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Abstract

We propose a fault-tolerant tree-based multicast algorithm for 2-dimensional (2-D) meshes

based on the concept of the extended safety level which is a vector associated with each node

to capture fault information in the neighborhood. In this approach each destination is reached

through a minimum number of hops. In order to minimize the total number of tra�c steps, three

heuristic strategies are proposed. This approach can be easily implemented by pipelined circuit

switching (PCS). A simulation study is conducted to measure the total number of tra�c steps

under di�erent strategies. Possible extensions to 3-D meshes and deadlock-free multicasting

are also included. Our approach is the �rst attempt to address the fault-tolerant tree-based

multicast problem in 2-D meshes based on limited global information with a simple model and

succinct information.

Keywords: fault tolerance, faulty block, mesh, minimal routing, multicast, pipelined circuit

switching (PCS), safety level
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1 Introduction

In many multicomputer systems, data must be redistributed periodically in such a way that all

processors can be kept busy performing useful tasks. Because they do not physically share mem-

ory, nodes in multicomputers must communicate by passing messages through a communication

network. Communication in multicomputers can be either point-to-point or collective. In point-

to-point communication, only a single source and a single destination are involved. In collective

communication, more than two nodes are involved in the communication. Examples of collective

communication include multicast, broadcast, and barrier synchronization. The growing interest in

the use of such routines is shown by their inclusion in many commercial communication libraries

and in the Message Passing Interface (MPI) [23], an emerging standard for communication routines

used by message-passing systems.

A multicast (one-to-many communication) facility sends messages from one node to multiple

nodes. Multicast is an important system-level collective communication service. Several collective

communication services such as broadcast and scatter in MPI are a subset or a derivation of

multicast. Multicast is also essential in many other applications such as clock synchronization

in distributed systems and cache coherency in distributed shared-memory systems. Due to the

importance of multicast, e�cient implementation of multicast has been extensively studied in the

past ([1], [2], [4], [16], [22]). Some vendors are aware of the importance of multicast and have

facilitated it by implementing multicast directly in hardware.

In a multicomputer system with hundreds and thousands of processors, fault tolerance is another

issue which is de�ned as the ability of the system to function in the presence of component (processor

or communication link) failures. The challenge is to realize fault tolerant communication without

the expense of considerable performance degradation.

Multicast schemes can be classi�ed into unicast-based, path-based, and tree-based. The unicast-

based approach treats a multicast as a multiple-unicast. A unicast is a one-to-one communication.

If there are n destinations in a multicast set, n worms are generated in a wormhole-routed system.

Each worm goes to its destination separately as if there were n-unicast communications. As a

result, substantial start-up delay could occur at the source. In the path-based approach, a path

including all the destinations should be �rst established. The path-based approach uses only one

or two worms which include all the destinations in the header(s). Each node is assumed to be able

to store a copy of an incoming message (
it) and at same time forward it to the next node on the

path. Like the path-based approach, each node in the tree-based approach is capable of storing an

incoming message and forwarding it. In addition, it can split and replicate the message. In this way,

the original worm is changed into a worm with multiple headers. Such multi-head branches can

be dynamically generated at some intermediate nodes. It is believed that the tree-based approach
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o�ers a cost-e�ective multicasting [28].

Although many tree-based multicast algorithms have been proposed for store-and-forward net-

works, extensions to wormhole routing is still a challenging problem [20]. Our tree-based approach

is based on a relatively new switching technique called pipelined circuit switching PCS [8] and

multicast-PCS [31]. In a PCS (multicast-PCS), header (multiheader) 
its are transmitted �rst

during the path (tree) set-up phase. Once a path (tree) is reserved by the header, an acknowl-

edgement is sent back to the source. When the source receives the acknowledgement, data 
its are

transmitted through the path (tree) in a pipelined fashion.

Unlike regular PCS that allows backtracking, our approach always establishes a minimal path

to each destination. In our approach, fault information of a fault (faulty block) is distributed to

limited number of nodes in the neighborhood so that multiheader 
its can avoid the fault before

reaching it. If the source satis�es certain conditions, our approach can set-up a multicast tree such

that each destination (a leave node in the tree) is reachable through a minimal path in the tree.

It is well-known that constructing a multicast tree with a minimum number of links (also called

tra�c steps) is an NP-complete problem. We present three heuristic strategies to minimize the

total number of tra�c steps. Our approach is illustrated using a 2-dimensional (2-D) mesh. The

2-D mesh topology is one of the most thoroughly investigated network topologies for multicomputer

systems. It is important due to its simple structure and its good performance in practice and is

becoming popular for reliable and high-speed communication switching. The multicomputers that

use 2-D meshes including the Symult 2010 [26] and the Intel Touchstone [15]. Our approach can

also be applied to 3-D mesh (the MIT J-machine [5]) and tori ( Cray T3D [13] and Cray T3E [])

which are meshes with wrap around links.

The rest of the paper is organized as follows. Section 2 reviews the related work. Section 3

introduces the notation and preliminaries. Section 4 proposes a multicast algorithm including three

strategies. Section 5 discusses several results related to the proposed algorithm. Section 6 presents

our simulation results. Section 7 discusses possible extensions to 3-D meshes and assurance of

deadlock-freedom. Concluding remarks are made in Section 8.

2 Related Work

Multicast schemes can be classi�ed into unicast-based, path-based, and tree-based. Unicast-based

multicasting requires multiple start-ups (each of which needs several microseconds) while the chan-

nel propagation latency is on the order of nanoseconds. We discuss here only path-based and

tree-based approaches.

In the path-based approach [17], a path including all the destinations should be �rst established.
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The path-based approach uses only one or two worms which include all the destinations in the

header(s). Each node is assumed to be able to store a copy of an incoming message (
it) and at

same time forwards it to the next node on the path. Hamiltonian path-based routing is a path-

based routing using Hamiltonian path. Eulerian trail-based routing [25] is a special path-based

approach in which a Eulerian trail is established connecting all the channels in the network and

each channel appears once and only once. To avoid generating an extremely long path, multiple

paths can be constructed at the source that combine to reach all destinations [21]; however, multiple

start-ups are needed. Among fault-tolerant path-based multicasting, Tseng et al's [30] Euler-path-

based multicasting is based on constructing a Eulerian trail in faulty meshes with regular and

even irregular fault patterns. Liberskind-Hadas et al's model [12] further relaxes the condition by

constructing a pseudo-Hamiltonian path which visits each node at least once and each channel

at most once. Both approaches require each node have global fault information (they are called

global-information-based multicasting).

Tree-based multicasting has traditionally been considered a good mechanism for multicasting in

store-and-forward networks to reduce the overall length from the source to destinations. However,

extension to wormhole routing is still a challenging problem [20]. A routing algorithm that is

proved to be deadlock-free in unicasting may still subject to deadlock in multicasting in a wormhole-

routed system. The up�/down� routing [27] is such an example, although a restricted version of

up�/down� routing for multicasting [11] has been proved to be deadlock-free. Deadlock is avoided

by partitioning the network into two pre-de�ned subnetworks, A and B, with B being a tree. The

multicast tree is constructed by visiting A �rst followed by B with the constraint that no branch

(of the multicast tree) can be constructed before reaching subnetwork B.

