
A Hybrid Searching Scheme in Unstructured P2P Networks∗

Xiuqi Li and Jie Wu
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431
{xli, jie}@cse.fau.edu

Abstract

The existing searching schemes in Peer-to-Peer (P2P)
networks are either forwarding-based or non-forwarding
based. In forwarding-based schemes, queries are for-
warded from the querying source to the query destina-
tion nodes. These schemes offer low state maintenance.
However, querying sources do not entirely have control
over query processing. In non-forwarding based methods,
queries are not forwarded, and the querying source directly
probes its neighbors for the desired files. Non-forwarding
searching provides querying sources flexible control over
the searching process at the cost of high state maintenance.
In this paper, we seek to combine the powers of both for-
warding and non-forwarding searching schemes. We pro-
pose an approach where the querying source directly probes
its own extended neighbors and forwards the query to a
subset of its extended neighbors and guides these neigh-
bors to probe their own extended neighbors on its behalf.
Our approach can adapt query processing to the popular-
ity of the sought files without having to maintain a large set
of neighbors because its neighbors’ neighbors are also in
the searching scope due to the 1-hop forwarding inherent
in our approach. It achieves a higher query efficiency than
the forwarding scheme and a better success rate than the
non-forwarding approach. To the best of our knowledge,
the work in this paper is the first one to combine forwarding
and non-forwarding P2P searching schemes. Experimental
results demonstrate the effectiveness of our approach.

1. Introduction

Peer-to-Peer (P2P) networks have been widely used for
information sharing. In such systems, all nodes play equal
roles and the need of expensive servers is eliminated. P2P

∗This work was supported in part by NSF grants CCR 9900646, CCR
0329741, ANI 0073736, and EIA 0130806.

networks are overlay networks, where each overlay link
is actually a sequence of links in the underlying network.
P2P networks are self-organized, distributed, and decentral-
ized. In addition, they can gather and harness the tremen-
dous computation and storage resources on computers in
the entire network. P2P networks can be classified asun-
structured, loosely structured, andhighly structuredbased
on the control over data location and network topology [7].
In this paper, we are concerned with unstructured P2Ps be-
cause they are the most widely used systems in practice. In
such systems, no rule exists that defines where data is stored
and the network topology is arbitrary.

Searching is one of the most important operations in
P2P networks. Most existing P2P searching techniques are
based onforwarding [7]. In such schemes, a query is for-
warded on the overlay from the querying source toward the
querying destinations where the desired data items are lo-
cated. The query forwarding stops when the termination
condition is satisfied. Forwarding schemes offer low state
maintenance. Each node only needs to keep a small number
of neighbors. However, the querying source has no control
over query processing. Once the query is forwarded, the
querying source has no influence on the number of nodes
that receive the query and in which order these nodes re-
ceive the query. Too many nodes are searched for popular
data items while not enough nodes are examined for rare
ones. Therefore, the forwarding-based approach does not
offer query flexibility and has low query efficiency.

Recently,non-forwardingschemes were proposed in [2]
[12]. In these approaches, queries are not forwarded. In-
stead, the querying source directly probes its neighbors for
the data items it desires. Thus the querying source has full
control over query processing. The extent of a search is de-
termined by the querying source. For popular items, only
a small number of nodes need to be searched. For rare
items, a large number of nodes are queried. No resource
is wasted to search for popular items. However, to find
rare items, each node has to maintain (dynamically recruit)
a large number of living neighbors because it relies solely

on its own neighbors for finding a data item. The system
has to either carry a large overhead to keep a large number
of neighbors alive or leaves queries unsatisfied with a low
state maintenance overhead because the number of living
neighbors that a node is aware of is not enough for finding
rare items.

In this paper, we seek to combine these two schemes
to get their advantages while lowering their disadvantages.
Our goals are to advocate the integration of both schemes,
to explore different methods for integration, and to evalu-
ate the integrated schemes. We propose an approach that is
a unification of direct query probing and guided 1-hop for-
warding. Given a query, the querying source directly probes
its own extended neighbors for the desired files and for-
wards the query to a selected number of neighbors. These
neighbors will probe their own extended neighbors on be-
half of and under the guidance of the querying source and
will not forward the query further. When the query termi-
nation condition is satisfied, the querying source terminates
its own probing and the probing of its neighbors.

