is a deque
(double-ended queue) which contains all of the ready closures. Whenever a closure
is created, if its join counter is 0, then it is placed on the head of the ready deque;
otherwise, it is added to the waiting pool. Whenever a sendArg is invoked, the
join counter is decremented, and if the join counter reaches 0, then the closure is
removed from the waiting pool and placed at the head of the ready deque. When
a thread �nishes, the next closure is chosen from the head of the ready deque and
instantiated (its thread executed.)

In Figure 1.1, a worker pushes spawned tasks on its local ready deque and pops
the task from its head when it �nishes the current task. A pop on an empty ready
pool triggers a steal request being sent to a victim worker. When the steal request
arrives at the victim worker, if its ready deque is not empty, the task at the tail of
the deque is removed and sent to the requesting worker.

If no closures are available in the ready pool, a processor becomes a thief. In
Cilk-NOW [5], to steal a work, a processor chooses another processor, called victim,
at random and requests a closure to be sent back (see Figure 1.1). If the victim
processor has any closures in its ready deque, one is removed from the tail of its
ready deque and sent across the network to the thief whom will add this closure
to its own ready deque. The thief may then begin work on the stolen closure.
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Java rumtime system

push/pop

head

tail

Victim

pop

Thief

head

tail

steal request

Server Servier

Figure 1.1. A description of thief and victim algorithm

If the victim has no ready closures, it informs the thief who then tries to steal
from another randomly chosen processor until a ready closure is found or program
execution completes.

Our runtime system consists of several processes, executing Java Virtual Ma-
chines (JVM), running on several di�erent workstations. One process, called reg-
istry, runs a Java program responsible for keeping track of all the other processors
that cooperate on a given job. These other processes are called workers. Each
worker registers with the registry by sending it a message containing its own trans-
port address. The registry responds by assigning each worker a unique name. Work-
ers periodically check in with the registry. Every 2 seconds each worker sends a
message to the registry containing the level of the closure at the tail of its ready
deque. The level of a closure is equal to the height of the root of the multithreaded
spawn tree minus the height of the node of the closure in concern. Every 2 seconds
the registry multicasts a list of the network addresses and ages of all registered
workers.

1.2.2 Lottery victim selection algorithm

In order to execute multithreaded programs on NOWs e�ciently we need to con-
struct execution schedules dynamically. We introduce below a new distributed
scheduler based on work stealing that builds execution schedules at run time as the
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Figure 1.2. Description of the lottery victim selection algorithm.

computation unfolds.
As distinguished from Cilk-NOW, what comes across as novel in our runtime

system is that when a worker becomes a thief it does not chose a victim uniformly
at random. Instead, it incorporates a lottery scheduler [27] making use of the
information about the level of the closure (thread) at the tail in each processor's
ready deque.

Lottery scheduling has been used successfully to provide e�cient and responsive
control over the relative execution rates of computations running on a uniprocessor.
It has been shown e�cient and fair even in systems that require rapid, dynamic con-
trol over scheduling at a time scale of milliseconds in seconds. Lottery scheduling
implements proportional-share resource management where the resource consump-
tion rates of active computations are proportional to the relative shares they are
allocated.