Duato et al [19] presented a simple tree-based multicast algorithm for short messages which

can be completely stored in a router. In this case, two branches in a multicast tree can be made

independent to each other. Therefore, as long as the corresponding unicasting is deadlock-free,

the multicast algorithm is also deadlock-free. Wang and Blough's approach [31] avoids deadlock

through dynamic channel reservation using a relatively new switching technique called pipelined

circuit switching PCS [8] and multicast-PCS [31]. In a PCS (multicast-PCS), header (multiheader)


its are transmitted �rst during the path (tree) set-up phase, just like a circuit switching, once

acknowledgment is received at the source, data 
its are transmitted through the path (tree) in a

pipelined fashion, like a wormhole switching. A multicast may not be able to reserve a multicast

tree, upon receiving a negative acknowledgment, the source will attempt to make a reservation at

a later time.

During the path (tree) set-up phase, PCS (multicast-PCS) allows backtracking which may cause

substantial delays. One reason for backtracking is the existence of faults in the system. Backtrack-

ing is sometimes unavoidable especially when each processor (node) knows only status of adjacent
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Figure 1: An example of multicast-PCS.

nodes (such approaches are called local-information-based multicasting [8]). The channel reserva-

tion algorithm in [31] follows the normal searching approach where each direction is attempted in

a prede�ned order, say East, North, West, and South as in a 2-D mesh. In [8] history information

is kept within the router to ensure that a particular physical path will not be searched twice. In

[31], no history information needs to be kept if the search process following the order described

below. Upon arrival of a header 
it at a router, the possible output channels are attempted using

the following rules. For forward header 
its, the �rst channel searched is the one that has the same

dimension and same direction as the incoming channel and then the next one in the order (wrapping

around if needed). For a header 
it entering router from local node, the starting channel is almost

the one direction in the order, that is East. Finally, pro�table channels (ones which would move

a header 
it closer to its destination) are attempted �rst according to the �xed order and then if

needed, non-pro�table channels are searched following the same order. (The rule for backtracking

is omitted here.)

Consider an example shown in Figure 1 where a multicast tree is generated based on the above

algorithm which connects s to two destination d1 and d2. Note that outgoing channels toward

the East direction are reserved �rst. In this case, East and North are pro�table directions for

both d1 and d2. Once a node (n1 for d1 and n2 for d2) is reached where the East direction is no

longer pro�table for a destination, the output channel toward the North direction is attempted.

Unfortunately, part of the North-directed channels from n2 to d2 are blocked by a faulty block.

A detour path is generated that goes around the faulty block to reach destination d2. Cases for

backtracking are more complex and they could occur even when there is no fault but all output

channels have been reserved by other multicasting.
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In our approach, fault information of a fault (faulty block) is distributed to limited number of

nodes in the neighborhood so that multiheader 
its can avoid the fault before reaching it. In the

example of Figure 1, fault information (about the faulty block) is distributed to nodes along the

adjacent line L which is one unit distance away from the faulty block so that the searching process

for d2 will never enter a detour region (the region directly to the south of the faulty block). Actually,

our approach tries to share a common path for all the destinations in a multicast set as much as

possible without generating another tree branch. Because fault information is distributed to limited

number of nodes, our approach is called limited-global-information-based multicasting which is a

compromise of local-information-based approach and global-information- based approach.

In this paper we show that once the source satis�es certain conditions, a multicast tree can be

set up such that each destination (a leave node in the tree) can be reached through a minimal path

in the tree. The minimal path feature ensures that the corresponding unicasting is deadlock-free;

therefore, during the set-up phase, a header is allowed to wait for a channel as long as the original

header has not generated a new branch.

3 Notation and Preliminaries

3.1 K-ary n-dimensional meshes

A k-ary n-dimensional (n-D) mesh with kn nodes has an interior node degree of 2n and the network

diameter is k(n � 1). Each node u has an address (u1; u2; :::; un), where ui = 0; 1; � � � ; k � 1. Two

nodes (v1; v2; :::; vn) and (u1; u2; :::; un) are connected if their addresses di�er in one and only one

dimension, say dimension i; moreover, jvi � uij = 1. Basically, nodes along each dimension are

connected as a linear array. Each node in a 2-D mesh is simply labeled as (x; y).

Routing is a process of sending a message from a source to a destination. A routing is minimal

if the length of the routing path from the source to the destination is the minimal distance between

these two nodes. For example, a routing is minimal between (x1; y1) and (x2; y2) if the length of

its path is jx1 � x2j + jy1 � y2j. In a system with faults, minimal routing may not be possible if

all the minimal paths are blocked by faults. A multicasting is minimal if the length of the routing

path from the source to each destination is the minimal distance between these two nodes.

The simplest routing algorithm is deterministic which de�nes a single path between the source

and the destination. The X-Y routing in 2-D meshes is an example of deterministic routing in

which the message is �rst forwarded along the X dimension and then routed along the Y dimension.

Adaptive routing algorithms, on the other hand, support multiple paths between the source and

the destination. Fully adaptive minimal routing algorithms allow all messages to use any minimal
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Figure 2: (a) header structure and (b) asynchronous multiheader routing

paths. In addition to the optimality requirement, we try to maintain maximum adaptivity in the

routing process.

3.2 Multicast-PCS

Each multicast message has two parts: message header and message information. Message header

contains the current list of destination addresses (also called a multicast set). To support the tree-

based multicast algorithm in this paper, we use the basic pipelined circuit switching mechanism

(PCS) [8] and the asynchronous multiheader routing in multicast-PCS.

At an intermediate node, which can be either a destination node or a forwarding node not in the

multicast set, during the set-up phase, if the header must be split into two in order to reach di�erent

destinations, asynchronous multi-header routing [31] is used. When the header reaches a router, the

router makes the routing decision and deposits each split address (now becomes a new header) from

the original header into one output channel (either X-directed channel or Y -directed channel), the

other output channels reserved for the same multicast are idle. We �ll this idle time with a special

symbol - as shown in Figure 2 which illustrats an example of asynchronous multiheader routing.

When one destination matches the local processor, teh corresponding addresses is replaced by

another symbol *, as shown in Figure 2 where addr3 is the local processor. The reason for using

two di�erent symbols is to avoid deadlock which will be discussed later.

Our approach here di�ers from Wang and Blough's multicast-PCS. During the set-up phase,

only pro�table channels are reserved, i.e., neither backtracking nor detouring is allowed. However,

a header is allowed to wait for a busy pro�table channel as long as the original header has not

7



generated a new tree branch, i.e., the header does not contain symbol - [31]. Otherwise, a negative

acknowledgment is sent back to the source.

In the multicast tree, all the directed channels that are away from the source are p-channels

(positive channels); otherwise, they are n-channels (negative channels). When a negative acknowl-

edgment is sent back through the n-channels of the multicast tree established so far, each channel is

released as the acknowledgment passes. When a node (in the tree) receives a negative acknowledg-

ment through an incoming channel (n-channel or p-channel), it releases the corresponding channel

(which is a pair, one n-channel and one p-channel) and forwards the negative acknowledgment to

all its outgoing (reserved) channels. When a header becomes empty, i.e., it reaches a leave node of

the multicast tree, it sends a positive acknowledge through an outgoing n-channel. When a node

receives a positive signal (through an incoming n-channel), it forwards the signal to its outgoing

n-channel. Note that each node in the tree has one outgoing n-channel unless it is the source or

the channel has been released by a negative acknowledgment. In the later case, the branch rooted

at the node will be eventually released. During the channel release process, the original tree is

reduced to a set of disjoint subtrees, with each having at least one negative acknowledgment.

