Fault-Tolerant Routing in Meshes/Tori Using Planarly Constructed
Fault Blocks

Dong Xiang, Jia-Guang Sun, Jie Wu, and Krishnaiyan Thulasiraman

Abstract

A few faulty nodes can make an n-dimensional
mesh or torus network unsafe for fault-tolerant rout-
ing methods based on the block fault model, where
the whole system (n—dimensional space) forms a fault
block. A new concept, called extended local safety in-
formation in meshes or tori, is proposed to guide fault-
tolerant routing, and classifies fault-free nodes inside
2—dimensional planes. Many nodes globally marked
as unsafe become locally enabled inside 2—dimensional
planes. A fault-tolerant routing algorithm based
on extended local safety information is proposed for
k—ary n—dimensional meshes/tori. Our method does
not need to disable any fault-free nodes, unlike many
previous methods, and this enhances the computa-
tional power of the system and improves performance
of the routing algorithm greatly. All fault blocks are
constructed inside 2-dimensional planes rather than
in the whole system. Extensive simulation results are
presented and compared with the previous methods.
Index Terms: Computational power, fault-tolerant
routing, extended local safety, unsafe systems,
mesh /torus.

1 Introduction

Torus and mesh-connected networks have been
widely used in recent experimental or commercial mul-
ticomputers [1]. The performance of such multicom-
puters is highly dependent on the node-to-node com-
munication cost. It is necessary to present an effective
fault-tolerant routing algorithm in a mesh/torus.

Dong Xiang and Jia-Guang Sun are with the School of Soft-
ware, T'singhua University, Beijing 100084, P. R. China. Jie Wu
is with the Department of Computer Science and Engineering,
Florida Atlantic University, Boca Raton, FL 33431, USA. Kr-
ishnaiyan Thulasiraman is with the School of Computer Science,
the University of Oklahoma, Norman, OK 73019, USA. Work
in this paper is supported in part by the NSF of China un-
der grants 60373009 and 60425203 and the NSF of USA under
grants CNS0422762 and CNS0434533.

The block fault model is the most popular fault
model. Some fault-free nodes must be disabled when
faults are arbitrarily shaped to form fault blocks. A
fault-free node is marked unsafe according to previ-
ous methods [2,4,6,15,16] if it has two faulty or unsafe
neighbors along different dimensions. Since an unsafe
node is disabled, a few faulty nodes can disable a large
number of fault-free nodes or even disable all fault-free
nodes based on the block fault model, especially for
higher dimensional meshes/tori. As shown in Fig. 1,
only 7 faulty nodes make all fault-free nodes disabled
in the 5x5x5 mesh. All previous methods [2,4,6,15,16)
can handle only the case in which both the source and
destination are outside of a fault block.

The proposed method constructs fault blocks inside
2D planes, where many unsafe nodes become safe in
separate planes. All resources related to the disabled
nodes can still be used to route a message. Each fault-
free node keeps its status in separate planes based
on the safety measure to be introduced in this pa-
per. Safety information kept in each fault-free node
is about three times as that of the extended safety
levels [16] in a 3D mesh/torus and n times in an n-
dimensional mesh/torus because each fault-free node
needs to keep its safety information inside ((n—1)-n/2)
2-dimensional planes and the proposed safety measure
in the whole system.

Note that fault blocks may be conjointed. Con-
nected fault blocks may not maintain the convex-
ity property. Therefore, a message may have to be
routed around a non-convex fault block that may re-
sult in substantial backtracks for the whole message in
a wormhole-routed network. Backtracking the whole
message in a network can greatly influence perfor-
mance of a fault-tolerant routing algorithm, especially
when the network contains enough faulty nodes or the
load of the system is large enough. This also indi-
cates the necessity to construct fault blocks planarly
and establish a path before sending a message, as in
pipelined-circuit-switching [9].

The main work of this paper is: (1) A new limited-
global safety-based measure called the extended local
safety information is proposed to guide fault-tolerant

0,4,4
) s S i — i wss

(0,4,0)

(4,0,4)

(0,0,0) (4,0,0)

O : unsafe node @ : faulty node

Figure 1: An unsafe 5—ary 3D mesh.

routing, based on which a new path set-up scheme
is proposed. (2) Fault blocks are constructed inside
separate planes, where many unsafe nodes can be ac-
tivated. This can significantly improve the computa-
tional power of the system and enhance the perfor-
mance of the fault-tolerant routing algorithm greatly.
(3) A new fault-tolerant routing algorithm based on
the extended local safety information is presented with
a new virtual subnetwork partitioning scheme to avoid
deadlocks.