The main contributions of this paper are the following:

• We identify the necessity to integrate both the forward-
ing schemes and non-forwarding schemes into one ap-
proach.

• We devise a hybrid approach that combines both the
forwarding and non-forwarding schemes. This hybrid
approach achieves query flexibility, query efficiency,
and query satisfaction without a large state mainte-
nance overhead. To the best of our knowledge, this
work is the first one to combine both schemes.

• We investigate different design tradeoffs in integrating
the forwarding and non-forwarding approaches. These
choices include constant integration and adaptive in-
tegration. We point out their pros and cons and offer
some practical advice in applying them to real world
systems.

• We put forward two new policies for recruiting new
neighbors, calledMost Files Shared in Neighborhood
(MFSN) and Most Query Results in Neighborhood
(MQRN). The nodes with more files and more past
query results in its neighborhood are recruited first.

• We evaluate our hybrid approach against both the for-
warding schemes and non-forwarding schemes and
demonstrate the performance improvement in our hy-
brid approach through simulations.

This paper is organized as follows. In Section 2, the for-
warding and non-forwarding searching schemes in unstruc-
tured P2P networks are reviewed. In Section 3, the proposed

hybrid approach is overviewed and contrasted with the for-
warding and non-forwarding schemes. In Section 4, the de-
tails about the hybrid approach, such as action queue com-
putation, different integration design choices including con-
stant integration and adaptive integration, and state mainte-
nance are discussed. In Section 5, the experimental setup
and results are described. At the end, our work is summa-
rized and a future plan is identified.

2 Related work

Most searching schemes in unstructured P2P networks
are forwarding-based, including iterative deepening [11],
local indices [11],k-walker random walk [8], modified
random BFS [6], two-levelk-walker random walk [5], di-
rected BFS [11], intelligent search [6], routing indices based
search [3], adaptive probabilistic search [9], and dominating
set based search [13]. These schemes are different varia-
tions of flooding used in Gnutella [1]. They can be classi-
fied as deterministic or probabilistic [7].

In contrast, there are only two non-forwarding schemes
for searching unstructured P2Ps in the research literature.
The non-forwarding concept was first proposed in GUESS
[2]. In this approach, each node fully controls the entire pro-
cess of its own queries. Each node directly probes its own
neighbors in a sequential order until the query is satisfied or
until all neighbors have been probed. The query fails in the
latter case. Each node uses alink cacheto keep information
about its neighbors, which includes the IP, the time stamp,
the number of files shared, and the number of results from
the most recent query. There is one entry for each neigh-
bor in the link cache. These link cache entries are refreshed
through periodic pings. In addition, to add new neighbors
into the link cache, each node also requests that its neigh-
bors select a certain number of their own link cache entries
and return them in the pongs during the periodic pings.

Because of the overhead of link cache maintenance, the
link cache size cannot be too large. To accommodate this
problem, when a neighbor is probed during the processing
of a query, it also returns some of its own link cache entries
in a separate query pong message. These link cache entries
are stored in another cache, calledquery cache. Each entry
in the query cache has the similar content to that in the link
cache. Some entries in the query cache may be moved to
the link cache. However, the entries in the query cache is
not maintained.

The performance of GUESS is improved in [12], which
emphasizes the impacts of different design choices, called
policies, in non-forwarding schemes. The policies are clas-
sified into five types: QueryProbe, QueryPong, PingProbe,
PingPong, and CacheReplacement. For each policy type,
many specific policies may be adopted. Five common poli-
cies, which include random (RAN), most recently used

forwarded and forwarding node

node forwarded only

probed and forwarded node

node probed only

querying source

(b)

(c)
(a)

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

Figure 1. The three types of P2P searches. (a) forwarding
based. (b) non-forwarding based. (c) hybrid.

