
Achieving Bounded Delay on Message Delivery in Publish/Subscribe Systems

Jinling Wang1, 2, Jiannong Cao1, Jing Li2, Jie Wu3

1 Department of Computing, Hong Kong Polytechnic University
2 Institute of Software, Chinese Academy of Sciences, Beijing, China

3 Department of Computer Science and Engineering, Florida Atlantic University
Corresponding author: Prof. Jiannong Cao, csjcao@comp.polyu.edu.hk

Abstract

Publish/subscribe (pub/sub) systems are very
suitable for the dissemination of dynamic information
over the Internet. As dynamic information is usually
characterized by a short lifetime, both publishers and
subscribers may specify the delay requirement on
message delivery. Although existing pub/sub systems
can easily be extended so that publishers and
subscribers can specify their delay requirements, it
remains a challenging problem to improve the
efficiency of pub/sub systems so that as many messages
can be successfully delivered as possible, while the
network traffic does not increase significantly. In this
paper, we propose an efficient approach for pub/sub
systems to achieve bounded delay on message delivery.
Three message scheduling strategies are proposed for
the system to make use of available bandwidth
efficiently. Simulation results show that our strategies
enable subscribers to receive significantly more valid
messages than traditional strategies, while the network
traffic just increases slightly.

1. Introduction

A Publish/Subscribe (pub/sub) system is a type of
message-oriented middleware that supports loosely
coupled interaction in distributed environments. A
pub/sub system is composed of three types of
participants: information publishers, information
subscribers, and message brokers. Information
subscribers issue subscriptions to message brokers
specifying their interest in certain information.
Information publishers send information to message
brokers. The message brokers forward the published
information to all relevant subscribers. In a large-scale

 This work is partially supported by University Grant Council of

Hong Kong under the CERG grant B-Q822 (PolyU 5183/04E), and
the Hong Kong Polytechnic University under the ICRG grant
G-YD63.

pub/sub system, there are usually multiple message
brokers that are organized into an overlay network to
forward messages from publishers to subscribers. As
the pub/sub system enables subscribers to flexibly
express their interests in certain information and get the
needed information in a timely way, it is very suitable
for the dissemination of dynamic information over the
Internet, such as stock trading information, auction
information, traffic information, etc.

Dynamic information is usually characterized by a
short lifetime; an expired message is usually useless to
end users. In some existing industrial standards of
pub/sub systems such as JMS [1] and CORBA
Notification Service [2], publishers can specify the
allowed delay for a published message. Nevertheless, in
some cases subscribers may also want to specify the
allowed delivery delay; different subscribers may have
different delay requirement for the same message. For
example, for a message about the traffic information of
a certain place, the subscribers near the place may
require a shorter delay than those far from the place.
Considering the different quality of service provided to
different subscribers, the service providers may charge
for different fees to the subscribers.

Although delay bound is a very important QoS
requirement for pub/sub systems, little work has been
done on it so far. While we can easily extend the
existing pub/sub model to allow the publishers and
subscribers to specify their delay requirement, it
remains a challenging problem to improve the
efficiency of pub/sub systems to ensure that as many
messages can be successfully delivered as possible,
while the network traffic does not increase
significantly.

Message scheduling is one of the key issues for a
pub/sub system to efficiently support bounded delay.
For all messages that are waiting to be sent out on a
message broker, the broker should give priority to those
that have shorter remaining lifetime and/or satisfy more
subscriptions. In the case that the subscribers pay a
different price for different delay requirement, priority
should also be given to the messages for which the

subscribers agree to pay more. Furthermore, to avoid
wasting network resource, the brokers should delete as
early as possible the messages in transit that have
expired.

In a large-scale pub/sub system, there are a number
of factors that make efficient message scheduling very
difficult. First, there may be multiple subscribers for a
given message, each with different delay requirement
and price. Thus, it becomes an NP-complete problem to
get an optimal schedule1. Second, a message usually
goes through multiple brokers before it reaches a
subscriber, and the end-to-end delay of the message is
affected by the scheduling decisions of all these brokers.
Finally, a broker needs to know the bandwidth available
to each subscriber in order to decide how to schedule
the messages, while the current Internet can just
provide a best-effort transmitting service and the actual
bandwidth varies from time to time.