The number of virtual channels required by the pro-
posed method is linearly proportional to the number
of dimensions of the network. This number is accept-
able for a practical mesh/torus network according to
[3,7], where the number of virtual channels is not the
main factor that contributes to the cost of a router in a
network. Unlike PCS [9,10], the proposed path set-up
scheme does not need to reserve any resource of the
network, which returns only the path. This scheme
can save a lot of bandwidth compared to PCS while
still presenting the same reliable path establishment.
Certainly, a new deadlock avoidance technique is nec-
essary. The proposed method works better when the
number of faults in the network and the load of the
network are not very low.

2 Related Work

Bruck et al. [5] proposed a method to partition a
hypercube into small subcubes, each of which has a

small number of faults. It was guaranteed that most
of the fault-free nodes form a fault-free connected com-
ponent. These kinds of connected components can be
used to implement various fault-tolerant algorithms in
hypercubes. Xiang [17] routed a message by localiz-
ing safety inside some safe subcubes even though the
whole hypercube is unsafe. Safety information inside
subcubes called local safety information was used to
guide fault-tolerant routing effectively. This idea is
also used in this paper to construct fault blocks inside
separate 2D submeshes (called planes).

Fault-tolerant routing in direct networks has been
studied extensively. Xiang and Chen in [18] proposed a
fault-tolerant routing scheme for 2D meshes/tori based
on local safety. Local safety is an improved safety mea-
sure of extended safety levels [15,16]. The method does
not need to disable any fault-free node to form fault
blocks. Gomez et al. proposed techniques for fault-
tolerant routing in 3D meshes/tori without disabling
any fault-free nodes in [11].

Linder and Harden [12] extended the concept of vir-
tual channel to multiple virtual interconnection net-
works that provide adaptivity, deadlock-freedom, and
fault-tolerance. Chien and Kim [6] proposed a planar-
adaptive routing algorithm that limits routing free-
dom and makes it possible to prevent deadlocks with
only a fixed number of virtual channels (three) in-
dependent of network dimension. Judicious exten-
sion of the proposed algorithm can efficiently handle
routing inside faulty nD meshes. Boppana and Cha-
lasani [2] developed fault-tolerant routing algorithms
for mesh-connected networks based on the e—cube
routing algorithm and the block fault model. At
most four virtual channels are sufficient to make fully-
adaptive algorithms tolerant to multiple fault blocks in
n—dimensional meshes. A deadlock-free fault-tolerant
routing algorithm for n—dimensional meshes was pro-
posed in Boura and Das [4] using three virtual channels
per physical channel. Fault regions were converted
into rectangular regions by a node labeling scheme.
However, the above methods [2,4,6] must disable some
fault-free nodes to construct the fault blocks, which
can result in a great loss of computational power for 3D
or higher dimensional networks. Recently, Wang [14]
proposed a rectilinear-monotone polygonal fault block
model to do fault-tolerant routing in 2D meshes by dis-
abling fewer fault-free nodes. Most recently, Puente,
Gregorio, Vallejo, and Beivide [13] proposed a fault-
tolerant routing mechanism for the 2D torus, which
can handle any number of faults if the network is con-
nected. The method [13] must build multiple routing
tables.

Path set-up was used first by circuit switching that
needs to reserve a physical path before routing a mes-
sage without any further deadlock avoidance tech-
nique, but can waste bandwidth and increase message
latency. The pipelined-circuit-switching (PCS) [9,10]
establishes a path by reserving a virtual channel path
before sending a message, which can tolerate dynamic
faults and simplify deadlock-free design. Wu [15,16]
proposed an adaptive and deadlock-free fault-tolerant
routing method based on extended safety levels. The
method needs to establish a region of minimal paths
before sending a message, which is the first known
fault-tolerant routing scheme based on a limited-global
safety measure.