(MRU), least recently used (LRU), most files shared (MFS),
and most results (MR), are proposed for these policy types.

3 Outline of the hybrid search

Figure 1 illustrates the differences between the three
types of searching approaches, forwarding based, non-
forwarding based, and hybrid. In the figure, a node’s chil-
dren refer to some or all its neighbors in the P2P overlay.
Forwarding-based searching can be regarded as aD-level
tree rooted at the querying source as shown in Figure 1(a).
D refers to the maximum TTL value. The querying source,
denoted by a triangle, checks its local datastore and for-
wards the query to its children nodes. These children, de-
noted by solid squares, look up their local datastores and
forward the query to their own children. This process con-
tinues until the search terminates successfully at a leaf node
that is not at Level-D or the search fails at a leaf node that is
at Level-D. It is observed that once the query is forwarded,
the querying source cannot control how the nodes on this
tree process the query. Each node just needs to maintain a
small number of neighbors because nodes withinD hops of
the querying source are potentially in the searching scope.

Non-forwarding based searching is shown in Figure 1(b).
It is a 1-level tree rooted at the querying source. The query-
ing source directly probes its child nodes for the desired
files. These children only search their local datastores and
do not send the query further. The querying source termi-
nates the search when the query is satisfied or when all its
neighbors are probed. Only the querying source and its di-
rect neighbors are involved in the processing of a particu-
lar query. Therefore, each node must maintain a sufficient
number of live neighbors. These neighbors are dynamically
recruited and updated via periodical ping-probes and ping-
pongs.

(b)

(a)

B4B3B2B1 8030

8010060 8030 40

A

100 10

80 90 100 150 200 100100503020

Intermediate AQ

P_B2F_B1P_B3F_B2F_B4F_B3P_B4P_B1

TailHead

P: Probe only F: Forward only PF: Probe&Forward

Final AQ

Head Tail

P_B1 P_B4 PF_B3 F_B4 PF_B2 F_B1

Figure 2. An example of action queue computation. (a)
the querying sourceA and its 2-hop neighborhood, and the
file distribution. (b) the computed action queue (the inter-
mediate and final results).

The hybrid searching is illustrated in Figure 1(c). It is
a 2-level tree rooted at the querying source. The query-
ing source directly probes the nodes at Level-1 of the tree.
In the mean time, it also forwards the query to the inter-
nal nodes at Level-1 and guides these nodes to probe the
nodes at Level-2 on its behalf. The querying source ter-
minates the search when the query is satisfied or when all
its neighbors and its neighbors’ neighbors are probed. The
maximum searching scope for a query in this approach is
the 2-hop neighborhood of the querying source.

Like the non-forwarding approach, a node in the hybrid
approach maintains an extended neighbor set and dynam-
ically recruits and updates this neighbor set via periodic
ping-probes and ping-pongs. However, the hybrid approach
can achieve the same or higher query satisfaction with less
neighbors per node. Compared to the forwarding-based ap-
proach, the querying source in the hybrid approach can con-
trol the extent of the searching.

To combine the forwarding and non-forwarding
smoothly, the hybrid search is implemented as follows. It
considers three types of actions,probing only, forwarding
only, probing and forwarding. Probing onlymeans that the
querying source probes its neighbors and these neighbors
look up their local datastores.Forwarding onlymeans that
the querying source does not probe its neighbors but guides
its neighbors to probe their own neighbors on its behalf.
Probing and forwardingmeans the combination of the first
two actions.

When processing a query, the querying source first ranks
these three types of actions if performed on all its neigh-
bors and organizes these actions into anaction queue. Two

examples of action queues are shown in Figure 2(b). The
final AQ(Action Queue) contains six actions listed in the
descending order of their ranks, probe nodeB1, probe node
B4, probe and forward to nodeB3, forward to nodeB4,
probe and forward to nodeB2, and forward to nodeB1.
The querying source then takes actions in this queue in or-
der. It can take actions at a constant rate ofk1 actions at
once, which is calledconstant integration. It can also take
actions at a variable rate depending on the rareness of the
sought files, which is referred to asadaptive integration.
The querying source terminates the entire searching process
when the query is satisfied or when all actions in the queue
have been taken.

