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Abstract 

Publish/subscribe (pub/sub) systems are very 
suitable for the dissemination of dynamic information 
over the Internet. As dynamic information is usually 
characterized by a short lifetime, both publishers and 
subscribers may specify the delay requirement on 
message delivery. Although existing pub/sub systems 
can easily be extended so that publishers and 
subscribers can specify their delay requirements, it 
remains a challenging problem to improve the 
efficiency of pub/sub systems so that as many messages 
can be successfully delivered as possible, while the 
network traffic does not increase significantly. In this 
paper, we propose an efficient approach for pub/sub 
systems to achieve bounded delay on message delivery. 
Three message scheduling strategies are proposed for 
the system to make use of available bandwidth 
efficiently. Simulation results show that our strategies 
enable subscribers to receive significantly more valid 
messages than traditional strategies, while the network 
traffic just increases slightly. 

1. Introduction 

A Publish/Subscribe (pub/sub) system is a type of 
message-oriented middleware that supports loosely 
coupled interaction in distributed environments. A 
pub/sub system is composed of three types of 
participants: information publishers, information 
subscribers, and message brokers. Information 
subscribers issue subscriptions to message brokers 
specifying their interest in certain information. 
Information publishers send information to message 
brokers. The message brokers forward the published 
information to all relevant subscribers. In a large-scale 
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pub/sub system, there are usually multiple message 
brokers that are organized into an overlay network to 
forward messages from publishers to subscribers. As 
the pub/sub system enables subscribers to flexibly 
express their interests in certain information and get the 
needed information in a timely way, it is very suitable 
for the dissemination of dynamic information over the 
Internet, such as stock trading information, auction 
information, traffic information, etc. 

Dynamic information is usually characterized by a 
short lifetime; an expired message is usually useless to 
end users. In some existing industrial standards of 
pub/sub systems such as JMS [1] and CORBA 
Notification Service [2], publishers can specify the 
allowed delay for a published message. Nevertheless, in 
some cases subscribers may also want to specify the 
allowed delivery delay; different subscribers may have 
different delay requirement for the same message. For 
example, for a message about the traffic information of 
a certain place, the subscribers near the place may 
require a shorter delay than those far from the place. 
Considering the different quality of service provided to 
different subscribers, the service providers may charge 
for different fees to the subscribers. 

Although delay bound is a very important QoS 
requirement for pub/sub systems, little work has been 
done on it so far. While we can easily extend the 
existing pub/sub model to allow the publishers and 
subscribers to specify their delay requirement, it 
remains a challenging problem to improve the 
efficiency of pub/sub systems to ensure that as many 
messages can be successfully delivered as possible, 
while the network traffic does not increase 
significantly. 

Message scheduling is one of the key issues for a 
pub/sub system to efficiently support bounded delay. 
For all messages that are waiting to be sent out on a 
message broker, the broker should give priority to those 
that have shorter remaining lifetime and/or satisfy more 
subscriptions. In the case that the subscribers pay a 
different price for different delay requirement, priority 
should also be given to the messages for which the 



subscribers agree to pay more. Furthermore, to avoid 
wasting network resource, the brokers should delete as 
early as possible the messages in transit that have 
expired. 

In a large-scale pub/sub system, there are a number 
of factors that make efficient message scheduling very 
difficult. First, there may be multiple subscribers for a 
given message, each with different delay requirement 
and price. Thus, it becomes an NP-complete problem to 
get an optimal schedule1. Second, a message usually 
goes through multiple brokers before it reaches a 
subscriber, and the end-to-end delay of the message is 
affected by the scheduling decisions of all these brokers. 
Finally, a broker needs to know the bandwidth available 
to each subscriber in order to decide how to schedule 
the messages, while the current Internet can just 
provide a best-effort transmitting service and the actual 
bandwidth varies from time to time. 

In this paper, we propose an efficient approach for 
pub/sub systems to support bounded delay on message 
delivery. We first assume that the available bandwidth 
of each link in the broker network satisfies a certain 
probability distribution, and the parameters of the 
distribution can be estimated based on the measured 
data. Then we propose three metrics to guide the 
scheduling of message delivery: Expected Benefit (EB), 
Postponing Cost (PC), and Expected Benefit plus 
Postponing Cost (EBPC), and the corresponding 
scheduling strategies are maximum EB first, maximum 
PC first, and maximum EBPC first. The EB metric of a 
message means the expected benefit gained by sending 
the message in the first place. The PC metric of a 
message means the expected cost of postponing the 
sending of the message, which reflects the urgency of 
the sending task. The EBPC metric combines the EB 
and PC together to determine the order of message 
delivery.  