3 Preliminaries

A mesh has k™ nodes, in which each dimen-
sion has k nodes. Two nodes (apan—1 -..a2a1) and
(bpbr—1 -..bab1) in a k—ary n—dimensional torus net-
work are connected if they differ at exactly one
bit i with a; = (b; + 1)modk. Two nodes in
a k—ary n—dimensional mesh (a,a,_1...a2a1) and
(bpbn—1...by by) are connected if they differ at ex-
actly one bit i (a; # b;), where |a; — b;] = 1, and
a;,b; € {0,1,2,...,]{:— 1}

A rectangular fault block contains all the connected
faulty and unsafe nodes. Some unsafe nodes can still
be locally enabled in one or more planes. In this paper,
we say a message is sent from a source s to a desti-
nation d along a minimum feasible path if the length
of the path equals the number of hops that s and d
differ, where all nodes in the path are fault-free.

Faults and unsafe nodes in 2D meshes can form rect-
angular shapes. A set of faults or unsafe nodes F in
a 2D mesh (or torus) are block faults if there is one
or more rectangles such that: (1) There are no faults
on the boundary of each rectangle. (2) The interior
of the rectangle includes all faults and unsafe nodes in
F. (3) The interior of the rectangle contains no node
or link that is not presented in F'. Fault blocks in a
3D mesh/torus or n-dimensional mesh/torus can be
formed like [2,6]. The only difference is that no fault-
free node is disabled. Local safety was introduced to
guide fault-tolerant routing in 2D torus and mesh-
connected networks [18]. Assume the system contains
rectangular fault blocks, in which the distance between
any two fault blocks is at least two. For each fault-free
node v in a mesh/torus network, the local safety of v
is defined as follows:

Definition 1 The local safety of a safe mnode

(0,0,0. (0,0,0,1) (0,0,0,1 0,0,1) (656.6) (6,6,6,6) (6,0:65)
(0,0,0,2) (0,0,0,1) (6,046,2) (6,0(6,1) (6/2,6,1)
4.0, 6,2 0,6,0, @10
©9.00.0) 0.4.0.0 ‘F ©9.15.0 ’TL‘P @5.14)
(o,a,o,#) 000030, 050 | 6.050]%, GEm6d)
©.0[.0) 0,40 Lopo) (6468 | $.:6p6) 6,96,
©.0 /’_rj;ﬁn D,0) [| [

@odo) (0616 0,806 dY als®)
02100200 | | + 2,61 ‘{07,6,3,6}
©.p.0, g&g,o) 2,20 s | 32408
@y 04,00\ BG:Ad0) 5 (6.36.0)(6:386,

(1,1.21) 0130) (0,1,00) (6666) (6666 VvV, (6,1,64)
(a) ®)

Figure 2: Extended safety level and the local safety:
(a) extended safety level [15], and (b) local safety [18].

v in an nD mesh (or torus) network is de-
fined as a 2n—element tuple (vi,va,...,vay,), where
v1,U2,...,Us, are each defined as the length of the
longest feasible path (not entering a fault block) from
v along all 2n different directions, respectively.

An element of the extended safety levels is defined
as the distance from the node along the corresponding
direction to a fault block [15,16]. Figs. 2(a) and 2(b)
show the extended safety level and the local safety of
all enabled fault-free nodes [18] in the 6—ary 2—cube.
Let (E,S,W,N) and (v, vs, vy, v,) be the extended
safety level and the local safety of a node along direc-
tions east, south, west, and north, respectively. It is
clear that the local safety of a fault-free node is never
less than the extended safety level of that node.

Consider node (0,0) at the southwestern corner of
the 6x6 torus as shown in Fig. 2. The eastward path
from the node touches a fault block after 2 hops, there-
fore, E = 2. The westward, northward, and southward
paths from the node reach the boundaries of three fault
blocks after one hop. So, W =S = N = 1. As for the
local safety of the same node, the length of the longest
feasible paths from the node to east, south, west, and
north are all 6.

Intermediate nodes must be found like [18] when
either the source or the destination is inside a fault
block. As shown in Fig. 2(b), consider sending a mes-
sage from s to d. It is necessary to find two enabled
nodes near to s and d. As shown in Fig. 2(b), v; and
v are selected as intermediate nodes of s and d, re-
spectively.