The action ranking considers both the costs and gains of
actions. The cost of an action is the time (in terms of the
number of overlay hops) it takes for that action to be com-
pleted. The gain of an action is the estimated probability of
that action for returning query results, which are determined
by the system policies. These policies can also be used by
the neighbors of the querying source for probing their own
neighbors on behalf of the querying source.

To keep information about neighbors, each node actively
maintains alink cache. There is one entry per neighbor.
These entries are periodically updated (deleting dead en-
tries, replacing existing entries using new entries) according
to system policies. We propose two new policies,Most Files
Shared On Neighborhood (MFSN)andMost Query Results
on Neighborhood (MQRN).

4 The hybrid search

The hybrid search involves the querying source and its
neighbors. The processing at these nodes is shown in Al-
gorithm1 and Algorithm2. Given a queryq, the querying
sources first computes the action queueAQ based on the
discussion in section 4.1. If constant integration is adopted,
s takes the firstk1 actions inAQ at the same time.k1 is
a system parameter.P , F , or PF messsages are sent to
the intended neighbors according to the action types. When
v receivesP or PF messages, it looks up its datastore and
returns the query results if there is any. Whenv receivesF
or PF messages, it probes its own neighbors on behalf ofs
with k2 neighbors per probe.k2 is also a system parameter.
If s receives any query result from a neighborv, s stores that
result. If adaptive integration is employed, follow the de-
tailed algorithm in section 4.2. Whenq is satisfied,s stops
its own probing and the probing performed by its neighbors
on its behalf.

4.1 Action queue computation

The action queue is computed based on the gain/cost ra-
tios of the actions if they are performed on the querying

Algorithm 1 The hybrid search at the querying sources

1: Compute theaction queueAQ for the queryq based on
the description in section 4.1;

2: if the integration design is constantthen
3: while q is not satisfied ANDAQ is not emptydo
4: remove the firstk1 actions fromAQ and store

them in the arrayACTk;
5: for i = 0 to k1 − 1 do
6: if ACTk[i] is ProbeOnly then
7: sendP message to the intended node;
8: else ifACTk[i] is ForwardOnly then
9: sendF message to the intended node;

10: add this node to the set:FWDed;
11: else
12: sendPF message to the intended node;
13: add this node to the set:FWDed;
14: end if
15: end for
16: if s receives query results from a neighborv then
17: store the query results in the arrayQRes;
18: if v has probed all its neighborsthen
19: removev from the setFWDed;
20: end if
21: end if
22: end while
23: else
24: call the algorithmadaptive integration search in

section 4.2;
25: end if
26: if q is satisfiedthen
27: Order each node inFWDed to stop probing on be-

half of s;
28: end if

Algorithm 2 The hybrid search at the querying sources’s
neighborv

1: if v receives aP messagethen
2: v checks its local datastore and returns a query result

to s if the result is found;
3: else ifv receives aF messagethen
4: v probes its own neighbors on behalf ofs at the rate

of k2 nodes per probe;
5: else
6: v checks its local datastore and returns a query result

to s if the result is found;
7: v probes its own neighbors on behalf ofs at the rate

of k2 nodes per probe;
8: end if

source’s neighbors. We intend to use the number of query
results per hop as the gain/cost ratio. The cost of an action
is the time (in terms of the number of overlay hops) taken
for that action to be completed. The gain of an action is
the estimated probability of that action for returning query
results. This probability is computed based on the system
policy on estimating nodes’ query-answering ability. Possi-
ble policies are random (RAN), most recently used (MRU),
most files (MF), and most query results (MR). The action
queue computation algorithm varies according to the cho-
sen system policy.

If the system policy is random, the action queue is a ran-
dom sequence ofProbeOnly actions on all neighbors of
the querying sources followed by a random sequence of
ForwardOnly actions on those neighbors. If the system
policy is most recently used, the action queue is a sequence
of ProbeOnly actions ons’s neighbors, followed by a se-
quence ofFowardOnly actions on those neighbors. Both
sequences are sorted in the descending order of the times-
tamp whens interacted with these neighbors regardless
which party initiated the interation. NoProbe&Forward
action is involved in these two policies to reduce the query
traffic.