We evaluated the performance of the proposed 
approach by simulations and compared our scheduling 
strategies with two widely used strategies in the 
network community, namely FIFO and minimum 
remaining lifetime first. Simulation results show that 
our strategies enable subscribers to receive significantly 
more valid messages than the traditional strategies, 
while the network traffic increases only slightly. To the 
best of our knowledge, this is the first work that 
addresses the message scheduling in pub/sub systems. 

The remainder of the paper is organized as follows. 
In Section 2, we discuss the related work, comparing 
our approach with some existing solutions. Section 3 
describes the system topology, delay model and routing 
protocol we assumed. Section 4 presents the system 
                                                 
1 The problem can be reduced from the job scheduling with 
penalties problem [3], which is NP-complete. 

objectives and the data structure maintained by each 
broker. Section 5 describes the proposed message 
scheduling strategies. In Section 6, we describe the 
simulations for performance evaluation and discuss the 
simulation results. Finally, in Section 7, we conclude 
the paper with a summary. 

2. Related Work 

Delay bound for packet delivery has been 
extensively studied in network research communities. 
Existing works mainly use one of the two mechanisms: 
resource reservation and priority control. The resource 
reservation mechanism requires all participating nodes 
reserve enough resource apriori to guarantee the QoS of 
a certain transmission task. As the mechanism involves 
the negotiation, reservation, allocation and release of 
resources among all participating nodes, it is complex 
and does not scale well. On the other hand, in the 
priority control mechanism, each node determines the 
schedule of message delivery based on local 
information without negotiation with other nodes, so it 
is more scalable but may not strictly guarantee the QoS 
of a transmission task.  

In terms of the network protocol stack, existing 
works can be classified into one of the three layers: 
MAC, IP, and overlay. Some representative works are 
shown in Table 1. According to this classification, our 
work is on the overlay layer and makes use of the 
priority control mechanism.  

Table 1: Some representative works on delay bound 
 MAC IP Overlay 
Resource 
reservation  IntServ/RSVP[4] QRON [5] 

Priority 
Control 

IEEE 
802.11e[6] DiffServ [7] OverQoS[8]

As the current Internet can only provide the 
best-effort service, a number of works [5, 8, 9] have 
been done to provide QoS on the overlay layer so that 
the Internet can support real-time applications such as 
multimedia streaming. Similar to our work, these works 
also use measured data to get the characteristics of the 
underlying Internet connection, such as available 
bandwidth, delay, and packet loss rate, and then provide 
QoS-aware routing to the upper applications. However, 
the works described in [5, 9] assume that the available 
bandwidth of each link in the overlay is fixed without 
considering the dynamics of the underlying Internet. 
The work in [8] is similar to our work in that it also 
assumes that the available bandwidth satisfies certain 
probability distribution, but it performs QoS-aware 
routing based on the lower bound of the available 
bandwidth, i.e., the value that can be guaranteed with a 
high probability. Compared with these works, our work 



performs message scheduling based on the parameters 
of the probability distribution of the available 
bandwidth, which can make use of available 
bandwidths more efficiently. Furthermore, the indirect 
communication of pub/sub systems is very different 
from the traditional unicast or multicast communication, 
which makes the existing QoS work on overlay 
networks hardly applicable to pub/sub systems. 

Although a lot of work has been done on the 
pub/sub systems in recent years [10-16], little has been 
done on the QoS-related issues. As far as we know, the 
only work that has considered the bounded delay 
problem is in [16], where the authors proposed to use 
the resource reservation mechanism to ensure the 
bounded delay of message delivery. However, a 
pub/sub system differs from the traditional 
communication systems in that there is no end-to-end 
connection between message senders and receivers. As 
there may be different delay requirements for different 
(publisher, subscriber, message) tuples, the use of 
resource reservation mechanism would be extremely 
expensive if not impossible. 