In a faulty mesh, when all the minimal paths from a source to a destination are blocked by faults,

no multicast tree can be established by our approach. We should provide a simple mechanism so

that the source can easily detect this situation and stop attempting to establish minimal paths. In

this case, the source can switch back to the normal multicast-PCS, like the one proposed in [31].

In addition, another mechanism is needed to prevent the header from reaching a region where a

destination cannot be reached through a minimal path. These two mechanisms are discussed in

the next section.

3.3 Extended Safety Levels

Let's �rst discuss the fault model used in our approach. Most literature on fault-tolerant routing

in 2-D meshes uses disconnected rectangular blocks ([1], [2], [3], [10], [29]) to model node faults

(link faults are treated as node faults) to facilitate routing in 2-D meshes. First, a node labeling

scheme is de�ned and this scheme identi�es nodes that cause routing di�culties. Adjacent nodes

with labels (including faulty nodes) form faulty rectangular regions [2].

De�nition 1: In a 2-D mesh, a healthy node is disabled if there are two or more disabled or faulty

neighbors in di�erent dimensions. A faulty block contains all the connected disabled and faulty

nodes.

For example, if there are three faults (1; 1), (2; 2), and (4; 2) in a 2-D mesh, two faulty blocks

are generated. One contains nodes (1; 1), (1; 2), (2; 1), and (2; 2) and the other one contains (4; 2).
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Each faulty block is a rectangle. The convex nature of a rectangle simpli�es the routing process by

avoiding backtracking during the set-up phase. The block fault model has the following interesting

property: The distance between any two faulty blocks is at least two [34].

In our approach two types of limited global information are used: safety information and

faulty block information. Safety information is used for the source to determine the feasibility of

establishing a minimal path to each destination in a multicast set. Safety information is represented

as a vector associated with each node. This vector includes four elements indicating the distance

to the closest faulty block to the East, South, West, and North of the current node. Faulty block

information is used to facilitate the process of setting up a multicast tree and it is stored in nodes

that are along four adjacent lines of each faulty block. In the following we discuss each type of

information one by one.

Safety Information. In a 2-D mesh with faulty blocks, we use node (0; 0) as the source node

and (i; j) as one of the destinations with i > 0 and j > 0. Other cases can be treated in a similar

way. There may not always exist a minimal path from the source to the destination. To facilitate

the discussion of minimal unicasting and multicasting in 2-D meshes with faulty blocks, Wu [34]

proved the following theorem.

Theorem 1 [34]: Assume that node (0; 0) is the source and node (i; j) is the destination. If there

is no faulty block that goes across the X or Y axis, then there exists at least one minimal path

from (0; 0) to (i; j), i.e., the length of this path is jij+ jjj. This result holds for any location of the

destination and any number and distribution of faulty blocks in a given 2-D mesh.

De�nition 2 [34]: In a 2-D mesh, a node (x, y) is safe if there is no faulty block along the xth

column or the yth row.

Based on Theorem 1, as long as the source node is safe, minimal paths exist for each destination

in any multicast set. To decide the safety status of a node, each node is associated with a safety

vector (E, S, W, N) with each element corresponding to the distance to the closest faulty block

directly to its East, South, West, and North, respectively. Alternatively, (E, S, W, N) can be

represented as (+X, -Y, -X, +Y) where +X corresponds to the distance to the closest faulty

block along the positive X direction. A node is safe if each element in the vector is an in�nite

number (a default value). The safety condition can be weakened while still guaranteeing optimality.

Speci�cally, a source node (0; 0) is said to be extended safe to a destination (i; j) if and only if there

is no faulty block along the north (+Y) and east (+X) directions within the rectangle formed by

the source and the destination. Clearly, a minimal routing is possible if a given source is extended

safe with respect to a given destination. A source node is said to be extended safe to a multicast

set if it is extended safe to each destination in the set. Throughout the paper, we assume that the

source is extended safe with respect to a given multicast set.
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Figure 3: The four adjacent lines and eight regions of a faulty block

Faulty Block Information. Safety information of each node is used just to check the feasibility

of establishing a minimal path from the source to each destination in a multicast set. In order

to facilitate the channel reservation process by avoiding faulty blocks before reaching it, we need

to distribute faulty block information to appropriate nodes. To minimize the distribution of fault

information, the distribution is limited to nodes on four adjacent lines of each faulty block [34].

Figure 3 shows eight regions generated from the four adjacent lines of a faulty block. The four

adjacent lines are parallel to the four sides of the faulty block, one-unit distance away. The limited

global information (faulty block information) is kept on these four adjacent lines, except for nodes

that are adjacent to the faulty block (since all nodes know their adjacent faulty blocks). Assume

(x; y) is the coordinate of the intersection node of lines L1 and L3. (x; y0), (x0; y0) and (x0; y) are

the coordinates of the other intersection nodes of these four adjacent lines (see Figure 3). To obtain

a minimal routing, a header should not cross L3 from region R1 (where the source is located) to

R8 if a destination is in region R4 (see Figure 3). Simiarly, a header should not cross L1 from

region R1 to R2 if the destination is in region R6. For each faulty block as shown in Figure 3,

faulty information is stored at each node on L1, i.e., the section between (�1; y) and (x; y). Also,

it is stored at each node between (x;�1) and (x; y) on L3. To minimize path information, only

locations of two opposite corners of a faulty block are essential, say, (x; y) and (x0; y0) as shown in

Figure 3. Note that teh address of a faulty block is given, each region can be easily determined.

For example, R4 can be represented as x � X � x0 and y0 � Y and R6 as x
0 � X and y � Y � y0.

Note that the distribution of fault information along each line ca nbe treated as a multicasting.

Since all the destinations can be reached through a minimal path without generationg any new

branch, this process resembles a unicasting problem.
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When there are multiple faulty blocks in the network, they may be intersected or independent.

Two faulty blocks are intersected if one of the four adjacent lines of a faulty block intersects with

another faulty block. In this case, faulty block information is transferred between these two blocks.

In Figure 4 (a), the header should not cross L3 of faulty block B (from R1 to R8) if a destination is

in region R4 of B or in region R4 of A. We say fault information of faulty block A is transfered to

nodes along line L3 of faulty block B (because line L3 of A intersects with faulty block B). However,

there is no information transfer from A to B for nodes along line L1 of B. Similarly, in Figure 4

(b), the header should not cross L1 of faulty block B from region R1 to region R2 if a destination

is in region R6 of B or in region R6 of A. However, there is no information transfer (from A to B)

for nodes along line L3 of B.

3.4 Unicasting in 2-D meshes with faulty blocks

In [34], Wu proposed the following unicast algorithm: the routing starts from the source, using

any adaptive minimal routing until L1 (or L3) of a faulty block is met. Such a line can be either

noncritical or critical. If the selection of two pro�table channels, one along +X and the other along

+Y , does not a�ect the minimal routing, then the path is noncritical; otherwise, it is critical. L1

(L3) is critical to a multicast set if a destination in the multicast set is region R6 (R4). In case of

noncritical, the adaptive minimal routing continues by randomly selecting a pro�table channel. In

case of a critical path, the selection should be done based on the relative location of the destination

to the path:
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� (L1 is met) If the destination in region R6, the header should stay on line L1 until reaching

node (x
0

; y) (the intersection of L1 and L4 of the faulty block); otherwise, the selection is

random.