In this paper, we propose an efficient approach for
pub/sub systems to support bounded delay on message
delivery. We first assume that the available bandwidth
of each link in the broker network satisfies a certain
probability distribution, and the parameters of the
distribution can be estimated based on the measured
data. Then we propose three metrics to guide the
scheduling of message delivery: Expected Benefit (EB),
Postponing Cost (PC), and Expected Benefit plus
Postponing Cost (EBPC), and the corresponding
scheduling strategies are maximum EB first, maximum
PC first, and maximum EBPC first. The EB metric of a
message means the expected benefit gained by sending
the message in the first place. The PC metric of a
message means the expected cost of postponing the
sending of the message, which reflects the urgency of
the sending task. The EBPC metric combines the EB
and PC together to determine the order of message
delivery.

We evaluated the performance of the proposed
approach by simulations and compared our scheduling
strategies with two widely used strategies in the
network community, namely FIFO and minimum
remaining lifetime first. Simulation results show that
our strategies enable subscribers to receive significantly
more valid messages than the traditional strategies,
while the network traffic increases only slightly. To the
best of our knowledge, this is the first work that
addresses the message scheduling in pub/sub systems.

The remainder of the paper is organized as follows.
In Section 2, we discuss the related work, comparing
our approach with some existing solutions. Section 3
describes the system topology, delay model and routing
protocol we assumed. Section 4 presents the system

1 The problem can be reduced from the job scheduling with
penalties problem [3], which is NP-complete.

objectives and the data structure maintained by each
broker. Section 5 describes the proposed message
scheduling strategies. In Section 6, we describe the
simulations for performance evaluation and discuss the
simulation results. Finally, in Section 7, we conclude
the paper with a summary.

2. Related Work

Delay bound for packet delivery has been
extensively studied in network research communities.
Existing works mainly use one of the two mechanisms:
resource reservation and priority control. The resource
reservation mechanism requires all participating nodes
reserve enough resource apriori to guarantee the QoS of
a certain transmission task. As the mechanism involves
the negotiation, reservation, allocation and release of
resources among all participating nodes, it is complex
and does not scale well. On the other hand, in the
priority control mechanism, each node determines the
schedule of message delivery based on local
information without negotiation with other nodes, so it
is more scalable but may not strictly guarantee the QoS
of a transmission task.

In terms of the network protocol stack, existing
works can be classified into one of the three layers:
MAC, IP, and overlay. Some representative works are
shown in Table 1. According to this classification, our
work is on the overlay layer and makes use of the
priority control mechanism.

Table 1: Some representative works on delay bound
 MAC IP Overlay
Resource
reservation IntServ/RSVP[4] QRON [5]

Priority
Control

IEEE
802.11e[6] DiffServ [7] OverQoS[8]

As the current Internet can only provide the
best-effort service, a number of works [5, 8, 9] have
been done to provide QoS on the overlay layer so that
the Internet can support real-time applications such as
multimedia streaming. Similar to our work, these works
also use measured data to get the characteristics of the
underlying Internet connection, such as available
bandwidth, delay, and packet loss rate, and then provide
QoS-aware routing to the upper applications. However,
the works described in [5, 9] assume that the available
bandwidth of each link in the overlay is fixed without
considering the dynamics of the underlying Internet.
The work in [8] is similar to our work in that it also
assumes that the available bandwidth satisfies certain
probability distribution, but it performs QoS-aware
routing based on the lower bound of the available
bandwidth, i.e., the value that can be guaranteed with a
high probability. Compared with these works, our work

performs message scheduling based on the parameters
of the probability distribution of the available
bandwidth, which can make use of available
bandwidths more efficiently. Furthermore, the indirect
communication of pub/sub systems is very different
from the traditional unicast or multicast communication,
which makes the existing QoS work on overlay
networks hardly applicable to pub/sub systems.