3. System Model 

In this section, we introduce the system topology, 
delay model and routing protocol on which our work is 
based. 

3.1. System Topology 
There are mainly two types of topology for the 

overlay of pub/sub systems: 
1) Acyclic graph, as applied in Siena [10], JEDI 

[11], and Rebeca [12]. In this topology, there is only 
one path between any pair of message brokers. Each 
broker can serve both publishers and subscribers.  

2) Mesh, as applied in DCP [13], Gryphon [14], and 
XRoute [15]. In this topology, there may be multiple 
paths between a pair of brokers. Some brokers connect 
to publishers, some to subscribers, while the other 
brokers do not connect to either publishers or 
subscribers but work as intermediate nodes to forward 
messages. 

The two types of topology of pub/sub systems are 
shown in Figure 1. In the figure, message brokers are 
denoted by Bi, publishers denoted by Pi, while 
subscribers denoted by Si. 

In conventional scenarios for dynamic information 
dissemination, there may be just a small number of 
publishers while a large number of subscribers, so the 
mesh topology is more suitable for such applications. 
Therefore, our work is based on the mesh topology of 
pub/sub systems. In the following, we call the 
neighbors of a broker through which the broker reaches 
publishers the upstream neighbors, and the neighbors 

through which the broker reaches subscribers the 
downstream neighbors. TCP protocol is supposed to be 
used in forwarding messages between brokers.  
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Figure 1. Two types of topology for pub/sub systems 

3.2. Delay Model 
The end-to-end delay of a message is composed of 

the delay on each link as well as the delay on each 
broker in the path from the publisher to the subscriber. 
We will discuss these two types of delay respectively. 

1. Delay on each broker 
The delay on a broker is determined by the way the 

broker processes the message. Generally speaking, the 
function of a broker can be divided into three modules: 
message receiving, message processing, and message 
forwarding, as shown in Figure 2.  

Message 
Receiving

Message 
Processing

Message 
Forwarding

Internet

Message 
Forwarding

Internet

Internet

Input 
Queue

Output 
Queue

Output 
Queue  

Figure 2. Functional modules of a message broker 

Each broker maintains two types of message queues: 
input queue and output queue. There is only one input 
queue that is used to store the unprocessed incoming 
messages. On the other hand, one output queue is 
created for each downstream neighbor, which is used to 
store messages waiting to be sent to the neighbor. 

As with most research on the delivery delay, we 
ignore the time a message spends on waiting in the 
input queue2. Therefore, the delay of a message on a 
broker is composed of the following two parts: 1) the 
time spent in the output queue, which is called 
scheduling delay; 2) the time required by the message 
processing module, which is called processing delay. 
We assume that the processing delay of each broker for 
each message is of the same value, denoted by PD. 

                                                 
2 The size of the input queue is greater than 0 only when the 
message arrival rate is greater than the processing rate of 
messages, which rarely happens as the bottleneck of the 
system is usually on the network transmission. 



2. Delay on each link 
Each link in the overlay network of a pub/sub 

system is actually an end-to-end connection of the 
underlying Internet. In recent years, research on the 
Internet measurement shows that, although the Internet 
cannot provide a deterministic guarantee on the 
transmission delay, the end-to-end delay is generally 
stable. The end-to-end delay of an IP packet can be 
considered to satisfy the shifted gamma probability 
distribution [17, 18], while the variation is surprisingly 
small3. The measured data in [8] also shows that the 
end-to-end available bandwidth on the Internet is fairly 
stable. Therefore, we can reasonably assume that the 
available bandwidth of each link in the pub/sub system 
satisfies a certain probability distribution.  

Although the one-way delay of an IP packet 
satisfies the shifted gamma distribution, the 
transmission rate of a TCP connection is jointly 
determined by the round trip time of IP packets and the 
size of the TCP window, while the latter is further 
affected by many factors. Therefore, we assume the 
available bandwidth of each link in the pub/sub system 
satisfies the normal distribution. For each link li in the 
overlay of a pub/sub system, we use the average time 
needed to transmit one kilo-byte of data to measure its 
transmission rate, denoted by TRi. We denote the 
probability distribution of TRi by TRi ~ N (µi, σi

2), 
where µi and σi

2 are the mean value and variation 
respectively. Each broker estimates the parameters of 
the probability distribution of the transmission rate to 
each neighbor by some tools of network measurement. 