In the proposed randomized victim selection algorithm, each processor is associ-
ated with a set of tickets and the number of tickets associated with each processor
is proportional to the level of the tail thread of its ready pool. For every thief
processor, the victim processor is determined by holding a lottery. The victim is
the processor with the winning ticket. For example, if the registry has multicasted
a list of four processors with levels of their ready deque tail threads 12, 8, 7, and
3 respectively, there is a total of 12 + 8 + 7 + 3 = 30 tickets in the system, see
Figure 1.2. Next, assume that a new processor has just joined the computation and
has received the multicast message from the registry. Initially, this new processor
has an empty ready pool so it becomes a thief immediately. In order to select a
victim the new processor holds a lottery based on the information in the multicast
message. Assume that the 25th ticket is (randomly) selected. The list of processors
is searched for the winner. For every processor the partial sum of tickets from the
beginning of the list is computed. If the partial sum is greater than the number
of the winning ticket than the current processor is the winner and the search is
aborted; otherwise, the search continues with the next processor in the list. For
our four-processor example, the winner is the third processor. Therefore, the new
processor will try to steal work from the third processor in the list multicasted by
the registry. Further, let us assume that another new processor joins the compu-
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tation. It will also hold a lottery based on the information in the same multicast
message. It is likely that the winner will be the �rst or the second processor be-
cause of the great number of tickets representing them. In this way the selection
algorithm probabilistically avoids congestions at the busiest nodes in the system
while at the same time it allows work stealing from them.

1.3 Architecture and Implementation of the Java Runtime Sys-

tem

This section presents our prototype runtime system and describes its core compo-
nents and their interactions.

1.3.1 Architecture of the Java runtime system

At the highest level, the runtime system implements the following functions:

Threads scheduling

The scheduler distributes tasks from a distributed task queue and manages
load balancing through random work stealing, see Section 2.

Adaptive parallelism

The system makes use of idle processors which are idle when the parallel
application starts or become idle during the duration of the job. When a
given workstation is not being used, it joins in the system. When the owner
returns to work, that processor automatically leaves the computation. Thus,
the set of workers shrinks and expands dynamically throughout the execution
of a job.

Macroscheduling

A background daemon process runs on every processor in the network. It
monitors the processor state to determine when the processor is idle so that
it could start a worker on that machine.

The three main components of the runtime system are the registry, the workers,
and the node managers. The registry is a super server providing the following
services, each of which is implemented in a separate server:

� registering/deregistering of workers,

� updating the information about the workers currently involved in the compu-
tation, and

� multicasting the list of network addresses and ages of the workers.

Each worker consists of the following components:



Section 1.3. Architecture and Implementation of the Java Runtime System 11

� Master object synchronizing the access to the four pools of closures through
guarded suspension and execution state variables.

� Compute server fetching jobs from the ready deque and executing them. If
the ready deque is empty, the worker becomes a thief and triggers the Thief
thread.

� Thief runnable object executed in a separate thread. This object implements
the victim selection algorithm and the actual work stealing. A shortcoming of
most distributed schedulers is the need for the workstations to share a com-
mon �le system, such as NFS. The Thief incorporates a network classloader
that allows the downloading of executable code on demand. The latter over-
comes the requirement for the workstations to have a common �le system and
improves the scalability of the proposed runtime system.

� Victim server object. This server is contacted by the Thief clients of other
workers in the course of their work hunt.

� Result server object. Results from stolen threads are returned to this server
which updates the corresponding closure in the waiting pool.

� Register client responsible for registering to and periodic updates with the
registry.

� Listener which listens continually for the datagrams multicasted by the reg-
istry. It writes the information received in a 1-bounded bu�er. The informa-
tion is read from the bu�er and used by the victim selection algorithm which
is invoked by the Thief thread.

� VictimSelectionobject implementing the victim selection algorithm. We use
the library class java.util.Random to generate a stream of pseudo-random
numbers. Each worker uses as a seed its unique ID assigned by the registry.
A victim worker is selected by holding a lottery. First, a winning ticket is
selected at random. Then, the list of workers is searched to locate the victim
worker holding that ticket. This requires a random number generation and
O(n) operations to traverse a worker list of length n, accumulating a running
ticket sum until it reaches the winning value.