Although a lot of work has been done on the
pub/sub systems in recent years [10-16], little has been
done on the QoS-related issues. As far as we know, the
only work that has considered the bounded delay
problem is in [16], where the authors proposed to use
the resource reservation mechanism to ensure the
bounded delay of message delivery. However, a
pub/sub system differs from the traditional
communication systems in that there is no end-to-end
connection between message senders and receivers. As
there may be different delay requirements for different
(publisher, subscriber, message) tuples, the use of
resource reservation mechanism would be extremely
expensive if not impossible.

3. System Model

In this section, we introduce the system topology,
delay model and routing protocol on which our work is
based.

3.1. System Topology
There are mainly two types of topology for the

overlay of pub/sub systems:
1) Acyclic graph, as applied in Siena [10], JEDI

[11], and Rebeca [12]. In this topology, there is only
one path between any pair of message brokers. Each
broker can serve both publishers and subscribers.

2) Mesh, as applied in DCP [13], Gryphon [14], and
XRoute [15]. In this topology, there may be multiple
paths between a pair of brokers. Some brokers connect
to publishers, some to subscribers, while the other
brokers do not connect to either publishers or
subscribers but work as intermediate nodes to forward
messages.

The two types of topology of pub/sub systems are
shown in Figure 1. In the figure, message brokers are
denoted by Bi, publishers denoted by Pi, while
subscribers denoted by Si.

In conventional scenarios for dynamic information
dissemination, there may be just a small number of
publishers while a large number of subscribers, so the
mesh topology is more suitable for such applications.
Therefore, our work is based on the mesh topology of
pub/sub systems. In the following, we call the
neighbors of a broker through which the broker reaches
publishers the upstream neighbors, and the neighbors

through which the broker reaches subscribers the
downstream neighbors. TCP protocol is supposed to be
used in forwarding messages between brokers.

B3

B5

B2

B7 B8

B1

B6

B4

S1 S2 S5S4

P1 P2

S3

B3 B4

B6

B2

B5

B7

B1

P2 P3

S1P1

S3

S4

S2

 a) Acyclic graph b) Mesh
Figure 1. Two types of topology for pub/sub systems

3.2. Delay Model
The end-to-end delay of a message is composed of

the delay on each link as well as the delay on each
broker in the path from the publisher to the subscriber.
We will discuss these two types of delay respectively.

1. Delay on each broker
The delay on a broker is determined by the way the

broker processes the message. Generally speaking, the
function of a broker can be divided into three modules:
message receiving, message processing, and message
forwarding, as shown in Figure 2.

Message
Receiving

Message
Processing

Message
Forwarding

Internet

Message
Forwarding

Internet

Internet

Input
Queue

Output
Queue

Output
Queue

Figure 2. Functional modules of a message broker

Each broker maintains two types of message queues:
input queue and output queue. There is only one input
queue that is used to store the unprocessed incoming
messages. On the other hand, one output queue is
created for each downstream neighbor, which is used to
store messages waiting to be sent to the neighbor.

As with most research on the delivery delay, we
ignore the time a message spends on waiting in the
input queue2. Therefore, the delay of a message on a
broker is composed of the following two parts: 1) the
time spent in the output queue, which is called
scheduling delay; 2) the time required by the message
processing module, which is called processing delay.
We assume that the processing delay of each broker for
each message is of the same value, denoted by PD.

2 The size of the input queue is greater than 0 only when the
message arrival rate is greater than the processing rate of
messages, which rarely happens as the bottleneck of the
system is usually on the network transmission.

2. Delay on each link
Each link in the overlay network of a pub/sub

system is actually an end-to-end connection of the
underlying Internet. In recent years, research on the
Internet measurement shows that, although the Internet
cannot provide a deterministic guarantee on the
transmission delay, the end-to-end delay is generally
stable. The end-to-end delay of an IP packet can be
considered to satisfy the shifted gamma probability
distribution [17, 18], while the variation is surprisingly
small3. The measured data in [8] also shows that the
end-to-end available bandwidth on the Internet is fairly
stable. Therefore, we can reasonably assume that the
available bandwidth of each link in the pub/sub system
satisfies a certain probability distribution.