We assume the transmission rates of different links 
are independent, so the transmission rate of a path 
composed of multiple links also satisfies the normal 
distribution. For a path p composed of n links l1, l2, …, 
ln, let TRp denote the transmission rate of the path. We 
have TRp ~ N (∑µi, ∑σi

2).  
We call the delay needed for a message to be 

transmitted along a path (exclude the delay on the 
brokers in the path) the propagation delay of the 
message. For a message with size of m kilo-bytes, its 
propagation delay on path p is m × TRp. 
3.3. Routing Protocol 

The routing protocol of pub/sub systems determines 
the path via which the messages in the system travel 
from the senders to the receivers. Existing routing 
protocols for mesh-structured pub/sub systems fall into 
two categories: single-path routing [14, 15] and 

                                                 
3 According to the measured data in [18], the mean value of 
the one way end-to-end packet delay on a cross-Atlantic path 
with 22 hops is 108.2 ms, while the standard error is just 
3.083ms. 

multi-path routing [13]. In single-path routing, the 
system just selects one path for a message to travel 
from a publisher to a subscriber, while in multi-path 
routing, a message are transmitted via all possible paths 
from a publisher to a subscriber to improve reliability. 
To decrease the network traffic, in our solution we 
assume the single-path routing protocol is used. The 
criterion for path selection is to minimize the mean 
value of the transmission rate of the path. 

4. Preliminaries 

4.1. System Objectives 
To simplify discussion, we mainly focus on the 

following two scenarios in this paper: 
• Publisher-specified delay (PSD): the allowed delay 

of message delivery is specified by publishers 
while subscribers do not specify any delay 
requirement. 

• Subscriber-specified delay (SSD): Each subscriber 
specifies its requirement on the allowed delay of 
message delivery and at the same time gives a 
price for each successfully arriving message, while 
publishers do not specify any delay requirement.  

Our work can easily be extended to the case where 
both publishers and subscribers specify their delay 
requirements on message delivery. 

In the PSD scenario, the objective of the system is 
to make subscribers receive as many valid messages as 
possible. Suppose the publishers have published k 
messages in a given period, denoted by m1, m2, …, mk. 
For a message mi, let the number of subscribers 
interested in it be tsi, and the number of subscribers that 
receive it before the deadline be dsi. We can define a 
metric called delivery rate of the system as follows: 
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The system objective is to maximize the above 

delivery rate. 
In the SSD scenario, as different delay requirements 

correspond to different prices, the system objective is to 
maximize the total earning rather than the delivery rate. 
Suppose there are n subscribers in the system, denoted 
by s1, s2, …, sn. Let price(si) denote the price of each 
valid message provided by subscriber si, and msg(si) 
denote the number of all valid messages received by 
subscriber si in a given period. The total earning of the 
system in the period can be calculated as follows:  

 ∑
=

×
n

i
ii smsgsprice

1
)()(  (2) 



4.2. Data Structure 
To achieve the system objectives, the brokers 

should have the necessary information to perform 
efficient message scheduling. In our solution, each 
broker maintains a subscription table with the 
following format:  

{(subscriber, filter, dl, pr, nb, NNp, µp, σp
2)} 

where each item describes the following information of 
a subscription: 
• A subscriber is interested in all messages that 

satisfy the given filter. 
• The subscriber has specified the worst-case delay 

dl allowed for the messages, and is willing to pay 
the price pr for any valid message.  

• The current broker can reach the subscriber via the 
neighbor nb. 

• Let p denote the path from the current broker to 
the subscriber. The variable NNp is the number of 
intermediate nodes on the path p, while µp and σp

2 
are the mean value and the variation of the 
transmitting rate of the path respectively.  

To simplify description, we assume each subscriber 
just issues one subscription. Hereafter, we do not 
strictly differentiate a subscriber from its subscription. 

5. Message Scheduling Strategies 

In this section, we first introduce the three message 
scheduling strategies proposed for pub/sub systems, and 
then introduce the mechanism used by the system to 
detect invalid messages in transit. 

We mainly focus on the SSD scenario in this section 
as it is more complex than the PSD scenario. To apply 
the proposed scheduling strategies in the PSD scenario, 
we just need to set the price in the corresponding 
expressions to be 1, and change the delay requirement 
to be specified by publishers rather than subscribers.  