Definition 2 Nodes in a mesh (or torus) network can
be classified as faulty, unsafe, and enabled. A fault-
free node is called an unsafe node if it has two faulty
or unsafe neighbors along different dimensions; other-
wise, it is an enabled node. A system is called unsafe
if fault-free nodes in the system are all unsafe.

Note that most of the previous methods based on
the block fault model disabled all unsafe nodes, and
the unsafe nodes cannot be a source or a destination.
The unsafe nodes in this paper can be either a source
or a destination. This can improve the performance of
the system significantly.

4 Extended Local Safety

Only a few faults can make a 3D or n-dimensional
mesh/torus unsafe. However, reliable message rout-
ing can still be conducted inside many submeshes in a
mesh /torus in many cases although the system is un-
safe. Let two dimensions form a 2D submesh called a
plane. Let us check the 5—ary 3D mesh as shown in
Fig. 1 again. All fault-free nodes are enabled in each
plane except (0,0,0) and (1,0,1) in the plane (*,0,*).
Actually, a message between any pair of fault-free
nodes can be completed reliably. The following def-
inition needs to be presented first.

Definition 3 Fault-free modes inside a faulty nD
mesh (or torus) system are classified with respect to
a specific 2D plane: a fault-free node is a locally un-
safe node with respect to the submesh if it has at least
two faulty or locally unsafe neighbors inside the sub-
mesh; otherwise, a fault-free node is a locally enabled
node with respect to the plane.

We consider safety of all fault-free nodes inside var-
ious 2D submeshes (planes) in this paper, which can
also be extended to any other submeshes. Many nodes
become safe inside different planes although they are
unsafe in the whole system. Consider node (0,0,0) in
the faulty 5—ary 3D mesh. All fault-free nodes are
unsafe in the whole system, but all of them except
(0,0,0) and (1,0,1) are locally enabled in all planes.
Nodes (0,0,0) and (1,0,1) are locally unsafe in the plane
(*,0,*%) because they have two faulty neighbors inside
the submesh. Influences of faults can be limited inside
the corresponding subnetworks when the local safety
information is considered.

Definition 4 The extended local safety of a fault-free
node v in a k—ary nD mesh can be defined as a
2n—tuple (vi,va,...,v2,); each v; (1 < i < 2n) is
obtained by

V; = minj{vij}, (1)

where v;; is the corresponding value of the local safety
of the node along direction i inside the plane formed
by dimensions ¢ and j, and v is locally enabled inside
the plane.

Procedure extended-local-safety()

repeat

For each fault-free node v in the system, parallel do
local-class(v);

parallel end.

until stable states have been obtained.

local-class(i)

1. Node ¢ gets its states in different planes that con-
tain it;

2. if ¢ has at least two faulty or locally unsafe neigh-
bors along different dimensions in a plane, set
state of v in that plane as locally unsafe.

The extended local safety information of a sys-
tem can be updated if necessary. It should also be
noted that the extended local safety information is
not prepared to route one message. It is kept by
each fault-free node to guide fault-tolerant routing un-
til new faults occur. The effort to capture the ex-
tended local safety information should be comparable
to that required to form the rectangular fault blocks
[2,4,6,15,16,18], or to obtain the extended safety levels
[15,16] and the local safety [19]. The amount of safety
information stored in each node should be at most as
n times as that in [16], which should be acceptable
for practical networks. The extra information stored
in each node should include: (1) safety information of
the node in n - (n — 1)/2 different planes that contain
it, and (2) the extended local safety information of the
node, which is a 2n-tuple. Consider a 3D mesh/torus:
the amount of the extended local safety information
stored in each fault-free node is at most 3 times as
much as that of the extended safety levels [16], which
is acceptable.

The method in [18] presents a fault-tolerant rout-
ing algorithm only in 2D meshes or tori. Compared
with the safety measure in [18], the proposed method
can improve the adaptivity and performance of the
algorithm because all fault-free nodes inside a fault-
block can be the intermediate node of a message from
a source inside or outside of the fault block. The re-
sources with respect to globally unsafe nodes can thus
be used by the messages.

Let the extended local safety of a fault-free node in
a k—ary 3D mesh be represented as (E, S, F,W, N, B),
where E, W, F, S, N, and B represent the ex-
tended local safety values of the node along direc-
tions east, west, front, south, north, and behind, re-
spectively. As shown in Fig. 1, the extended local
safety of nodes (0,1,0) and (3,2,2) is (1,2,—,—,2,4)

“_n

and (1,2,2,3,2,2), respectively, where stands for
don’t care. We consider safety of fault-free nodes in-
side each plane.