Although the one-way delay of an IP packet
satisfies the shifted gamma distribution, the
transmission rate of a TCP connection is jointly
determined by the round trip time of IP packets and the
size of the TCP window, while the latter is further
affected by many factors. Therefore, we assume the
available bandwidth of each link in the pub/sub system
satisfies the normal distribution. For each link li in the
overlay of a pub/sub system, we use the average time
needed to transmit one kilo-byte of data to measure its
transmission rate, denoted by TRi. We denote the
probability distribution of TRi by TRi ~ N (µi, σi

2),
where µi and σi

2 are the mean value and variation
respectively. Each broker estimates the parameters of
the probability distribution of the transmission rate to
each neighbor by some tools of network measurement.

We assume the transmission rates of different links
are independent, so the transmission rate of a path
composed of multiple links also satisfies the normal
distribution. For a path p composed of n links l1, l2, …,
ln, let TRp denote the transmission rate of the path. We
have TRp ~ N (∑µi, ∑σi

2).
We call the delay needed for a message to be

transmitted along a path (exclude the delay on the
brokers in the path) the propagation delay of the
message. For a message with size of m kilo-bytes, its
propagation delay on path p is m × TRp.
3.3. Routing Protocol

The routing protocol of pub/sub systems determines
the path via which the messages in the system travel
from the senders to the receivers. Existing routing
protocols for mesh-structured pub/sub systems fall into
two categories: single-path routing [14, 15] and

3 According to the measured data in [18], the mean value of
the one way end-to-end packet delay on a cross-Atlantic path
with 22 hops is 108.2 ms, while the standard error is just
3.083ms.

multi-path routing [13]. In single-path routing, the
system just selects one path for a message to travel
from a publisher to a subscriber, while in multi-path
routing, a message are transmitted via all possible paths
from a publisher to a subscriber to improve reliability.
To decrease the network traffic, in our solution we
assume the single-path routing protocol is used. The
criterion for path selection is to minimize the mean
value of the transmission rate of the path.

4. Preliminaries

4.1. System Objectives
To simplify discussion, we mainly focus on the

following two scenarios in this paper:
• Publisher-specified delay (PSD): the allowed delay

of message delivery is specified by publishers
while subscribers do not specify any delay
requirement.

• Subscriber-specified delay (SSD): Each subscriber
specifies its requirement on the allowed delay of
message delivery and at the same time gives a
price for each successfully arriving message, while
publishers do not specify any delay requirement.

Our work can easily be extended to the case where
both publishers and subscribers specify their delay
requirements on message delivery.

In the PSD scenario, the objective of the system is
to make subscribers receive as many valid messages as
possible. Suppose the publishers have published k
messages in a given period, denoted by m1, m2, …, mk.
For a message mi, let the number of subscribers
interested in it be tsi, and the number of subscribers that
receive it before the deadline be dsi. We can define a
metric called delivery rate of the system as follows:

∑∑

==

k

i
i

k

i
i tsds

11 (1)
The system objective is to maximize the above

delivery rate.
In the SSD scenario, as different delay requirements

correspond to different prices, the system objective is to
maximize the total earning rather than the delivery rate.
Suppose there are n subscribers in the system, denoted
by s1, s2, …, sn. Let price(si) denote the price of each
valid message provided by subscriber si, and msg(si)
denote the number of all valid messages received by
subscriber si in a given period. The total earning of the
system in the period can be calculated as follows:

 ∑
=

×
n

i
ii smsgsprice

1
)()((2)

4.2. Data Structure
To achieve the system objectives, the brokers

should have the necessary information to perform
efficient message scheduling. In our solution, each
broker maintains a subscription table with the
following format:

{(subscriber, filter, dl, pr, nb, NNp, µp, σp
2)}

where each item describes the following information of
a subscription:
• A subscriber is interested in all messages that

satisfy the given filter.
• The subscriber has specified the worst-case delay

dl allowed for the messages, and is willing to pay
the price pr for any valid message.

• The current broker can reach the subscriber via the
neighbor nb.

• Let p denote the path from the current broker to
the subscriber. The variable NNp is the number of
intermediate nodes on the path p, while µp and σp

2
are the mean value and the variation of the
transmitting rate of the path respectively.

To simplify description, we assume each subscriber
just issues one subscription. Hereafter, we do not
strictly differentiate a subscriber from its subscription.