� (L3 is met) If the destination is in region R4, the routing message should stay on L3 until

reaching node (x; y
0

) (the intersection of L3 and L2 of the faulty block); otherwise, the selection

is random.

Multicasting can be considered as multiple minimal unicasts, i.e., each unicast is minimal opti-

mal. To reduce tra�c, messages intended for di�erent destinations should share as many common

path(s) as possible. In the next section, we propose a minimal multicast algorithm which is minimal

unicasting for each destination and has as few number of tra�c steps as possible.

4 Multicasting in 2-D Meshes with Faulty Blocks

4.1 Minimal multicast algorithm

In the set-up phase, the header is 2d-free at a given position if the message can take either the

+X or +Y direction in the next step; a message is 1d-free if the message can only take the +X

or +Y direction but not both in the next step; and a message is in con
ict if the message should

take both the +X and +Y directions in the next step. See Figure 5 (a) for an example, there are

three destinations d1(x1; y1), d2(x2; y2) and d3(x3; y3) in a multicast set. Starting from source node

(0; 0), the next step should be taken only along the +Y direction because there is a destination

d3(x3; y3) on the Y axis. Therefore, the header at source node (0; 0) is said to be 1d-free. At node

v, the next step can be taken along either the +X or +Y direction, the header at node v is said

to be 2d-free. At node u, there are destinations along both the +X and +Y directions. The next

step should be taken along both the +X and +Y directions. Therefore a con
ict occurs at node

u. To solve this con
ict, the header should be split into two: one gets destination address (x1; y1)

of d1 and the other gets destination address (x2; y2) of d2. We then continue routing each message

individually.

Figure 5 (b) shows another multicast example with destinations d1, d2, and d3 in the multicast

set. At node w the next step to take is along the +X direction, so node w is 1d-free. At node v,

either direction can be taken in the next step, so the message node v is said to be 2d-free. At node

u, because on the critical line with respect to destination d2. At the same time, node u it is on the

critical line with respect to destination d1. A con
ict occurs at node u because d1 requires that the

next step to be taken along the +Y direction and d2 requires that the next step to be taken along

the +X direction. Note that fault information (two opposite corners of the faulty block) is stored
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Figure 5: (a) An example of con
ict in the next step and (b) Another example of con
ict in the

next step

at the router of u. It is easy to determine the region of each destination.

The following de�nition provides a formal de�nition of these concepts.

De�nition 3: A multicast header is X-bound (Y -bound) at node u if at least one of the following

conditions is true:

� Node u has the same Y (X) coordinate as at least one of its destinations.

� Node u is on the L1 (L3) of a faulty block and it is a critical path of at least one of its

destinations.

De�nition 4: A multicast header at node u is in-con
ict if it is both X-bound and Y-bound, 1d-free

if it is either X-bound or Y-bound but not both, 2d-free if it is neither X-bound nor Y-bound.

We will focus on the situation when a multicast header is in-con
ict and the corresponding

location (node) is called a separating point. To resolve a con
ict, the message has to split into two.

Each copy follows either the +X or +Y direction. At a separating point, some of the destinations

should be grouped into the X-bound group or Y -bound group depending on which direction to

take in the next step to ensure minimal steps for each destination. But for some destinations,

this grouping can not be done in an obvious way at this point. These destinations are called

undetermined.

In the following we examine several cases of separating points. We classify them based on the

number of faulty blocks involved.
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1. If separating point u does not involve any faulty block, u has the same X coordinate as some

of the destinations and the same Y coordinate as some other destinations (see Figure 5 (a)).

The destinations that have the same Y coordinate as the one for u are X-bound. Similarly,

the destinations that have the same X coordinates as the one for u are Y -bound. All the other

destinations (in the shadow region excluding the boundaries of Figure 5 (a)) are undetermined

destinations.

2. If separating point u involves one (independent) faulty block, there are three cases.

(a) u is on both L1 and L3 of the faulty block and both are critical. Destinations in R4 are

Y -bound and destinations in R6 are X-bound the rest are undetermined.

(b) u is on L1 of the faulty block and it is critical, but not on L3; however, some destinations

and u have the same X coordinate. Destinations in region R6 are X-bound and those

having the same X coordinate as the one for u are Y -bound. The remaining destinations

are undetermined.

(c) u is on L3 of the faulty block and it is critical, but not on L1; however, some destinations

and u have the same Y coordinate. Destinations in region R4 are Y -bound and those

having the same Y coordinate as the one for u are X-bound. The remaining destinations

are undetermined.

3. If separating point u involves multiple faulty blocks, let's �rst consider three cases for each

direction.

� Y -bound:

(a) One or more faulty blocks intersect with each other vertically and u is on path L1

(it is critical) of a faulty block.

(b) u and some destinations have the same Y coordinate.

(c) Combination of the above two.

� X-bound:

(a) One or more faulty blocks intersect with each other horizontally and u is on path

L3 (it is critical) of a faulty block.

(b) u and some destinations have the same X coordinate.

(c) Combination of the above two.

� Nine possible cases generated from combining one case from the Y -bound category and

the other case from the X-bound category.

Figure 6 (a) shows a case of combining 3Y(a) and 3X(a) and Figure 6 (b) shows a case of

combining 3Y(a) and 3X(b).

14



����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

��������
����������������

��
��
��
��
��

��
��
��
��
��

Y

(0,0)

(b)

X

u
Path 2

Path 1�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
��

�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

�����
�����
�����

�����
�����
�����

��

�
�
�
�

X
(0,0)

Y

(a)

u

X-bound

Y-bound

undetermined

Figure 6: The X-bound, Y -bound and undetermined regions of separating point u if (a) u hits both

X and Y paths and two faulty blocks intersect vertically and (b) u has the same X coordinate as

some of the destinations and hits path 1 two faulty blocks intersect horizontally

Therefore, at a separating point u, each destination belongs to one of the three groups: X-

bound, Y -bound and undetermined. In order to make a decision for undetermined destinations at

a separating point, i.e., to place them in either the X-bound or Y -bound group, heuristic strategies

have to be used. Originally, the multicast process starts at the source node.

Multicast algorithm for 2-D mesh with faulty blocks:

1. If the current node u is a destination, keep a copy of the message to its local memory and

remove the current node from the message header. If the current node is a forwarding node,

go directly to the next step.

2. If the message is in con
ict at node u, i.e., it reaches a separating point, use one of three

strategies (to be discussed in Section 3.3) to split the message. If the message is 1d-free at

node u along the X (Y -direction), it should take the next step along the X (or Y ) direction.

If the message is 2d-free at node u, use a minimal adaptive routing algorithm to take the next

step in either the X or Y direction.

3. Treat each message (new or old) at a next node as a new multicast with this next node as the

new source. Repeat the above steps until each destination in the message header is reached.
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using Strategy 2

4.2 Strategies to resolve a con
ict

We propose three strategies to resolve a con
ict at a separating point.

Strategy 1: At a separating point u, X-bound destinations go along the X direction and Y -bound

destinations go along the Y direction in the next step. For undetermined destinations, randomly

pick a direction group (X- or Y -bound) to join.

This strategy is simple, but it does not achieve good tra�c step if most (or all) of the destinations

are placed in the Y -bound group, but they are closer to the nodes in the X-bound group or vice

versa. In Figure 7 (a), there is one faulty block with (5; 5) and (10; 7) as its two opposite corners.