The size of the safe node set based on the pla-
narly constructed fault blocks should be no less than
that of the one based on the conventional fault block
model. The extended local safety information can al-
ways present more information for fault-tolerant rout-
ing. As shown in Fig. 1, the extended local safety of
nodes (0,3,0), (4,3,4), and (2,0,2) are (4,3,--,1,4), (-
,3,4,4.0,-), and (2,-,2,2,4,2), respectively, where “-” is
don’t care. We consider safety inside planes; therefore,
our method is presented based on the extended local
safety information with respect to each plane. How-
ever, the extended safety level [16], the planar adaptive
routing method [6] and Boppana’s routing protocol [1]
can do nothing on the 3D mesh because the network
is unsafe.

5 Virtual Subnetwork Partitioning for
Deadlock Avoidance

A 3D mesh can be partitioned into eight differ-
ent virtual subnetworks: x+y+z+, x+y+z-, x+y-z+,
X+y-z-, Xx-y+z+, x-y+z-, x-y-z+, and x-y-z-. All eight
virtual subnetworks can be combined into 4 different
virtual subnetworks: x+y+z* (c1+,c1+,c1), x-y*z+
(co-,¢2,004), x-y*z- (c1-,¢3,¢2-) and x+y-z* (ca+,c1-
,c3). Labels in the brackets show virtual channel as-
signments of all virtual subnetworks. Messages are
classified based on the relative locations of the source
and destination. For example, a message to be sent
from (0,1,0) to (3,0,3) falls into the 4th class of mes-
sages.

Let both the source and destination be safe in any
plane. Only one additional virtual channel is enough
to support non-minimal routing and avoid deadlocks
because no turn is generated by the additional virtual
channels in these cases. Let at least one of source and
destination be unsafe inside at least one plane. Turns
may be formed by the extra virtual channel. Two
additional virtual channels are required in this case.
A deroute message should use ¢4 first. A turn from
a lower label dimension to a higher label dimension
should use ¢4, and a turn from a higher label dimension
to a lower label dimension should use extra virtual
channel ¢;5. No cyclic dependency among the extra
virtual channels forms.

As for 3D torus networks, possible cyclic depen-
dency generated by the wraparound links must be
eliminated. Linder and Harden [12] used another vir-
tual network after traversing a wraparound link, which

needs O(n-2") virtual channels for each physical chan-
nel. In our method, techniques similar to those for
meshes are adopted. All messages are partitioned into
4 different classes in a 3D torus. Virtual network par-
titioning is still utilized like 3D meshes. A message
uses the regular virtual channels assigned to the cor-
responding virtual network along a specific dimension
with “47) if the label of the current node with respect
to the dimension is less than that of the destination.
And the message uses an extra virtual channel ¢4 or
cs if the label of the current node with respect to the
dimension is greater than that of the destination. A
message uses the regular virtual channels assigned to
the corresponding virtual network along a specific di-
mension with “—” if the label of the current node with
respect to the dimension is greater than that of the
destination. And the message uses an extra virtual
channel ¢4 or ¢y if the label of the current node with
respect to the dimension is less than that of the desti-
nation. When a message is routed along a dimension
with “*”, virtual channels are utilized like a dimen-
sion with “4” if the label of the destination along the
dimension is greater than that of the source; other-
wise, virtual channels are assigned like a dimension
with “—7".

The potential cyclic dependency among the
wraparound links must also be avoided. As men-
tioned earlier, a message, when it uses a regular vir-
tual channel for the first wraparound link to a higher
label dimension wraparound link, uses virtual chan-
nel ¢4, while a turn from a higher dimension label
wraparound link to a lower dimension wraparound link
utilizes extra virtual channel ¢5. This scheme can suc-
cessfully eliminate the cyclic dependency among the
wraparound links. It is clear that no cycle exists in any
virtual subnetwork and among virtual subnetworks
[12,8,16]. Also, the derouted messages cannot form
any cycles if the network is not disconnected. Virtual
channels ¢4 and ¢ should be idle in most cases. Our
method utilizes the idle virtual channels and assigns
them as any virtual channels when necessary. The
label of the virtual channel can be relabeled as the
previous number after the message has been sent [7].
The technique can improve performance of the system
in most cases. Unlike [16], the proposed method does
not partition each virtual subnetwork into a sequence
of planes when sending a message. A message can be
routed to any minimum hop via the assigned virtual
channel inside the specified virtual subnetwork, which
can enhance adaptivity and performance of the algo-
rithm compared with [16].