5.1. Maximum EB First 
The EB value of a message is the expected earning 

it can bring to the system when all remaining nodes 
always send the message in the first place. As the 
objective of the system is to maximize the total earning, 
it is reasonable to send the messages with maximum EB 
values first.  

For a message m waiting to be sent out on a broker 
N, suppose it can satisfy n subscriptions denoted by s1, 
s2, …, sn. Let the function success(si, m) denotes the 
probability that message m can arrive at si in the 
specified delay. The EB value of message m (denoted 
by EBm) is calculated as follows: 

 ∑
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According to the above expression, the EB value of 
a message is determined by the number of subscriptions 
that are interested in the message, the prices of the 
subscriptions, and the probability that the message 
arrives at the destinations before deadline. As a result, 
in the maximum EB first scheduling strategy, a message 
will have a higher priority in delivery if it can satisfy 
more subscriptions, or it has higher probability to arrive 
at the destinations in time, or the subscriptions provide 
higher prices for the message. 

Now we discuss how to calculate the function 
success(si, m). Let hdl(m) denotes the delay that has 
already occurred when the message m arrives at the 
current broker. The current broker can get the value of 
hdl(m) by subtracting the publishing time of the 
message from the current time. For a subscription si that 
is interested in the message, let the function fdl(si, m) 
denote the delay that will occur before message m 
reaches si. It is composed of the following three parts 
(let p denote the path from the current node to si): 
• The processing delay on all nodes in path p; 
• The scheduling delay on all nodes in path p; 
• The propagation delay in path p. 

As the scheduling delay on other nodes is unknown 
to the current node, we just assume the scheduling 
delay of the message on all nodes in path p is 0. So the 
function fdl(si, m) can be calculated as follows: 
 ppi TRmsizePDNNmsfdl ×+×= )(),(  (4) 
where size(m) is the size of message m, NNp is the 
number of nodes on path p and TRp is the transmitting 
rate of p. 

Let the function adl(si) denote the maximum 
allowed delay required by the subscriber si. The value 
of success(si, m) can be calculated as follows: 
 )}(),()({),( iii sadlmsfdlmhdlPmssuccess ≤+=  (5) 

As the probability distribution of TRp is known, we 
can easily get the value of the function for any 
messages and subscriptions. 

5.2. Maximum PC First 
We notice that in the maximum EB first strategy, the 

message with higher probability to successfully arrive 
at destinations is sent with a higher priority. However, 
the higher probability of successful delivery means that 
the delivery of the message is not very urgent. In other 
words, it may be harmless to postpone the sending of 
the message for a period, so that other messages with 
lower success probability can be sent out in advance. 
To overcome this disadvantage of the maximum EB 
first strategy, we propose another scheduling strategy in 
which the order of message delivery is determined by 
the urgency degree of messages.  

We use the postponing cost (PC) to indicate the 
urgency degree of a message. For a message m that is 



waiting to be sent out on broker N, the aforementioned 
EB metric is the expected benefit it can bring to the 
system if all remaining nodes send it in the first place. 
We can calculate another expected benefit, denote by 
EB', when the current node sends the message in the 
second place, while all other nodes still send it in the 
first place. We call the value of (EB – EB') the 
postponing cost of the message, which means the 
expected cost when the current broker postpones the 
sending of the message once. The sending task of the 
message is considered to be urgent if the cost is high. 

To compute the value of EB', we must know the 
time needed to send out the first message. As the first 
message has not been chosen yet at this time, we 
estimate the time as the average size of all messages 
multiplied by the mean value of the transmitting rate on 
the link from the current node to the corresponding 
neighbor, denoted by FT. 