If the system policy is most files, the action queue is
computed according to Algorithm3. The gain/cost ratio of
aProbeOnly action on a neighborv, denoted byPGCRv,
is computed using the following formula.NumFv repre-
sents the gain of the action. It is the number of files on node
v. 2 is the cost of this action,2 overlay hops.

PGCRv =
NumFv

2

The gain/cost ratio of aForwardOnly action on a
neighborv, denoted byFGCRv, is calculated according
to the following formula.NBv refers to the set of neigh-
bors of nodev. NumFu refers to the number of files onu.
dv represents the degree of nodev. k2 is the system param-
eter mentioned earlier. The gain of this action is the total
number of files onv’s neighbors. The cost of this action is
the denominator where1 means that it takes one hop for the
querying sources to send aF message tov, 2dv/k2 repre-
sents the time taken forv to finish probing all its neighbors
at the rate ofk2 nodes per probe,dv/k2 denotes the time
taken forv to return all query results found on its neighbors
to s, andγ refers to the penalty weighting factor because
probing and forwarding are considered together in action
ranking.

FGCRv =

∑
u∈NBv

NumFu

γ(1 + 2dv/k2 + dv/k2)

If the system policy is most query results, the action
queue computation is similar to that of most files. The only
difference is that the number of files on nodeu andv are

Algorithm 3 The action queue computation at the querying
sources for policies MF and MR

1: compute the gain/cost ratios of the actionsProbeOnly
andForwardOnly if performed on each neighborv;

2: sort these actions in the descending order of their
gain/cost ratios and store the result in the linked list
AQ.

3: if a node v exists such that the action
ForwardOnly to v precedes actionProbe v Only in
AQ then

4: replace the action FowardOnly to v by
Probe v and Forward to v;

5: remove the actionProbe v Only from AQ;
6: end if

replaced by the number of query results for the most recent
query onu andv respectively.

An example of action queue computation is shown in
Figure 2 and Table1. Suppose that the querying source
A, its neighborsB1, B2, B3, B4, and its neighbors’ neigh-
bors are the same as that in Figure 2(a). The numbers
next to each node refers to the number of files on that
node. Assume that the system policy for estimating nodes’
query-answering ability is most files,k2 = 2, andγ = 2.
We first consider theProbeOnly andForwardOnly ac-
tions if performed on each neighbor ofA. The gain/cost
ratios of these actions are illustrated in Table1. Take
nodeB4 as an example. The gain/cost ratio of the action
Probe B4 only is 80/2 = 40. The gain/cost ratio of the
actionForward to B4 only is

60 + 100 + 80 + 80
2(1 + 2∗4

2 + 4
2)

.= 23.

Then we sort these actions in the descending order of their
gain/cost ratios and get the intermediate action queue as
shown in Figure 2(b). BecauseForward to B3 only
(F B3) action appears beforeProbe B3 only (P B3) ac-
tion in the intermediate AQ, they are combined into one ac-
tion Probe B3 and Forward to B3 (PF B3). Similarly
the actionsF B2 andP B2 are combined into the action
PF B2. The final AQ is shown in Figure 2(b).

4.2 Integration design

We consider two ways to integrate forwarding and prob-
ing, constant integrationandadaptive integration. In con-
stant integration, the querying sources takes actions in the
action queue at a constant speed (k1 actions each time where
k1 is determined experimentally). In adaptive integration,s
adjusts its action-taking progress according to the rareness
of the sought files. The rarer, the more progressive. There

are many options for adaptive integration. One simple ex-
ample is to adjust the progress according to the following
formula. α denotes the number of actions taken bys each
time. α is initialized toα0 and is increased byβ actions for
everyNumN nodes that have been searched since last up-
date.NumN serves as an update interval.NumNSoFar
is the total number of nodes that have been searched since
the beginning of the query processing.α0 andβ will be
determined experimentally. The neighbors of the querying
sources must report their probing progress tos. The hy-
brid search in the case of adaptive integration is shown in
Algorithm 4. The main difference is thats must initializeα
before processing a queryq and updateα while processing
q.