At point u(4; 4), destination (17; 7) will take the next step in the X-bound group and (5; 10) in the

Y -bound group. For the undetermined destination (12; 11), if we use Strategy 1 to put it in the

Y -bound group, the total number of tra�c steps is the sum of the steps from the source (0; 0) to

point u, from u to (5; 10), from (5; 10) to (12; 11), and from u to (17; 7), which is 39. Therefore the

number of tra�c steps can be reduced to 35 if (12; 11) joins the X-bound group. To reduce the

number of tra�c steps for this type of situations, we have the following Strategy 2.

Strategy 2: At separating point u(ux; uy), +X-bound destinations go along the X direction and

Y -bound destinations go along the +Y direction in the next step. For an undetermined destination

v(xv ; yv), let xoff = xv�xu and yoff = yv�yu. If xoff > yoff , then place v in the X-bound group.

If xoff < yoff , then place v in the Y -bound group. If xoff = yoff , then place v arbitrarily.

According to Strategy 2, destination (12; 11) in the above example will join the X-bound group
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which results in fewer number of tra�c steps. But this strategy is still not e�ective for cases like

Figure 7 (b). In this �gure, according to Strategy 2, the undetermined destination (12; 15) should

join the Y -bound group. The total number of tra�c steps is 43. This number can be reduced to 39

if destination (12; 15) joins the X-bound group. Note that Strategy 2 can be easily implemented in

hardware. Basically, only two subtractors and one comparator needed in the router to determine

the output channel for each undetermined destination.

If we take a closer look at the problem, the grouping problem leading to fewer number of tra�c

steps in addition to minimal multicasting resembles the optimal multicast tree (OMT) problem

de�ned in [14]. To model the OMT problem, the graph model [9] can be used. Let graph G(V;E)

denote a graph with vertex (node) set V and edge (link) set E. When G is known from context,

sets V (G) and E(G) will be referred to as V and E, respectively. A tree T (V;E) is a connected

graph that contains no cycles.

In our model, graph G is a 2-D mesh; however, tree T has to be de�ned di�erently. The following

de�nes a virtual tree T in 2-D meshes.

De�nition 5: Let T (V;E) be a virtual tree in a 2-D mesh, where a node u(xu; yu) 2 V (T ) is a

regular node (xu; yu) in the 2-D mesh. For any edge (u; v) = ((xu; yu); (xv ; yv)) 2 E(T ), it is a

minimal path from u(xu; yu) to v(xv ; yv) in the 2-D mesh, i.e., jxu�xvj+ jyu� yvj. An edge in the

virtual tree is called a virtual edge. A path in T is a sequence of virtual edges. For any two nodes

u and v which may or may not be connected by an virtual edge in T , disT (u; v) denotes the length

(the number of edges) of a minimal path from u to v in T .

Figure 8 (a) shows an example of a virtual edge between nodes u and v. Any node (represented

by un�lled circles in the graph) in the rectangle formed by nodes u and v as two opposite corners

can be on the minimal path.

For a multicast set, let d0 denote the source node and d1, d2, � � �, dk denote k destination nodes,

where k � 1. The set K = fd1; d2; � � � ; dkg, which is a subset of V (G), is called a multicast set.

Each node di in the set has an address (xi; yi), 0 � i � k and G is the given 2-D mesh. The

de�nition of the OMT problem is as follows:

De�nition 6: An optimal multicast tree (MT), T (V;E), for multicast set K is a virtual tree of G

such that

1. fd0g [K � V (T ).

2. disT (d0; di) = disG(d0; di), for 1 � i � k.

3. jE(T )j is as small as possible.

Note that set V (T ) �K includes all the forwarding nodes of an MT. When V (T ) �K =, the
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corresponding MT contains destination nodes only. In the OMT problem, not only the number of

time steps to each destination should be minimal but also the total number of tra�c steps should

be reduced as small as possible. The next question is how to construct such a minimal multicast

tree (MT). The method we use is the greedy method derived from [16] in a system without faulty

blocks. This greedy algorithm uses the concept of split-and-sort function to prepare a multicast.

Then it is extended to cover cases with faulty blocks. In the original algorithm, the condition for

time-step optimal is not required. The following algorithm makes some changes to achieve time-step

optimal. Constructing an MT tree consists of two parts: the preparation part and the construction

part. The MT tree constructed is represented by a virtual tree de�ned above.

Greedy algorithm:

(Preparation part):

Sort all the destinations d1; � � � ; dk in ascending order with disG(d0; di) where G is a given 2-D mesh,

1 � i � k, as the key. Without loss of generality, suppose disG(d0; d1) � disG(d0; d2) � � � � � disG(d0; dk)

after sorting.

(Construction part):

1. Construct a virtual tree T with source d0 as the root and by setting V (T ) = fd0; d1g and E(T ) =

f(d0; d1)g initially.

2. Add the rest of nodes di(xi; yi) (2 � i � k) one by one to the tree as follows:

(a) Among all (u; v) 2 E(T ), �nd a w(xw ; yw) which satis�es the following conditions:

i. on a minimal path from u to v,
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ii. w � di, that is, xw � xi and yw � yi, and

iii. dis(di; w) is minimal.

(b) V (T ) V (T )
S
fdig. If w =2 V (T ), then V (T ) V (T )

S
fwg.

(c) If w 6= u and w 6= v, then E(T ) E(T )
S
f(u;w); (w; v)g � f(u; v)g.

(d) If di 6= w, then E(T ) E(T )
S
f(w; di)g.

The basic idea of the MT construction part is to build an MT tree that always adds a closest

remaining destination node to it until all the destination nodes are covered by the resultant MT

tree.

Figure 8 (b) shows an example of applying this greedy algorithm. Suppose the original header

at node (0; 0) includes destinations (1; 2), (3; 5), (5; 4) and (7; 3) which are represented by the

�lled circles in the �gure. By applying the preparation part of the algorithm, we have the sorted

destinations: (0; 0), (1; 2), (3; 5), (5; 4) and (7; 3). If two destinations have the same distance to the

source, they are placed in an arbitrary order.

Now let's apply the construction part. In Step 1, (0; 0) is the root. V (T ) = f(0; 0); (1; 2)g

and E(T ) = f((0; 0); (1; 2))g. The rest of the destination nodes are added to the tree one by one.

The next node to add is (3; 5). In Step 2(a), since E(T ) has only ((0; 0); (1; 2)), node w which

satis�es the three conditions of Step 2(a) is node (1; 2). In Step 2(b), (3; 5) is added to V (T ) and

it is not necessary to add (1; 2) to V (T ) because it is already in the set. In Step 2(c), because

(3; 5) 6= (1; 2), ((1; 2); (3; 5)) is added to E(T ). The next node to add is (5; 4). In Step 2(a), E(T )

has ((0; 0); (1; 2)) and ((1; 2); (3; 5)). For ((0; 0); (1; 2)), the node satis�es the above three conditions

is node (1; 2). For ((1; 2); (3; 5)), the node satis�es the three conditions is node (3; 4). The distance

between (1; 2) and (5; 4) is 6 and the distance between (3; 4) and (5; 4) is 2, we select node (3; 4)

as w which is represented by an un�lled circle. In Step 2(b), both (5; 4) and w are added to V (T ).