In the case that the current node sends the message 
m in the second place while all other nodes send it in 
the first place, let fdl'(si, m) denote the delay that will 
occur before m reaches subscriber si, and success'(si, m) 
denote the probability that message m arrives at si in the 
required delay. We can calculate them with the 
following expressions: 
 FTmsfdlmsfdl ii += ),(),('  (6) 
 )}(),(')({),(' iii sadlmsfdlmhdlPmssuccess ≤+=  (7) 

So we get the EB' value and postponing cost 
(denoted by PCm) of message m as follows: 
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5.3. Maximum EBPC First 
As the expected benefit and the postponing cost are 

both important factors in determining the order of 
message delivery, we design a new metric that 
combines the two factors together, called Expected 
Benefit plus Postponing cost (EBPC). In the maximum 
EBPC first strategy, the order of message delivery is 
determined by both the expected benefit and the 
urgency degree of the messages. The calculation of 
EBPC value for message m is as follows:  
 mmm PCrEBrEBPC ×−+×= )1(  (10) 
where r is the weight of EB in determine the order of 
message delivery. The range of r is [0, 1], and the 
actual value can be set empirically to achieve the best 
results. 

5.4. Detection of Invalid Messages 
The system should delete any message that cannot 

arrive at any subscriber within its specified delay period 
as early as possible to avoid the unnecessary network 

traffic. To improve the utility of available bandwidth, in 
our solution, the brokers not only delete the messages 
that have already expired, but also the messages that are 
unlikely to arrive at any subscriber within the specified 
delay, although they may not expire yet. 

For a message m waiting to be sent out on a broker 
N, suppose it can satisfy n subscriptions denoted by s1, 
s2, …, sn. The condition to delete the message on broker 
N is as follows:  
 ε≤∈∀ ),(:},...,1{ mssuccessni i  (11) 
where ε is a relatively small value. The value of ε is set 
to 0.05% in our simulation described in the next 
section. 

6. Performance Evaluation 

We have implemented the proposed scheduling 
strategies in Java and evaluated their performance with 
a simulated network and a variety of simulated work 
load4. In this section, we describe our experimental 
study and discuss the performance evaluation results.  

6.1. Simulation Setup 
We simulate a layered structure of broker network 

as shown in Figure 3，which is similar to the topology 
used in [13, 14]. In the simulated network, there are 32 
brokers that are divided into 4 layers. In the first layer 
of the broker network there are 4 brokers each 
connected to a message publisher. In the second layer 
there are 4 brokers each connected to all brokers of the 
first layer. In the third layer there are 8 brokers, each 
randomly connected to 2 brokers of the second layer. In 
the fourth layer there are 16 brokers, each randomly 
connected to 2 brokers of the third layer. Each of the 
fourth-layer brokers serves 10 message subscribers, so 
there are a total of 160 subscribers in the system.  

The mean value of the transmission rate on each 
link is randomly generated in the range of 50 
milliseconds (ms) to 100 ms, and the standard error of 
the transmission rate on each link is 20ms.  The 
processing delay of each message on a broker is 2ms. 

Each publisher continuously publishes messages at 
a certain rate; we call the average number of messages 
published by each publisher per minute as the 
publishing rate of the system. The length of the whole 
test period is 2 hours. The size of each message is 50K 
bytes. The message head of each message is composed 
of the following contents: {A1=x1, A2=x2}, where A1, A2 
are attribute names and x1, x2 are double-type values 
randomly chosen from the range of (0, 10).  

Each subscriber has defined a subscription with the 
form of “A1<x1 ∧ A2<x2”, where x1, x2 are also values 
randomly chosen from the range of (0, 10). Therefore, 
for each published message, there are on average 

                                                 
4  The implementation codes can be downloaded from 
http://jlwang.rocklv.net/pubsub_bd/pubsub_bd.html 



(1/2)2=25% subscribers in the system that are interested 
in it.  

We simulate the delay requirement in the PSD and 
SSD scenarios respectively. In the PSD scenario, the 
delay requirement of each message is randomly 
generated in the range from 10 seconds to 30 seconds. 
In the SSD scenario, the delay requirement of each 
subscription is randomly chosen from the set {10s, 30s, 
60s}, and the corresponding price is {3, 2, 1} 
respectively. 

B5

B9

B4

… B16

B1

…

B8

P1 P4

…

…

…

S1 … …

B17 … B32……

… … … S160  
Figure 3. Topology of the simulated network 

In addition to our proposed scheduling strategies, 
we also implemented two other widely used scheduling 
strategies: FIFO and minimum remaining lifetime (RL) 
first, to evaluate the performance of them under the 
same environment and workload conditions. Hereafter, 
we call the five strategies as the EB, PC, EBPC, FIFO 
and RL strategies respectively. 