In [27] various optimizations are suggested to reduce the average number of
elements of the worker list to be examined. For example, ordering the workers by
decreasing level can substantially reduce the average search length. Since those
processors with the largest number of tickets will be selected more frequently, a
simple \move to the front" heuristic can be very e�ective. For large n, a more
e�cient implementation is to use a tree of partial sums, with clients at the leaves.
To locate a client holding a winning ticket, the tree is traversed starting at the
root node, and ending with the winning ticket leaf node, requiring only O(lg n)
operations.
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Scheduling by lottery is probabilistically fair. The expected allocations of vic-
tims to thieves is proportional to the number of tickets the victims hold. Since the
scheduling algorithm is randomized, the actual allocated proportions are not guar-
anteed to match the expected proportions exactly. However, the disparity between
them decreases as the number of allocations increases.

1.3.2 Implementation of the Java runtime system

For e�ciency, all communication protocols, except the initial registering of the work-
ers, are implemented over UDP/IP. Some of the protocols add reliability to UDP
by incorporating sequence numbers, timeouts, adaptive algorithms for evaluating
the next retransmission timeout, and retransmissions [15]. The application protocol
used to register new workers to the registry is developed over TCP/IP because of the
needed reliability during the connection establishment and connection termination.

One of the assumptions of this research work is that there is a great number of
idle CPU cycles. Figure 1.3 plots the average number of jobs in the ready queue of
the machines comprising our network 1. A script was run for two weeks collecting
the average load across the workstations at 15 minute intervals. The results were
combined to produce an average load during a day. As can be seen from this plot,
though more machines are idle at night, a signi�cant number of idle CPU cycles
exists at various time slots throughout the day. The results con�rm that a network
of workstations does indeed provide a valid environment for HPC. It is also possible
to calculate the average daily load from Figure 1.3. By rough approximation, the
average load of the workstations is around 0.25, indicating that about 75% of the
CPU time of each workstation is wasted every day.

1.4 Performance evaluation

In this section we present experimental results about the performance of our proto-
type runtime system for scheduling of multithreaded Java applications on networks
of workstations. All experiments are done and measurements taken down on a
network of 15 workstations running Solaris OS. Subsection 4.1 shows the imple-
mentation of a sample application and Subsection 4.2 presents some experimental
results and interpretations of these results.

1.4.1 Applications

Consider the following example taken from [5] and rewritten in Java. The Fibonacci
function fib(n) for, n � 0, is de�ned as

fib(n) =

�
n if n < 2
fib(n� 1) + fib(n� 2) otherwise

1This network is in the departmental lab of Computer Science and Engineering, Florida Atlantic

University.
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Another example that we consider is nqueens. nqueens application is a classical
example of searching using backtracking. The objective is to �nd a con�guration of
n queens on an n� n chess board such that no queens can capture each other.

This following shows the way this function is written as a Java program. The
double recursive implementation of the Fibonacci function is a fully strict compu-
tation. The Java code is given below which is structured in the run methods of the
two runnable objects.

class Fib implements Runnable {

Continuation dest;

int n ;

public Fib( Continuation k, int n ) {

...

}

public void run () {

if ( n < 2 )

dest.sendArg( n ) ;

else {

Continuation x = new Continuation () ;

Continuation y = new Continuation () ;

ClosureSum s = new ClosureSum( dest, x, y ) ;

ClosureFib fib1 = new ClosureFib( x, n-1 ) ;

ClosureFib fib2 = new ClosureFib( y, n-2 ) ;

}

return ;

}

}

class Sum implements Runnable {

Continuation dest ;

int x,y ;

public Sum( Continuation k, int x, int y ) {

...

}

public void run () {

dest.sendArg( x+y );

}

}

The Java code for nqueens is given in the Appendix. The nqueens problem is
formulated as a tree search problem [9] and the solution is obtained by exploring
this tree. The nodes of the tree are generated starting from the root, which is the
empty vector corresponding to zero queens placed on the chess board. The code is
structured in the run method of the classes NQueens, Success, and Failure. On
each iteration, a new con�guration is constructed, called config in the code, as
an extension of a previous safe con�guration, thus spawning new parallel work. A
con�guration is safe if no queen threatens any other queen on the chess board. The
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Figure 1.5. Parallel speedup

algorithm uses depth-�rst search to traverse the generated tree. On termination of
the for loop of NQueens.run() method, the variable count contains the number
of Nqueens closures pushed in the ready pool. This information is used to set the
number of missing arguments of the Failure runnable object that is used in the
backtracking stage if a dead end is reached.