In Step 2(c), because (3; 4) 6= (1; 2) and (3; 4) 6= (3; 5), we delete ((1; 2); (3; 5)) from E(T ) and add

((1; 2); (3; 4)), ((3; 4); (3; 5)) to E(T ). In Step 2(d), ((3; 4); (5; 4)) is also added to E(T ). Now E(T )

has ((0; 0); (1; 2)), ((1; 2); (3; 4)), ((3; 4); (3; 5)) and ((3; 4); (5; 4)). The next node to add is (7; 3).

Among all the pairs in E(T ), node (3; 3) should be w.

The node and edge sets of the resultant multicast tree are the following:

V (T ) = f(0; 0); (1; 2); (3; 5); (5; 4); (7; 3); (3; 4); (3; 3)g

and

E(T ) = f((0; 0); (1; 2)); ((1; 2); (3; 3)); ((3; 3); (3; 4)); ((3; 4); (3; 5)); ((3; 4); (5; 4)); ((3; 3); (7; 3))g

To distinguish a virtual edge that corresponds to one single minimal path from the one that

corresponds to many minimal paths. We use a solid line to represent the former case and a dashed
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line to represent the later case. Since there exist multiple paths in virtual edges ((0; 0), (1; 2)) and

((1; 2), (3; 3)), these edges are represented by dashed lines in the �gure.

Theorem 2: The greedy algorithm guarantees a minimal path to each destination.

Proof: We �rst prove the following result: For any edge (u; v) in the MT, u � v. Recall that u � v

is de�ned as xu � xv and yu � yv. We prove this result by induction on the number of destination

nodes in the MT. Clearly the result holds initially when there are two nodes d0, d1, and one edge

(d0; d1) in the MT with d0 � d1. Suppose the result holds when there are k destination nodes in

the MT, now a new destination dk is added to the tree and it is connected to node w which is on

the minimal path of (u; v) and it meets the conditions speci�ed in the greedy algorithm. At most

three new edges are added, (u;w), (w; v), and (w; di). w � di clearly holds based on the selection

procedure for w in the greedy algorithm. In addition, u � v based on the induction assumption

and w is on the minimal path between u and v, we have u � w and w � v.

For any destination di, we can always �nd a path from source d0 to di in the MT:

v0(d0)! v1 ! v2 ! :::! vl ! vl+1(di)

Based on the about result, vk � vk+1 (0 � k � l), hence the above path a minimal path from

d0 to di in the corresponding 2-D mesh. 2

Although some changes are made to the approach in [16] to achieve time-step optimal, the

above algorithm still maintains the same complexity as the original one. The computation induced

by the split-and-sort function (the greedy algorithm) is called o�-line computation time [7] and it

can be used to estimate the complexity of the multicast algorithm.

Theorem 3: Consider the greedy MT algorithm with k destinations. The time complexity for the

preparation part is O(k log k). The time complexity for the construction part is O(k2).

Proof: Since the distance between any two nodes can be calculated in a constant time for 2-D

meshes, the preparation part takes O(k log k) time to sort the destination nodes. For the construc-

tion part, Step 1 takes a constant time. Step 2(a) can be done in O(i) time with 1 � i � k (its proof

is shown in the next paragraph). Both Steps 2(b) and 2(c) take O(1) time. There are k�1 iterations

of Step 2. Thus, the time complexity of the construction part is
Pk�1

i=1 (O(1)+O(i)+O(1)+O(1)) =

O(k2).

Now we show that Step 2(a) can be done in O(i) time. Clearly, there are at most O(i) edges in

the MT with i destinations, since at most one additional node w is added for the inclusion of each

destination in the multicast set. Next we show that it takes O(1) to select w from the minimal

path of (u; v) that satis�es the conditions, i.e., w � di and dis(di; w) is minimal. The selection

procedure can be done using the example in Figure 2 by treating two opposite corner nodes (x; y)
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and (x
0

; y
0

) as u and v, respectively. The faulty block contains all the nodes on a minimal path

from u to v. The new destination node di(xi; yi) is in regions R4, R5, or R6 (if we assume source

d0 is the origin). If di is in region R4, w will be (xi; y
0

). If di is in region R6, w will be (x
0

; yi). If

di is in region R5, w will be (x
0

; y
0

) which is v itself. All three cases can be done in constant time

and the selected w clearly meets the conditions for w. The �nal w is selected from w's selected for

each edge in the MT. Since there are O(i) edges in the MT, it takes O(i)�O(1) = O(i) in time. 2

Based on the above greedy algorithm, we have the following Strategy 3 to resolve con
ict in a

system with faulty blocks as follows:

Strategy 3: At separating point u, construct two MT trees using the greedy algorithm, one along

the +X direction and the other along the +Y direction. The X-bound destinations are inserted to

the X-direction tree with u as its root. The Y -bound destinations belong to the Y -direction tree with

u as its root. Once these two trees are constructed, they are combined into one through the common

root. The undetermined nodes are inserted to the resultant MT tree using the greedy algorithm.

The key to sort destinations in the greedy algorithm is the distance between separating point u

and destinations. Finally, based on the construction of the MT tree, destination nodes are divided

into two groups: X-bound group and Y -bound group. Note that the MT tree constructed at each

separating point is an auxiliary tool to help determine the next forwarding node for each undeter-

mined destination. No actual tree is constructed in the routing process and the �nal multicast tree

does not necessarily match an MT constructed at a particular separating point. This is because

when the multicast message reaches the next separating point, the same process is repeated with

probably more fault information in the neighborhood, that is, the X-bound (or Y -bound) group

determined from a previous separating point is farther partitioned at this new separating point.

Unlike nodes in a fault-free 2-D mesh, two nodes in a faulty 2-D mesh may not have a virtual

edge between them, because faulty blocks may block all the minimal paths between them. In this

case, one node is ineligible to the other. For example, in the selection of w in the greedy algorithm,

a potential w is ineligible to a destination di if virtual edge (w; di) does not exist. Therefore, when

we add a node to an MT tree using the proposed greedy method, we will not consider ineligible

nodes (with respect to a destination node under consideration) as a potential w.

Now we give an example to illustrate the proposed multicast algorithm using Strategy 3 (see

Figure 9) with two faulty blocks: one with (5; 6) and (9; 8) as its two opposite corners and the

other with (8; 13) and (12; 15) as its two opposite corners. Initially, the message is at (0; 0) and

it is 2d-free, so it can take the next step in the X or Y direction. Assume the message reaches

separating point u(2; 3) (see Figure 9 (a)), since this node has the same Y coordinate as some of the

destinations and the same X coordinate as some other destinations. Strategy 3 is used to resolve

the con
ict. This situation of point u belongs to Figure 5 (a). At this point, the X and Y direction
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Figure 9: (a) MT trees constructed at separating point u and (b) MT trees constructed at the next

separating point v

MT trees are constructed separately but with the same root node u. The X-bound destination

nodes (4; 3), (8; 3) and (12; 3) which have the same Y coordinate as u are added in sequence to

the X direction tree using the greedy method. The Y -bound destination (2; 4) is added to the

Y direction tree. For the undetermined nodes, sort them as (6; 4), (5; 10), (12; 6), (8; 10), (6; 14),

(9; 17), (14; 14) and (14; 17) based on their distances to u. Since node u does not involve any faulty

block, i.e., it does not have any fault information, the undetermined destinations are added to the

X or Y direction tree as if there were no faulty blocks in the system. The result of the construction

is shown in Figure 9 (a). The faulty blocks are colored grey meaning their existence is not known

to node u.