In the SSD scenario, as there may be multiple 
subscribers interested in a same message, the message 
may have multiple remaining lifetimes each 
corresponding to a subscription, which makes it 
difficult to apply the RL strategy. To solve this problem, 
we use the average value of the remaining lifetimes of 
each message for scheduling. 

The following metrics are defined to evaluate the 
performance of the different strategies: 
• Delivery rate: used in the PSD scenario, as defined 

by expression (1); 
• Total earning: used in the SSD scenario, as 

defined by expression (2); 
• Message number: the total number of messages 

received by all brokers, which reflects the overall 
traffic on the network. 

6.2. Simulation Results 
Figure 4 shows the performance comparison of the 

EB, PC and EBPC strategies. In this group of 
experiments, the publishing rate is 10, and the value of 
r in expression (10) varies from 0 to 100%. Figure 4(a) 
shows the total earning of the three strategies in the 
SSD scenario. It shows that the performance of the PC 
strategy is worse than the EB strategy, while the 
combination of EB and PC gets some advantage when r 
is in the range of (23%, 100%). Figure 4(b) shows the 

delivery rate of the three strategies in the PSD scenario. 
The performance of EB strategy is close to that of PC 
strategies, while the combination of EB and PC is 
always better.  

Since the performance of the EBPC strategy is close 
to that of the EB strategy with slight improvement, we 
just compare the EB, PC, RL and FIFO strategies in the 
following. Figure 5 shows the performance comparison 
of the four strategies in different publishing rates in the 
SSD scenario. Figure 5(a) shows that the total earning 
always increases in the EB and PC strategies, while the 
EB strategy can achieve more earnings than the PC 
strategy. On the other hand, in the FIFO and RL 
strategies, the total earning decreases after it reaches the 
peak. The reason is that with the increase of publishing 
rate, the congestion of the network becomes more and 
more serious, resulting in fewer messages arriving at 
the destinations in time. The RL strategy has the worse 
performance because in a pub/sub system composed of 
multiple brokers, the messages with very small lifetime 
can hardly reach subscribers in the required delay. If 
these messages are sent out first, the bandwidth is 
vainly expended resulting in the poor utility of network 
resource.  

Figure 5(b) shows the number of messages 
generated by the four strategies in the SSD scenario. 
The EB and PC strategies incur almost the same 
network traffics, which is a little more than that of 
FIFO and RL strategies. When the publishing rate is 15, 
the EB strategy incurs 23% and 64% more messages 
than the FIFO and RL strategies respectively, while the 
total earning of the EB strategy is 5 and 10 times that of 
the FIFO and RL strategies. Therefore, the EB strategy 
can make use of the network resource more efficiently. 

Figure 6 shows the performance of the four 
strategies in different publishing rates in the PSD 
scenario. As the system capacity is limited, the delivery 
rate certainly decreases with the increase of publishing 
rate. Figure 6(a) shows that the EB and PC strategies 
achieve almost the same delivery rate, which is higher 
than that of the other two strategies. When the 
publishing rate is 15, the delivery rates in the EB, FIFO 
and RL strategies are 40.1%, 22.5% and 11.6% 
respectively. Figure 6(b) shows the number of 
messages generated by the four strategies. When the 
publishing rate is 15, the EB strategy incurs just 17% 
and 60% more network traffics than the FIFO and RL 
strategies respectively.  

7. Conclusion 

Pub/sub systems are very suitable for dynamic 
information dissemination. However, as dynamic 
information is usually characterized by the short 
lifetime, information publishers or subscribers may 
specify the delay requirement on message delivery. In 
this paper, we propose an efficient approach for 
pub/sub systems to achieve bounded delay on message 
delivery. Three message scheduling strategies are 
proposed for pub/sub systems to make use of available 



bandwidths efficiently. Simulation results shows that 
our strategies enable subscribers to receive significantly 

more valid messages than traditional strategies, while 
incurring slightly more network traffic. 

                      
 a) Subscriber-specified delay b) Publisher-specified delay 

Figure 4. Performance comparison of EB, PC and EBPC strategies 

                      
 a) Total earning b) Message number 

Figure 5. Performance comparison in the SSD scenario 

                      
 a) Delivery rate b) Message number 

Figure 6. Performance comparison in the PSD scenario 
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