6 Routing Algorithm Based on the Ex-
tended Local Safety

The routing algorithm might be approximately de-
scribed as follows: take a step in the direction most
likely to meet fault blockage; repeat until the desti-
nation is reached. In the case of blockage at the final
step, deroute along an unblocked path and continue.
A heuristic based on the extended local safety infor-
mation as presented in Equation (2) is used to avoid
fault blocks. In Equation (2), L;(s,d) is the number
of hops that s and d differ along dimension 4, and d;
is the extended local safety information of the source
with respect to dimension i as defined in Definition 4.
Only the extended safety information of the source is
necessary to compute the heuristic function.

hi = { d; — Li(s,d) otherwise. 2)

The PCS [9,10] and circuit switching need to re-
serve some resources of the network before sending
a message, which may waste some bandwidth. We
would like to propose a scheme without reserving any
resource. However, path set-up is still used. Assume
the source does not have knowledge of the extended lo-
cal safety of the destination. Each message falls into a
unique virtual subnetwork. A feasible path leading to
the destination is established inside the selected vir-
tual subnetwork until reaching the destination. The
message is derouted along the additional virtual chan-
nels if necessary, and returns to the virtual subnetwork
as soon as possible. The above process continues until
a feasible path has been set up. The set-up path can
be stored in the header.

In the rest of this section, procedure route-message-
in-nD-mesh() sends a message from s to d in a k—ary
n-dimensional mesh. Procedure select-path() com-
pletes the path set-up from the destination d to the
source s, and the procedure send-message() sends the
message from the source s to the destination d based
on the extended local safety information of the desti-
nation and location of the current node if a minimum
feasible path is not found in the first two stages.

route-message-in-nD-mesh()

1. Keep the extended local safety of the source s.
Find a path from the source leading to the desti-
nation inside the assigned virtual subnetwork.

2. If a minimum feasible path from s to d has been
set up at the destination d, send a signal from d

faulty nodes =20 message length = 32 fits buffer = 30 s 10 fault patterns 30000 cycles and 10000 start-up cycles

whi: o

Figure 3: Performance comparison with PCS and the
wormbhole routing techniques in 8x8x8 meshes.

to s along the setup path. The source s sends the

message along the setup minimum feasible path.
Otherwise (3).

3. Try to set up a minimum feasible path from d to
s inside the corresponding virtual subnetwork. If
s and d differ in only one dimension and there
exists a feasible path from the destination to the
source, a minimum feasible path has been set up.
Otherwise call select-path().

4. If a minimum feasible path has been found, send
the message from s along the selected path. Oth-
erwise, call send-message().

select-path()

1. Go along dimension ¢, where the source s has the
least heuristic h; corresponding to location of the
current node v and the extended local safety in-
formation of the source if a possible path along
dimension ¢ is available, otherwise (2).

2. Go along another dimension among the remaining
ones with the least heuristic based on Equation
(2) if the selected next hop is inside a fault block
in all planes that d and s differ.

3. Continue the above process until reaching a point
where s and d differ only in one dimension. A
feasible path has been set up if a feasible path
from the node to s is available. Otherwise (4).

4. Deroute the signal to a node, where s has the
most extended local safety along that dimension.
Go along a minimum hop if possible. Continue
the above process until reaching the source s.

send-message()

load rate=0.1 message length = 32 s buffer =30 fiits 10 fault pattems 30000 cycles and 10000ysfest-up ¢

whl °
wh2: ¥
pes 4

0.09 els

160|

140|
latency
(cycles)

120

whil: o
whz: 7 0.02]

pos : 4
els o 0.01

. M o P L
60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
number of faulty nodes number of faulty nodes

Figure 4: Performance comparison in 8x8x8 meshes
with fixed load rate.