Now the header is split to two new messages. One new message takes the X direction in the

next step and another one takes the Y direction. We treat each new message as a new source and

the same process is repeated. Let's follow the X direction message since the Y direction message

can be done easily. The new source (2; 3) is 1d-free, so it can take the next step in the X or Y

direction. Assume this message reaches separating point v(4; 3) (see Figure 9 (b)), since this node

has the same Y coordinate as some of the destinations and it hits path 2 of faulty block B1, this

situation of point v belongs to Figure ?? (a). Again X and Y direction MT trees are constructed

separately. The X-bound destination nodes (8; 3) and (12; 3) which have the same Y coordinate

as u are added to the X direction tree using the greedy method. Note that node v not only has

the faulty block information of faulty block B1 but also has the faulty block information of faulty

block B2. Thus, destinations (5; 10), (8; 10), (6; 14) and (9; 17) which are on path 2 or at the north

of path 2 are Y -bound and are added to the Y direction tree using the greedy method. For the

undetermined destinations, sort them as (6; 4), (12; 6), (14; 14) and (14; 17) based on their distances
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to point v. Next try to add them in both trees (now the two branches of the merged tree) and

choose the closer one to join. The �rst node to add is (6; 4), it is in region R8 of faulty block B1,

it is added to the X direction tree (branch) because it is closer to it. Destination (12; 6) is added

to the X direction tree. Next node to add is (14; 14). When we apply the greedy method, the

nodes on some edge may not be eligible. For example, along edge ((6; 10); (6; 14)), nodes (6; 13),

(6; 14) are not eligible because all the minimal paths to (14; 14) are blocked by B2. They can not

be selected as w. Node (14; 14) is added to the Y direction tree with (8; 10) as w (although (6; 12)

can also be selected as w). Destination (14; 17) is added to the Y direction tree via node (14; 14).

The resultant MT tree is shown in Figure 9 (b). The faulty blocks are colored black because their

faulty information is known to node v.

Notice the di�erence between Figures 9 (a) and (b). In Figure 9 (a), node (5; 10) is directly

linked to the X direction tree regardless of the faulty block below it. In Figure 9 (b), a dashed line

is used because it is now aware of the faulty block B1. A similar situation happens to node (14; 14).

5 Discussion

The following theorem shows that a 1d-free destination will never be converted into a 0d-free

destination at the next node. That is, the set-up process following Strategy 3 always �nds a

minimal path to each destination if there exists one from the original source node.

Theorem 4: The set-up process following Strategy 3 generates a minimal path to each destination

in a multicast set.

Proof: This process resembles the original greedy algorithm. However, destination nodes are

grouped into three sets. Nodes in each set are inserted following the sorting order within each

set but may not following the global sorting order. The MT is then constructed set by set. We can

easily prove that each edge (u; v) in the MT still meet the condition u < v. The only di�erence is

that w may not exist along (u; v) such that w < di. However, based on the above argument, such

w exists for at least one edge in the MT. 2

In the proposed set-up process based on Strategy 3, we try to postpone the message splitting as

late as possible to lower the total number of tra�c steps. Thus, the message to di�erent destinations

can share as many paths as possible. Note that the optimal multicast problem is NP -complete

in 2-D meshes without faulty components. The problem of reducing the number of tra�c steps

becomes more di�cult in a faulty environment with faulty blocks. In our model, it can achieve

time-step optimal but can not guarantee tra�c-step optimal. We try to lower the number of tra�c

steps as much as possible and also make the complexity of the algorithm acceptable.
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Theorem 5: Splitting a message later generates fewer number of tra�c steps than splitting earlier.

Proof: In the algorithm, the message is split only if there exists a con
ict (i.e., the message is split

at a separating point). That is, the splitting of the message is postponed until it is a must. Suppose

the locations of the remaining destinations are d1(x1; y1), d2(x2; y2), � � �, dk(xk; yk), there are two

splitting points: node u(xu; yu) and node v(xv; yv) with u � v. For each destination node di(xi; yi)

(1 � i � k), the conditions xu � xi, xv � xi, yu � yi and yv � yi hold true. One routing strategy

splits the message at node (xu; yu) and another routing strategy splits the message at node (xv ; yv).

Now we prove that splitting point (xv; yv) achieves fewer number of tra�c steps than splitting point

(xu; yu). Based on the assumption, we know that node v is closer to all the destinations than node

u. If the message is split at v then the path from u to v can be shared by all the destinations. If

the message is split at node u, then at least one message can not share the whole path from u to

v which has a length of xv � xu + yv � yu. Therefore, we prove that splitting the message later is

better than splitting the message earlier. 2

Theorem 6: In an n�n mesh, if there are k destinations, the time complexity of the set-up process

based on Strategy 3 is O(k3) (if k � n) or O(nk2) (if k � n).

Proof: At a separating point, the time complexity for sorting the destination nodes is O(k log k).

The time complexity for the construction part is O(k2) as shown in Theorem 3 when there are no

faulty blocks. Since there are only three potential w for each virtual edge, their eligibility can be

determined in a constant time (assume that edge (w; di) for each of the three potential w intersects

with a constant number of faulty blocks), the time complexity remains the same as in fault-free

meshes. Also, if k � n, at each separating point at least one destination will be split out. Since

there are at most k�1 separating points, the overall complexity is O(k2)+O((k�1)2)+ � � � +O(12)

= O(k3). When k � n, since the longest distance between the source and a destination in an

n � n mesh can not exceed 2n, we can have at most 2n separating points, i.e., each intermediate

step is a separating point. Therefore, the time complexity is at least O(k2)+O((k � 1)2)+ � � � +

O(k � 2n� 1)2) = O(nk2). 2

Note that the above result is based on the worst case, that is, a case with a maximum number

of separating points. In a real system, the average of separating points is much less than n (the

number of destinations). Although, in a 2-D mesh with faulty blocks, there are more separating

points than a 2-D mesh without faulty blocks. Still, the number of separating points is much less

than n. The simulation results in Figure 10 (1) con�rm this observation. In this �gure, simulation

of multicasting is done in a 50 � 50 mesh under di�erent distributions of faults and destinations.

The number of separating points is recorded in four curves: one for the theoretical upper bound,

one for the fault-free case (the theoretical lower bound), the rest two are for 50-fault and 100-fault

cases. Results show that for both 50-fault and 100-fault cases stay close to the fault-free case.

That is, the fault-tolerant time-optimal multicasting does not introduce much additional o�-time
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Figure 10: (1)The number of separating points in multicasting in a 50 � 50 mesh (2) Total number

of tra�c steps vs. number of faults using di�erent strategies with (a) destination number 10 and

(b) destination number 40

computation complexity compared with the split-and-sort function in a fault-free 50 � 50 mesh

under the same distribution of destination nodes.

6 Simulation

A simulation study has been conducted to test the proposed multicast algorithm. We use a 50�50

mesh and randomly generate faults and destinations. First we calculate the total number of tra�c

steps when the number of destinations is �xed and then calculate the total number of tra�c steps

when the number of faults is �xed. We try di�erent routing strategies and compare them with

the multiple-unicast approach, i.e., unicasting to each destination without considering of sharing

path(s).