α = α0 + bNumNSoFar

NumN
cβ

Algorithm 4 The adaptive integration search at the
querying sources (called by Algorithm 1)

1: Initialize α;
2: while q is not satisfied ANDAQ is not emptydo
3: remove the firstα actions fromAQ and store them

in the arrayACTk;
4: for i = 0 to α− 1 do
5: if ACTk[i] is ProbeOnly then
6: sendP message to the intended node;
7: else ifACTk[i] is ForwardOnly then
8: sendF message to the intended node;
9: add this node to the set:FWDed;

10: else
11: sendPF message to the intended node;
12: add this node to the set:FWDed;
13: end if
14: end for
15: if s receives query results from a neighborv then
16: store the query results in the arrayQRes;
17: if v has probed all its neighborsthen
18: removev from the setFWDed;
19: end if
20: end if
21: if the interval for updatingα arrivesthen
22: updateα accordingly;
23: end if
24: end while

4.3 Query probing

Both the querying sources and its neighbors perform
probing during the processing of a query. The probing per-
formed bys is considered together with forwarding in the
action queue computation. This subsection dicusses the

Node ProbeOnly ForwardOnly

B1 50 8.5
B2 5 23
B3 15 40
B4 40 23

Table 1. The gain/cost ratios ofProbeOnly and
ForwardOnly actions if performed onA’s neighbors.

Notation Definition

IP The IP address ofB
TS The last time whenA andB interacts

with each other
NumFilesP The number of files onB
NumResP The number of query results for the last

query found onB
NumFilesF The total number of files onB’s neigh-

bors
NumResF The total number of query results for

the last query found onB’s neighbors

Table 2. The data structure of a link cache entry at nodeA
for neighborB.

probing performed bys’s neighbors on its behalf as a re-
sult of query forwarding. This probing is at the rate ofk2

nodes per probe. It is guided by the same system policy for
estimating nodes’ query-answering ability that was chosen
in action queue computation.

Suppose thatv is a neighbor ofs. If the system policy
is random,v randomly choosesk2 of its own neighbors that
have not been probed and probes these neighbors concur-
rently. If the system policy is most recently used,v selects
k2 of its own neighbors that have not been probed and have
the latest timestamps among all of its unprobed neighbors.
If the system policy is most files or most query results,v
choosesk2 unprobed neighbors that have the top number
of files or top number of query results for the most recent
query.

4.4 The state maintenance

Like the non-forwarding based searching, each node uses
a link cache to maintain information about neighbors. How-
ever, link cache entries in the hybrid approach have different
content because a node needs to know the information about
a neighbor and this neighbor’s neighbors. Table 2 shows the
data structure of the link cache entry for neighborB at node
A in the hybrid approach. It should be noted that theTS is
updated no matter which party,A or B, initiates the inter-
action and what type of interaction is.

Figure 3. (a) The number of query messages per query.
(b) The unsuccess rate in terms of the link cache size for the
hybrid search.

The link cache is refreshed and updated through periodic
pings. Each node periodically selects some of its neighbors
and sends Ping messages to these neighbors. These neigh-
bors reply with Pong messages that include the latest infor-
mation about themselves and a selected number of entries
in their own link cache. The ping interval is a system pa-
rameter. There are three types of system policies that spec-
ify how the periodic pings are conducted. They are Ping-
Probe policy, PingPong policy, and CacheReplacement pol-
icy. The PringProbe policy specifies the neighbor selection
rule for sending Pings. The PingPong policy is used to se-
lect neighbors to be included in the Pong when responding
to a Ping. The CacheReplacement policy determines the
rule for replacing existing entries by the new entries.