5. Message Scheduling Strategies

In this section, we first introduce the three message
scheduling strategies proposed for pub/sub systems, and
then introduce the mechanism used by the system to
detect invalid messages in transit.

We mainly focus on the SSD scenario in this section
as it is more complex than the PSD scenario. To apply
the proposed scheduling strategies in the PSD scenario,
we just need to set the price in the corresponding
expressions to be 1, and change the delay requirement
to be specified by publishers rather than subscribers.

5.1. Maximum EB First
The EB value of a message is the expected earning

it can bring to the system when all remaining nodes
always send the message in the first place. As the
objective of the system is to maximize the total earning,
it is reasonable to send the messages with maximum EB
values first.

For a message m waiting to be sent out on a broker
N, suppose it can satisfy n subscriptions denoted by s1,
s2, …, sn. Let the function success(si, m) denotes the
probability that message m can arrive at si in the
specified delay. The EB value of message m (denoted
by EBm) is calculated as follows:

 ∑
=

×=
n

i
iim spricemssucccessEB

1
)(),((3)

According to the above expression, the EB value of
a message is determined by the number of subscriptions
that are interested in the message, the prices of the
subscriptions, and the probability that the message
arrives at the destinations before deadline. As a result,
in the maximum EB first scheduling strategy, a message
will have a higher priority in delivery if it can satisfy
more subscriptions, or it has higher probability to arrive
at the destinations in time, or the subscriptions provide
higher prices for the message.

Now we discuss how to calculate the function
success(si, m). Let hdl(m) denotes the delay that has
already occurred when the message m arrives at the
current broker. The current broker can get the value of
hdl(m) by subtracting the publishing time of the
message from the current time. For a subscription si that
is interested in the message, let the function fdl(si, m)
denote the delay that will occur before message m
reaches si. It is composed of the following three parts
(let p denote the path from the current node to si):
• The processing delay on all nodes in path p;
• The scheduling delay on all nodes in path p;
• The propagation delay in path p.

As the scheduling delay on other nodes is unknown
to the current node, we just assume the scheduling
delay of the message on all nodes in path p is 0. So the
function fdl(si, m) can be calculated as follows:
 ppi TRmsizePDNNmsfdl ×+×=)(),((4)
where size(m) is the size of message m, NNp is the
number of nodes on path p and TRp is the transmitting
rate of p.

Let the function adl(si) denote the maximum
allowed delay required by the subscriber si. The value
of success(si, m) can be calculated as follows:
)}(),()({),(iii sadlmsfdlmhdlPmssuccess ≤+= (5)

As the probability distribution of TRp is known, we
can easily get the value of the function for any
messages and subscriptions.

5.2. Maximum PC First
We notice that in the maximum EB first strategy, the

message with higher probability to successfully arrive
at destinations is sent with a higher priority. However,
the higher probability of successful delivery means that
the delivery of the message is not very urgent. In other
words, it may be harmless to postpone the sending of
the message for a period, so that other messages with
lower success probability can be sent out in advance.
To overcome this disadvantage of the maximum EB
first strategy, we propose another scheduling strategy in
which the order of message delivery is determined by
the urgency degree of messages.

We use the postponing cost (PC) to indicate the
urgency degree of a message. For a message m that is

waiting to be sent out on broker N, the aforementioned
EB metric is the expected benefit it can bring to the
system if all remaining nodes send it in the first place.
We can calculate another expected benefit, denote by
EB', when the current node sends the message in the
second place, while all other nodes still send it in the
first place. We call the value of (EB – EB') the
postponing cost of the message, which means the
expected cost when the current broker postpones the
sending of the message once. The sending task of the
message is considered to be urgent if the cost is high.

To compute the value of EB', we must know the
time needed to send out the first message. As the first
message has not been chosen yet at this time, we
estimate the time as the average size of all messages
multiplied by the mean value of the transmitting rate on
the link from the current node to the corresponding
neighbor, denoted by FT.