Since we use continuation-passing style for thread synchronization, after spawn-
ing one or more children, the parent thread cannot then wait for its children to
return. Rather, as illustrated in Figure 1.4, the parent thread (Q) additionally
spawns two successor threads, namely Failure (F) and Success (S), to wait for the
values returned from the children. The communication between the child threads
and the parent thread's successors is done through Continuation objects. We use
two di�erent successor threads because failure and success have di�erent semantics.
In order for a thread to return failure, all of its child threads should report failure,
while to return success, it su�ces only one of its child threads to report success. It
is important to note that nqueens spawns o� parallel work which it later might �nd
unnecessary. This \speculative work" can be aborted in our runtime system using
the abort method of the Master object which synchronizes the access to the four
pools of closures of each worker. Subsequently, the abort message is propagated
to all workers involved currently in the computation. The latter allows nqueens

program to terminate as soon as one of its threads �nds a solution.

1.4.2 Results and discussion

The performance of the runtime system was evaluated using fibonacci and nqueens
applications. Even though both of the applications are not real life, they generate a
workload suitable for evaluating the performance of our system. fibonacci is not
computationally intensive but spawns a large number of threads (in millions) which
makes it appropriate for evaluating the synchronization of the runtime system.
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# of proc. Random Lottery-based Impro. in %
5 43.4 35.7 17.74
6 49.25 47.5 3.55
7 63.6 44 30.81
8 82.67 63 23.79
9 83.25 69.25 16.81

Table 1.2. Comparison between the performance of the random work stealing
algorithm and the lottery work stealing algorithm (Fibonacci numbers)

nqueens features behaviour typical of most search algorithms employing backtrack-
ing.

First, we present the serial slowdown incurred by the parallel scheduling over-
head. The serial slowdown of an application is measured as the ratio of the single-
processor execution of the parallel code to the execution time of the best serial
implementation of the same algorithm. The serial slowdown stems from the ex-
tra overhead that the distributed scheduler incurs by wrapping threads in closures,
re
ecting upon closures to �nd out threads' constructors, and work stealing.

Serial slowdown data for fibonacci and nqueens are 6.1 and 1.15, respectively.
As expected fibonacci incurs substantial slowdown because of its tiny grain size.
The slowdown of nqueens is insigni�cant.

Figure 1.5 shows the parallel speed up of the fibonacci application. In all
experiments all workstations have been started up at the same time and therefore
have taken a fare share of the load. The speedup is measured as the ratio of the
execution time of the parallel implementation running with one participant to the
average execution time of the parallel implementation running with m participants,
where m is the number of workstations involved.

Tables 1.2 and 1.3 compare the performance of the classical work stealing al-
gorithm where victims are chosen uniformly at random to the performance of the
proposed work stealing algorithm which makes use of the information about the
levels of the tail closures in the ready pools of the workers.

Tables 1.2 and 1.3 show that the lottery-based work stealing algorithm consis-
tently outperforms the random work stealing algorithm for fibonacci and nqueens

applications, respectively. However, we need to run more experiments with appli-
cations spawning a range of di�erent subcomputations in order to provide stronger
evidence in support of that statement. In Table 1.2 and 1.3, Columns 2 and 3
display the wall clock time in seconds for the classical work stealing algorithm and
the lottery-based work stealing algorithm, respectively, for di�erent number of pro-
cessors involved.
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# of proc. Random Lottery-based Impro. in %
5 419 291 30.54
6 398 230 42.21
7 324 197 39.2
8 304 190 37.5
9 249 154 38.15