For each policy type, one of the seven specific policies
may be chosen, random (RAN), most recently used (MRU),
least recently used (LRU), most files shared on neighbor
(MFS), most query results on neighbor (MR), most files
shared in neighborhood (MFSN), and most query results in
neighborhood (MQRN). The RAN, MRU, LRU, MFS, and
MR are similar to those in the non-forwarding approach.
The MFSN and MQRN are new policies proposed in this
paper. The MFSN selects the neighbor that has the most
shared files in its 1-hop neighborhood including that neigh-
bor itself. The MQRN chooses the neighobr that returns the
most query results for the last query, which counts the re-
sults found on that neighbor and the results found on that
neighbor’s neighbors.

5 Experimental Results

The performance of the hybrid approach is evaluated ex-
perimentally against the forwarding-based scheme and non-
forwarding searching. Only the base-line policyRANis im-
plemented because of the time limitation. The performance
measures are the average query success rate and the average
number of query messages per query. A query is a search
for a single document based on the document ID. A query is

Figure 4. (a) The unsuccess rate in terms of the link cache
size. (b) The query unsuccess rate in terms of the average
number of messages per query of three approaches

considered successful if at leastnumDesiredResultscopies
of the sought document are found.

We created a network ofnumNodes nodes. The overlay
for the forwarding approach is random graph with an aver-
age node degree of4. For the non-forwarding and hybrid
approach, each node’s link cache is seeded withcacheSeed-
Sizeneighbors. Then the neighbors are dynamically ex-
tended/updated based on thePingProbePolicy, PingPong-
Policy, andCacheReplacementPolicy. Both the document
replication distribution and the query distribution is zipfian
distribution. As suggested in [10], we let10 percent of the
documents have around30 percent of the total stored copies
and receive around30 percent of total query requests.

To simulate the dynamic network, we letpctNode-
sChangednodes die periodically. It is assumed that when a
node dies, another new node is born and the dead node does
not return to the system. Therefore the number of nodes in
the system remains the same. We use therandom friend
seeding policy[4] to initialize the link cache of the new
node. The new node introduces itself to nodes in its link
cache at probabilityintroProb = 0.1. Each node pings
a fixed number of neighbors in the link cache at constant
speed.

Figure 3 illustrates the impact of the different link cache
sizes in networks of different scales for the hybrid approach.
To isolate the effect of the link cache, we did not imple-
ment the query cache. As seen in Figure 3(a), the number
of query messages per query increases as the link cache gets
larger. The query unsuccess rate drops quickly as the link
cache size increases as shown in Figure 3(b). When the link
cache size is more than30, the query unsuccess rate does
not change much. Figure 4(a) explains the reason. More
messages are sent to dead neighbors when the link cache
size is larger. The networks at different scales show similar
trends as the link cache size changes. These figures suggest
that the appropriate values for the link cache are in the range
of 15 to 30.

In Figure 4(b), we compare the hybrid approach to the
forwarding and non-forwarding approach using the query

unsuccess rate per average query cost (the number of query
messages per query) in the network of1000 nodes. The link
cache sizes of the non-forwarding and hybrid approach are
100 and20 respectively. The ping intervals are the same for
both the non-forwarding and hybrid approaches. The for-
warding approach has a fixed searching extent; the query
unsuccess rate increases dramatically when the query cost
is restricted. Both the hybrid approach and non-forwarding
approach have smaller unsuccess rates than the forward-
ing approach at the same query cost due to query flexibil-
ity. When the state maintenance overhead is similar (ping
at the same speed and pong size is the same), the hybrid
approach can achieve a higher success rate than the non-
forwarding approach. This is due to the1-hop forwarding
inherent in the hybrid approach. The searching scope of the
hybrid approach includes more living neighbors. It should
be noted that the higher success rate of the hybrid approach
is achieved at a query cost higher than the non-forwarding
approach but lower than the forwarding approach. In sum-
mary, the experimental results demonstrate that the hybrid
approach combines the advantages of both the forwarding
and non-forwarding approaches.