In the case that the current node sends the message
m in the second place while all other nodes send it in
the first place, let fdl'(si, m) denote the delay that will
occur before m reaches subscriber si, and success'(si, m)
denote the probability that message m arrives at si in the
required delay. We can calculate them with the
following expressions:
 FTmsfdlmsfdl ii +=),(),(' (6)
)}(),(')({),(' iii sadlmsfdlmhdlPmssuccess ≤+= (7)

So we get the EB' value and postponing cost
(denoted by PCm) of message m as follows:

 ∑
=

×=
n

i
iim spricemssucccessEB

1
)(),('' (8)

 mmm EBEBPC '−= (9)

5.3. Maximum EBPC First
As the expected benefit and the postponing cost are

both important factors in determining the order of
message delivery, we design a new metric that
combines the two factors together, called Expected
Benefit plus Postponing cost (EBPC). In the maximum
EBPC first strategy, the order of message delivery is
determined by both the expected benefit and the
urgency degree of the messages. The calculation of
EBPC value for message m is as follows:
 mmm PCrEBrEBPC ×−+×=)1((10)
where r is the weight of EB in determine the order of
message delivery. The range of r is [0, 1], and the
actual value can be set empirically to achieve the best
results.

5.4. Detection of Invalid Messages
The system should delete any message that cannot

arrive at any subscriber within its specified delay period
as early as possible to avoid the unnecessary network

traffic. To improve the utility of available bandwidth, in
our solution, the brokers not only delete the messages
that have already expired, but also the messages that are
unlikely to arrive at any subscriber within the specified
delay, although they may not expire yet.

For a message m waiting to be sent out on a broker
N, suppose it can satisfy n subscriptions denoted by s1,
s2, …, sn. The condition to delete the message on broker
N is as follows:
 ε≤∈∀),(:},...,1{ mssuccessni i (11)
where ε is a relatively small value. The value of ε is set
to 0.05% in our simulation described in the next
section.

6. Performance Evaluation

We have implemented the proposed scheduling
strategies in Java and evaluated their performance with
a simulated network and a variety of simulated work
load4. In this section, we describe our experimental
study and discuss the performance evaluation results.

6.1. Simulation Setup
We simulate a layered structure of broker network

as shown in Figure 3，which is similar to the topology
used in [13, 14]. In the simulated network, there are 32
brokers that are divided into 4 layers. In the first layer
of the broker network there are 4 brokers each
connected to a message publisher. In the second layer
there are 4 brokers each connected to all brokers of the
first layer. In the third layer there are 8 brokers, each
randomly connected to 2 brokers of the second layer. In
the fourth layer there are 16 brokers, each randomly
connected to 2 brokers of the third layer. Each of the
fourth-layer brokers serves 10 message subscribers, so
there are a total of 160 subscribers in the system.

The mean value of the transmission rate on each
link is randomly generated in the range of 50
milliseconds (ms) to 100 ms, and the standard error of
the transmission rate on each link is 20ms. The
processing delay of each message on a broker is 2ms.

Each publisher continuously publishes messages at
a certain rate; we call the average number of messages
published by each publisher per minute as the
publishing rate of the system. The length of the whole
test period is 2 hours. The size of each message is 50K
bytes. The message head of each message is composed
of the following contents: {A1=x1, A2=x2}, where A1, A2
are attribute names and x1, x2 are double-type values
randomly chosen from the range of (0, 10).

Each subscriber has defined a subscription with the
form of “A1<x1 ∧ A2<x2”, where x1, x2 are also values
randomly chosen from the range of (0, 10). Therefore,
for each published message, there are on average

4 The implementation codes can be downloaded from
http://jlwang.rocklv.net/pubsub_bd/pubsub_bd.html

(1/2)2=25% subscribers in the system that are interested
in it.

We simulate the delay requirement in the PSD and
SSD scenarios respectively. In the PSD scenario, the
delay requirement of each message is randomly
generated in the range from 10 seconds to 30 seconds.
In the SSD scenario, the delay requirement of each
subscription is randomly chosen from the set {10s, 30s,
60s}, and the corresponding price is {3, 2, 1}
respectively.

B5

B9

B4

… B16

B1

…

B8

P1 P4

…

…

…

S1 … …

B17 … B32……

… … … S160
Figure 3. Topology of the simulated network

In addition to our proposed scheduling strategies,
we also implemented two other widely used scheduling
strategies: FIFO and minimum remaining lifetime (RL)
first, to evaluate the performance of them under the
same environment and workload conditions. Hereafter,
we call the five strategies as the EB, PC, EBPC, FIFO
and RL strategies respectively.