1. Send the message along dimension ¢, where d has
the least heuristic h; with respect to the extended
local safety information of the destination and lo-
cation of the current node if the node is fault-free
and not in a fault block in one plane, otherwise

(2)-

2. Pass the message along another dimension, where
the destination d has the least heuristic among
the remaining dimensions and the next node is
not in a fault block in at least one plane.

3. Continue the above process until reaching a node
that differs from the destination in one dimension.

4. If there exists a minimum feasible path from the
node to the destination, pass the message along
the feasible path; otherwise, deroute the message
to a fault-free neighbor until a fault-free neighbor
in a minimum path from the current node to the
destination along another dimension is available.

5. Continue the above process until the destination
is reached.

7 Simulation Results

A flit-level simulator has been implemented to eval-
uate the proposed extended-local-safety-information-
based fault-tolerant routing algorithm (els). Flit-level
simulators on the planar adaptive routing algorithm
(whl) [6], the wormhole-routing-based algorithm pro-
posed by Boppana and Chalasani (wh2) [2], and the
pipelined-circuit-switching-based algorithm (pcs) [9]
have also been implemented to compare with the pro-
posed algorithm. All results in the following fig-
ures present the average of 10 different fault patterns.

faulty nodes =50 message length = 16 fis buffer =30 fis 10 fault pattems 30000 cycles and 10090ysts-u

whi
wh2

o 006

latericy throughput

(eycles) Eydnbod)
130 005

0 001 002 003 004 005 006 007 008 009 0.0
load ~ ratefiicycleinode)

0 001 002 003 004 005 006 007 008 009.10
load rate (ivcycleinode)

Figure 5: Performance comparison in 16x16x16
meshes.

load rate = 0.05 message length = 16 fits buffer =30 flis 10 fault patterns 30000 cycles and 10006ystes-up.

210 e 0.055

EEPN
190y pes 4 0050 $gRdud—i—3
els o

0.045

0.040
throughput
(fideycielnode]

0035

0030

0025

0020

0015

0010

0 60 120 180 240 300 360 420 480 540 0 60 120 180 240 300 360 420 480 540
number of faulty nodes number of faulty nodes

Figure 6: Performance comparison in 16x16x16
meshes with fixed load rate.

Faults are randomly inserted. The simulation results
are presented only for static faulty nodes, which can be
extended to link failure easily. The proposed method
can also be extended to dynamic faults easily like PCS
[9]. It is shown that wh2 always works a little better
than wh1. The most important reason can be that
wh1 always makes messages routed inside 2D planes
and also wh2 uses four virtual channels, but whi uses
only three virtual channels for each physical channel.
Two important metrics, latency (the number of cy-
cles required to deliver a message) and throughput
(flit/node/cycle), are evaluated. The message length
and buffer size of each node in 8x8x8 meshes are set
as 32 flits and 30 flits, respectively.

Fig. 3 presents performance comparison of all four
methods when the system has different load rates and
the 8x8x8 mesh contains 20 faulty nodes. Fig. 4
presents performance comparison of the four methods
when the load rate of the 8x8x8 mesh system is set as
0.10. Figs. 5 and 6 present performance comparisons
of the proposed extended local safety information with

the previous methods. Fig. 5 presents performance
comparison of the four methods when the 16x16x16
mesh contain 50 faulty nodes. Latency and through-
put comparisons of whi, wh2, pcs, and els are pre-
sented when load rate of the system is set as 0.01—0.10.
Fig. 6 demonstrates performance comparison of the
proposed method with five previous methods on the
16x16x16 meshes when the load rate of the system is
fixed as 0.05. The extended safety level (sl) [15,16] is
implemented for 16x16x16 meshes.

8 Conclusions

Extended local safety was utilized to guide fault-
tolerant routing in an n-dimensional mesh/torus,
which calculates safety information by forming fault
blocks inside each plane. The extended local safety
considers safety of a mesh/torus inside each plane in-
stead of in the whole system. This technique can make
numerous unsafe nodes in the whole system locally en-
abled in the 2D planes. The proposed method did not
disable any fault-free nodes, and any fault-free nodes
inside a fault block in a plane can still be a source or
a destination. Extensive simulation results were pre-
sented by comparing with previous methods.