6. Conclusions

In this paper, we propose a hybrid searching scheme in
unstructured P2P networks. It is a combination of probing
and guided1-hop forwarding. Given a query, the querying
source probes its neighbors and forwards the query to its
neighbors. These neighbors probe their own neighbors on
behalf of and under the guidance of the querying source as a
result of query forwarding. When the query is satisfied, the
querying source terminates its own probing and the probing
performed by its neighbors. To integrate the probing and
forwarding smoothly, we compute anaction queuewhich
consists ofProbeOnly, ForwardOnly, andProbe&Forward
actions sorted in the descending order of their gain/cost ra-
tios. The querying source just takes actions in this queue at a
constant rate or a variable rate that is adapted to the rareness
of the sought data. We also propose two new policies for
recruiting new neighbors,Most Files Shared on Neighbor-
hood (MFSN)and Most Query Results on Neighborhood
(MQRN).

Compared to the forwarding-based scheme, hybrid
searching is more flexible. It adapts the query processing to
the popularity of sought files and does not waste resources
when searching for popular files. Therefore hybrid search-
ing has a higher query efficiency. Compared to the non-
forwarding scheme, hybrid searching accomplishes a bet-
ter query success rate without maintaining a more complex
state. To the best of our knowledge, this is the first work to
combine the forwarding and non-forwarding schemes.

In the future, we plan to do more experiments to evalu-

ate different system policies and adaptive integration. The
hybrid search in this paper is applied to flat P2P overlays.
When the p2P network is very large, this could lead to a
scalability problem. One solution is to designate some peers
as superpeers, each of which processes queries for other
regular peers that connects to this superpeer. All superpeers
form an unstructured P2P sub-overlay. Hybrid searching
can be applied to this P2P sub-overlay. We will evaluate
this approach in the future.

References

[1] The gnutella protocol specification v0.4. Clip2 distributed
search solutions, http://www.clip2.com.

[2] Guess protocol specification v0.1. http://groups.yahoo.com
/group /thegdf /files /Proposals /GUESS /guesso1.txt.

[3] A. Crespo and H. Garcia-Molina. Routing indices for peer-
to-peer systems. InProceedings of the 22nd International
Conference on Distributed Computing (IEEE ICDCS’02),
2002.

[4] N. Daswani and H. Garcia-Molina. Pong cache poisoning in
guess. InTechnical report, Stanford University, 2003.

[5] I. Jawhar and J. Wu. A two-level random walk search pro-
tocol for peer-to-peer networks. InProceedings of the 8th
World Multi-Conference on Systemics, Cybernetics and In-
formatics, 2004.

[6] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-yazti. A
local search mechanism for peer-to-peer networks. InPro-
ceedings of the 11th ACM Conference on Information and
Knowledge Management (ACM CIKM’02), 2002.

[7] X. Li and J. Wu. Searching techniques in peer-to-peer net-
works. in Handbook of Theoretical and Algorithmic Aspects
of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks,
Edited by J. Wu, CRC Press, 2005.

[8] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and replication in unstructured peer-to-peer networks. In
Proceedings of the 16th ACM International Conference on
Supercomputing (ACM ICS’02), 2002.

[9] D. Tsoumakos and N. Roussopoulos. Adaptive probabilistic
search in peer-to-peer networks. InProceedings of 2nd In-
ternational Workshop on Peer-to-Peer Systems (IPTPS’03),
2003.

[10] D. Tsoumakos and N. Roussopoulos. A comparison of peer-
to-peer search methods. InProceedings of the 2003 Inter-
national Workshop on the Web and Databases (WebDB’03),
2003.

[11] B. Yang and H. Garcia-Molina. Improving search in peer-
to-peer networks. InProceedings of the 22nd IEEE Interna-
tional Conference on Distributed Computing Systems (IEEE
ICDCS’02), 2002.

[12] B. Yang, P. Vinograd, and H. Garcia-Molina. Evaluating
guess and non-forwarding peer-to-peer search. InProceed-
ings of the 24th IEEE International Conference on Dis-
tributed Computing Systems (IEEE ICDCS’04), 2004.

[13] C. Yang and J. Wu. A dominating-set-based routing in peer-
to-peer networks. InProceedings of the 2nd International
Workshop on Grid and Cooperative Computing Workshop
(GCC’03), 2003.