In the SSD scenario, as there may be multiple
subscribers interested in a same message, the message
may have multiple remaining lifetimes each
corresponding to a subscription, which makes it
difficult to apply the RL strategy. To solve this problem,
we use the average value of the remaining lifetimes of
each message for scheduling.

The following metrics are defined to evaluate the
performance of the different strategies:
• Delivery rate: used in the PSD scenario, as defined

by expression (1);
• Total earning: used in the SSD scenario, as

defined by expression (2);
• Message number: the total number of messages

received by all brokers, which reflects the overall
traffic on the network.

6.2. Simulation Results
Figure 4 shows the performance comparison of the

EB, PC and EBPC strategies. In this group of
experiments, the publishing rate is 10, and the value of
r in expression (10) varies from 0 to 100%. Figure 4(a)
shows the total earning of the three strategies in the
SSD scenario. It shows that the performance of the PC
strategy is worse than the EB strategy, while the
combination of EB and PC gets some advantage when r
is in the range of (23%, 100%). Figure 4(b) shows the

delivery rate of the three strategies in the PSD scenario.
The performance of EB strategy is close to that of PC
strategies, while the combination of EB and PC is
always better.

Since the performance of the EBPC strategy is close
to that of the EB strategy with slight improvement, we
just compare the EB, PC, RL and FIFO strategies in the
following. Figure 5 shows the performance comparison
of the four strategies in different publishing rates in the
SSD scenario. Figure 5(a) shows that the total earning
always increases in the EB and PC strategies, while the
EB strategy can achieve more earnings than the PC
strategy. On the other hand, in the FIFO and RL
strategies, the total earning decreases after it reaches the
peak. The reason is that with the increase of publishing
rate, the congestion of the network becomes more and
more serious, resulting in fewer messages arriving at
the destinations in time. The RL strategy has the worse
performance because in a pub/sub system composed of
multiple brokers, the messages with very small lifetime
can hardly reach subscribers in the required delay. If
these messages are sent out first, the bandwidth is
vainly expended resulting in the poor utility of network
resource.

Figure 5(b) shows the number of messages
generated by the four strategies in the SSD scenario.
The EB and PC strategies incur almost the same
network traffics, which is a little more than that of
FIFO and RL strategies. When the publishing rate is 15,
the EB strategy incurs 23% and 64% more messages
than the FIFO and RL strategies respectively, while the
total earning of the EB strategy is 5 and 10 times that of
the FIFO and RL strategies. Therefore, the EB strategy
can make use of the network resource more efficiently.

Figure 6 shows the performance of the four
strategies in different publishing rates in the PSD
scenario. As the system capacity is limited, the delivery
rate certainly decreases with the increase of publishing
rate. Figure 6(a) shows that the EB and PC strategies
achieve almost the same delivery rate, which is higher
than that of the other two strategies. When the
publishing rate is 15, the delivery rates in the EB, FIFO
and RL strategies are 40.1%, 22.5% and 11.6%
respectively. Figure 6(b) shows the number of
messages generated by the four strategies. When the
publishing rate is 15, the EB strategy incurs just 17%
and 60% more network traffics than the FIFO and RL
strategies respectively.

7. Conclusion

Pub/sub systems are very suitable for dynamic
information dissemination. However, as dynamic
information is usually characterized by the short
lifetime, information publishers or subscribers may
specify the delay requirement on message delivery. In
this paper, we propose an efficient approach for
pub/sub systems to achieve bounded delay on message
delivery. Three message scheduling strategies are
proposed for pub/sub systems to make use of available

bandwidths efficiently. Simulation results shows that
our strategies enable subscribers to receive significantly

more valid messages than traditional strategies, while
incurring slightly more network traffic.

 a) Subscriber-specified delay b) Publisher-specified delay

Figure 4. Performance comparison of EB, PC and EBPC strategies

 a) Total earning b) Message number

Figure 5. Performance comparison in the SSD scenario

 a) Delivery rate b) Message number

Figure 6. Performance comparison in the PSD scenario

References
[1] Sun Microsystems Inc. JMS Specification version

1.0.2b. Aug. 2001. http://java.sun.com/products/jms
[2] OMG. CORBA Notification Service specification

version 1.0.1. Aug. 2002. http://www.omg.org/corba
[3] C. Y. Lee and S. J. Kim. Parallel genetic algorithms for

the earliness-tardiness job scheduling problem with
general penalty weights. Computers & Industrial
Engineering: 28(2): 231-243, 1995.