References

[1] F. Allen, et al., “Blue gene: A vision for protein sci-
ence using a petaflop supercomputer,” IBM Systems
Journal, vol. 40, pp. 310-327, 2001.

[2] R. V. Boppana and S. Chalasani, “Fault-tolerant
wormhole routing algorithms for mesh networks,”
IEEE Trans. Computers, vol. 44, no. 7, pp. 848-864,
1995.

[3] R. V. Boppana and S. Chalasani, “A framework
for designing deadlock-free wormhole routing algo-
rithms,” IEEE Trans. on Parallel and Distributed Sys-
tems, vol. 7, no. 2, pp. 169-183, 1996.

[4] Y. M. Boura and C. R. Das, “Fault-tolerant routing in
mesh networks,” Proc. of IEEE Int. Conf. on Parallel
Processing, 1106-1109, 1995.

[6] J. Bruck, R. Cypher, and D. Soroker, “Tolerating
faults in hypercubes using subcube partitioning,”
IEEE Trans. on Computers, vol. 41, no. 5, pp. 599-
605, 1992.

[6] A. A. Chien and J. H. Kim, “Planar adaptive routing;:
Low-cost adaptive networks for multiprocessors,” J. of
ACM, vol. 42, no. 1, pp. 91-123, 1995.

[7] W. J. Dally and Aoki, “Deadlock-free adaptive rout-
ing multicomputer networks using virtual channels,”

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

IEEE Trans. on Parallel and Distributed Systems,
vol. 4, no. 4, pp. 466-475, Apr. 1993.

J. Duato, S. Yalamanchili, and L. Ni, Interconnection
Networks: An Engineering Approach, IEEE Press,
1997.

P. T. Gaughan and S. Yalamanchili, “A family of
fault-tolerant routing protocols for direct multipro-
cessor networks,” IEEE Trans. on Parallel and Dis-
tributed Systems, vol. 6, no. 5, pp. 482-497, 1995.

P. T. Gaughan, B. V. Dao, S. Yalamanchili, and
D. E. Schimmel, “Distributed, deadlock-free routing
in faulty, pipelined, direct interconnection networks,”
IEEE Trans. Computers, vol. 45, no. 6, pp. 651-665,
1996.

M. E. Gomez, J. Flich, P. Lopez, A. Robles, J. Du-
ato, N. A. Nordbotten, O. Lysne, and T. Skeie, “An
effective fault-tolerant routing methodology for direct
networks,” Proc. of IEEE Int. Conference on Parallel
Processing, pp. 222-231, 2004.

D. H. Linder and J. C. Harden, “An adaptive and
fault-tolerant wormhole routing strategy for k—ary
n—cube,” IEEE Trans. Computers, Vol. 40, no. 1,
pp. 2-12, 1991.

V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide,
“Immunet: A cheap and robust fault-tolerant packet
routing mechanism,” Proc. of ACM/IEEE Int. Symp.
on Computer Architecture, pp. 198-209, 2004.

D. Wang, “A rectilinear-monotone polygonal fault
block model for fault-tolerant minimal routing in
mesh,” IEEE Trans. on Computers, vol. 52, no. 3,
pp- 310-320, 2003.

J. Wu, “Fault-tolerant adaptive and minimal rout-
ing in mesh-connected multicomputers using extended
safety levels,” IEEE Trans. Parallel and Distributed
Systems, vol. 11, no. 2, pp. 149-159, 2000.

J. Wu, “A fault-tolerant adaptive and minimal routing
approach in nD meshes,” Proc. of IEEE Int. Conf.
Parallel Processing, Aug., pp. 431-438, 2000.

D. Xiang, “Fault-tolerant routing in hypercube mul-
ticomputers using local safety information,” IEEE
Trans. on Parallel and Distributed Systems, vol. 12,
no. 9, pp. 942-951, 2001.

D. Xiang and A. Chen, “Fault-tolerant routing in
2D tori or meshes using limited-global-safety informa-
tion,” Proc. of IEEE Int. Conf. on Parallel Processing,
pp- 231-238, Vancouver, Aug., 2002.

J. Zhou and F. C. M. Lau, “Adaptive fault-tolerant
wormhole routing in 2D meshes,” Proc. of 15-th
IEEFE Int. Parallel and Distributed Processing Symp.,
pp. 249-256, 2001.