Table 1.3. Comparison between the performance of the random work stealing
algorithm and the lottery work stealing algorithm (Nqueens problem)

1.5 Conclusions

We have devised and implemented a new victim selection algorithm. In the proposed
victim selection algorithm, each processor is given a set of tickets whose number
is proportional to the age of the oldest subcomputation in the ready pool of the
processor. The victim processor is determined by holding a lottery, where the
victim is the processor with the winning ticket. The experimental results have
shown that the proposed work stealing algorithm outperforms the classical work
stealing algorithm where the victims are selected uniformly at random. We have
also designed and implemented a Java runtime system for parallel execution of
strict multithreaded Java applications on networks of workstations employing the
proposed lottery-based victim selection algorithm. The runtime system features:

� Distributed thread scheduler that manages e�ciently load balancing through
a variant of work stealing.

� Adaptive parallelism which allows the utilization of idle CPU cycles without
violating the automicity of the workstations' users.

� Network class loader which lifts up the restriction requiring that all worksta-
tions share a common �le system and improves the scalability of the runtime
system.

Our future plans involve adding fault-tolerance to the runtime system through
distributed checkpointing so that the system could survive machine crashes. The
challenge of this enterprise stems from the absence of a common �le system shared
by all workstations.

For the Internet-based version of our runtime system we plan to incorporate in
the work-stealing algorithm information about the communication delays among the
processors in the system. On a LAN communication delays cannot have dramatic
impact on the performance of the system since they are more or less uniform.
However, on a WAN or internetwork they have to be taken into account in order
to achieve e�cient scheduling of the subcomputations. For the estimation of the
communication delays between the processors of the network we are going to design
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and implement a distributed algorithm, where each processor in the system obtains
its partial view of the delays in the system through its communications with the
rest of the processors. We also plan to justify theoretically the performance of the
proposed work stealing algorithm based on lottery victim selection.
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Appendix

public class NQueens implements Runnable {

Continuation success, fa ;

Continuation failure ;

private int n; //the total number of queens

private int i; //already placed queens

private int[] config; //The current configuration of queens on the chessboard

public NQueens( Continuation s, Continuation f, int[] a,

Integer nQueens, Integer placedQueens ){

...

}

public void run() {

int j = 0;

if (i == n) {

System.out.println("Done");

for (j = 0; j < i; j++)

System.out.print( "" + config[j] + " " );

System.out.println( "" ) ;

success.sendArgument( config ) ;

return;

}

Continuation x = new Continuation () ; // success

Continuation y = new Continuation () ; // failure

ClosureSuccess cSuccess = new ClosureSuccess( this.success, x ) ;

ClosureFailure cFailure = new ClosureFailure( this.failure, y ) ;

short count = 0 ;

for ( j = 0; j < n; j++ ) {

int[] newConfig = (int[])config.clone();

if ( safe( newConfig, i, j ) ) {

count++ ;

newConfig[i] = j ;

ClosureNQueens q = new ClosureNQueens( x, y, newConfig, n, i+1 );

}

}

if ( count == 0 ) {

failure.sendArgument( new Integer( 0 ) ) ;

}

else

cFailure.setJoinCount( count ) ;

return ;

}
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boolean safe(int config[], int n, int j) {

int r = 0;

int s = 0;

for (r = 0; r < i; r++) {

s = config[r];

if (j == s || i - r == j - s || i -r == s - j) {

return false;

}

}

return true;

}

}

public class Failure extends Task {

Continuation destination ;

Integer fail ;

...//constructor and helper methods

public void run () {

//send failure notification to the failure successor of the parent thread

destination.sendArgument( fail ) ;

}

}

public class Success extends Task {

Continuation destination ;

int[] config ;

... //constructor and helper methods

public void run () {

Master.getWorker().abortReadyClosures () ;

//send configuration to the successor of the parent thread

destination.sendArgument( config ) ;

}

}