When the number of destinations is �xed, we try two numbers of destinations 10 and 40. For

each case, the number of faults goes from 0 to 320 (see Figures 10 2(a) and 10 2(b)). In both

graphs, we can see that Strategies 1, 2 and 3 can signi�cantly reduce the total number of tra�c

steps compared with the one derived from the multiple-unicast approach. Strategy 2 is better than

Strategy 1 and Strategy 3 is much better than both Strategies 1 and 2. In these two graphs with

the number of faults ranging from 0 to 100, the total number of tra�c steps remains stable because

the number of faults is not large enough to a�ect the multicast process. From the cases with the

number of faults ranges from 210 to 320, the total number of tra�c steps remains the same again

because the system is saturated. However, such a large number of faults rarely happens in a real

system. In the range from 110 to 200 destinations, with the increase of the number of faults, all

three strategies save more tra�c steps than the multiple-unicast approach. This means that these

strategies are e�ective in saving tra�c steps when the number of faults increases.

Comparing two graphs in Figures 13 and 14, all strategies save more tra�c steps if the des-
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Figure 11: Total number of tra�c steps vs. number of destinations using di�erent strategies with

(a) 50 faults and (b) 100 faults (c) 150 faults

tination number is higher. For example, Strategy 3 generates four times fewer number of tra�c

steps in the 40-destination graph than the multiple-unicast approach while it generates 1.7 times

fewer number of tra�c steps in the 10-destination graph than the multiple-unicast approach with

the number of faults from 0 to 100. This is also true to Strategies 1 and 2. That means that all

three strategies are more e�ective when the number of destinations is higher.

When the number of faults is �xed, we try three numbers of faults 50, 100 and 150. For each

case, the number of destinations ranges from 0 to 120 (see Figures 11 (a), 11 (b) and 11 (c)). >From

the graphs in Figures 15, 16 and 17, we can see that Strategies 1, 2 and 3 can signi�cantly reduce

the total number of tra�c steps. Strategy 2 is better than Strategy 1 and Strategy 3 is much better

than both Strategies 1 and 2.

If the number of faults is very large (say 150), the number of tra�c steps will reach a constant

with the increase of the number of destinations because the system is saturated with faulty nodes.

If the number of faults is not too large, the total number of tra�c steps continues to increase with

the increase of the number of destinations. In these graphs, we observe that all strategies can save

more number of tra�c steps in the 50-fault graph than in the 100-fault graph. For example, if

the number of destinations is 120, Strategy 3 can generate four times fewer number of tra�c steps

than the multiple-unicast approach in the 50-fault graph while it can only generate 2.1 times fewer

number of tra�c steps than the multiple-unicast approach in the 100-fault graph. It explains the

more number of faults, the more di�cult the routing process.

>From the above simulation, we conclude that in a real system in which the number of simul-

taneous faults is usually low, with the increase of the number of destinations, all strategies can

signi�cantly reduce the total number of tra�c steps, especially Strategy 3, although Strategies 1

and 2 can be implemented much easier. Therefore, a choice should be made depending on di�erent

objectives of various applications.
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7 Extensions

We consider two possible extensions: fault tolerant multicasting in 3-D meshes and deadlock-free

multicasting in 2-D meshes.

7.1 Fault-tolerant multicasting in 3-D meshes

Our approach can be extended to fault-tolerant multicasting in 3-D meshes based on limited global

information. In 3-D meshes, faulty cubes are used as the fault model. More formally, a healthy

node in a 3-D mesh is disabled if there are two or more disabled or faulty neighbors. A faulty cube

contains all the connected unsafe and faulty nodes. Each faulty cube is a cube and the distance

between any two faulty cubes is at least three.

Theorem 1 for 2-D meshes can be extended to be applied to 3-D meshes as follows:

Theorem 1a: Assume that node (0, 0, 0) is the source and node (i, j, k) is the destination in a

3-D mesh. If there is no faulty cube that intersects with the XY plane (a plane with z=0), the Y Z

plane (a plane with x=0), and the XZ plane (a plane with y=0), there exists at least one minimal

path from (0, 0, 0) to (i, j, k), i.e., the length of this path is jij+ jjj+ jkj. This result holds for any

location of the destination and any number and distribution of faulty cubes.

To support minimal unicasting and multicasting in 3-D meshes, two types of fault information is

used. The safety information is used to determine the safety status of a given source and destination

pair. Each node in a 3-D mesh is associated a vector of six elements (+X;�X;+Y;�Y;+Z;�Z).

+X represents the distance to the closest faulty cube along the positive X direction and other

elements are de�ned in a similar way. The fault-cube-information is used to guide the routing

message to each destination through a minimal path. Speci�cally, the faulty cube information is

distributed to six adjacent planes of each faulty cube.

The same multicast algorithm for 2-D meshes can be extended to 3-D meshes. Types of multicast

are now extended to 1d-free, 2d-free, 3d-free, and in-con
ict. More cases have to be considered in

the greedy algorithm to resolve a con
ict. All these details will be our future work.

7.2 Deadlock-free multicasting

Deadlock due to dependencies on consumption resources (such as channels) are a fundamental

problem in multicasting [6]. A deadlock involving several multicast processes occurs when there is

a cyclic dependency for consumption channels.

We �rst show that the proposed routing algorithm is deadlock-free for unicasting. Unlike many
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subnetwork

non-minimal fault-tolerant unicasting, the deadlock issue can be easily solved through the concept

of virtual network [18] where a given physical network is partitioned into several virtual networks.

Each virtual network is partitioned into several virtual channels arranged in such a way that no

cycle exists among channels, i.e., there is no intra-virtual-network cycle.

Figure 12 shows a partition of a 2-D mesh into four virtual subnetworks +X+Y, +X-Y, -X+Y,

and -X-Y. Depending on the relative location of the source and destination, one of the four virtual

subnetworks is selected and the corresponding multicast can be completed within the selected

subnetwork without using any other subnetworks. In this way, any inter-virtual-network cycle is

avoided. Throughout this paper, we assume that source is (0; 0) and (i; j) is one of the destination

with i > 0 and j > 0. Therefore, only the +X+Y subnetwork is used. We can easily extend this

case to cover other three cases.

During the set-up phase, a header is allowed to wait for a (pro�table) channel if the orginial

header has not generated a new branch. This case resembles multiple unicasting, and therefore, no

deadlock will occur. During the data transmission phase, all needed channels have been reserved,

and therefore no deadlock will occur.
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The distributions of both safety information and faulty block information can be considered as

a routing process. Clearly, deadlock can be easily avoided if they are based on PCS. However, since

both distributions can be viewed as minimal unicasting, no deadlock would occur if other switching

mechanisms are used as long as the partition approach shown in Figure 12 is followed.

8 Conclusions

In this paper, we have proposed a fault-tolerant tree-based multicast algorithm for 2-D meshes

based on the concept of a faulty block and extended safety levels. The algorithm has been proved

to achieve minimal multicast, i.e., each destination is reached through a minimal path. Three

heuristic strategies proposed in this paper can signi�cantly reduce the total number of tra�c steps

based on the results of our simulation. The �rst two strategies can be easily implemented through

hardware without much additional cost and delay. Possible extensions to 3-D meshes and assurance

of deadlock-freedom have also been discussed. Our approach is the �rst attempt to address the

fault-tolerant multicast problem in 2-D meshes based on limited global information with a simple

model and succinct information.
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