[4] J. Wroclawski. The use of RSVP with IETF integrated
services. IETF RFC 2210, Sep. 1997.

[5] Z. Li and P. Mohapatra. QRON: QoS-Aware Routing
in Overlay Networks. IEEE Journal on Selected Areas
in Communications, 22(1): 29-40, Jan. 2004.

[6] IEEE 802.11 WG. IEEE Std 802.11e/D4.0, Nov. 2002.
[7] D. Grossman. New terminology and clarifications for

DiffServ. IETF RFC 3260, Apr. 2002.
[8] L Subramanian, I Stoica, H Balakrishnan, and R Katz.

OverQoS: An Overlay Based Architecture for
Enhancing Internet QoS. USENIX NSDI’04, 2004

[9] S. Y. Shi and J. S. Turner. Routing in overlay multicast
networks. IEEE Infocom 2002, pp. 1200–1208.

[10] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf:
Design and evaluation of a wide-area event notification
service. ACM Trans. on Computer Systems. 19(3):
332-383, 2001.

[11] G. Cugola, E. D. Nitto, and A. Fuggetta: The JEDI
event-based infrastructure and its application to the

development of the OPSS WFMS. IEEE Trans. on
Software Engineering. 27(9): 827-850. 2001.

[12] G. Muhl: Large-Scale Content-Based
Publish/Subscribe Systems. PhD thesis. Darmstadt
University of Technology, Germany. 2002

[13] A. C. Snoeren, K. Conley, and D. K. Gifford.
Mesh-Based Content Routing using XML. Proc. of the
18th ACM SOSP, pp. 160-173. Oct. 2001.

[14] S. Bhola, R. Strom, S. Bagchi, Y. Zhao, and J.
Auerbach. Exactly-once delivery in a content-based
publish-subscribe system. In Proc. of IEEE DSN 2002,
pp. 7-16.

[15] R. Chand and P. A. Felber. A Scalable Protocol for
Content-Based Routing in Overlay Networks. In
Proceedings of 2nd IEEE International Symposium on
Network Computing and Applications. pp. 123-130.
Apr. 2003.

[16] N. Carvalho, F. Araujo, and L. Rodrigues. Scalable
QoS-Based Event Routing in Publish-Subscribe
Systems. In Proceedings of 4th IEEE International
Symposium on Network Computing and Applications.
Jul. 2005.

[17] C. Bovy, H. Mertodimedjo, G. Hooghiemstra, P.
Mieghem, and H. Uijterwaal. Analysis of End-to-End
Delay Measurements in the Internet. Presentation at
RIPE41. Jan. 2002.

[18] A Corlett, D.I. Pullin, and S. Sargood. Statistics of
One-Way Internet Packet Delays. Presentation at 53rd
IETF. Mar. 2002.

150

155

160

165

170

0 20 40 60 80 100
weight of EB (%)

ea
rn

in
g

(k
)

EBPC
EB
PC

49

50

51

52

0 20 40 60 80 100
weight of EB (%)

de
liv

er
y

ra
te

 (%
)

EBPC
EB
PC

0

50

100

150

0 3 6 9 12 15
publishing rate

m
sg

 n
um

be
r (

k)
EB PC
FIFO RL

0

20

40

60

80

0 3 6 9 12 15
publishing rate

de
liv

er
y

ra
te

 (%
)

EB PC
FIFO RL

0

50

100

150

0 3 6 9 12 15
publishing rate

m
sg

 n
um

be
r (

k)

EB PC
FIFO RL

0

50

100

150

200

0 3 6 9 12 15
publishing rate

ea
rn

in
g

(k
)

EB PC
FIFO RL

