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Abstract

Routing based on a connected dominating set is a
promising approach, where the search space for a route is
reduced to the hosts in the set. A set is dominating if all the
hosts in the system are either in the set or neighbors of hosts
in the set. In this paper, we first review a distributed forma-
tion of a connected dominating set calledmarking process
and dominating-set-based routing. Then we propose several
ways to reduce the size of the dominating set and study the
locality of dominating set in ad hoc wireless networks with
switch-on/off operations. Results show that the dominating
set derived from the marking process exhibits good locality
properties; i.e., the change of a host status, gateway (domi-
nating) or non-gateway (dominated), affects only the status
of hosts in a restricted vicinity.

1. Introduction

Dominating-set-basedrouting [8] is a promising routing
approach in ad hoc networks. A subset of the vertices of a
graph is a dominating set if every vertex not in the subset is
adjacent to at least one vertex in the subset. Moreover, this
dominating set should be connected for ease of the rout-
ing process within the induced graph defined to consist of
dominating vertices only. Vertices in a dominating set are
also calledgatewayhosts while vertices that are outside a
dominating set are callednon-gatewayhosts. We can use
a unit disk graph[2] G = (V, E) to represent an ad hoc
network, whereV represents a set of wireless mobile hosts
andE represents a set of edges. An edge between a host
pair (u, v) indicates that both hostsu andv are within their
wireless transmitter ranges. In Figure 1 (b), hostsu and
v form a connected dominating set of the given unit disk
graph.

The main advantage of dominating-set-based routing is
that it simplifies the routing process to the one in a smaller
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subnetwork generated from the connected dominating set.
This means that only gateway hosts need to keep routing
information in aproactive approachand the search space
is reduced to the dominating set in areactive approach. In
proactive routing, routes to all destinations are computeda
priori and are maintained in the background via a periodic
update process. In reactive routing, a route to a specific des-
tination is computed “on demand”; i.e., only when needed.
Clearly, the efficiency of this approach depends largely on
the process of finding and maintaining a connected domi-
nating set and the size of the corresponding subnetwork.

Unfortunately, finding a minimum connected dominat-
ing set is NP-complete for most graphs. Wu and Li [8]
proposed a simple and efficient distributed algorithm that
can quickly determine a connected dominating set in ad
hoc networks. This approach uses a localized algorithm
calledmarking processwhere hosts interact with others in
the neighborhood. Specifically, each host is marked true if
it has two unconnected neighbors. It is shown that collec-
tively these hosts achieve a desired global objective – a set
of marked hosts forms a small connected dominating set.

In this paper, we focus on maintaining the dominating
set in an ad hoc network where switch-on/off operations
are major operations that change network topology. Such
a network can be either asensor network[3] with limited
mobility or a rooftop network[6] without mobility, but is
deployed very densely in metropolitan areas. We study the
locality of dominating set in ad hoc networks with switch-
on/off operations. The dominating set under consideration
is derived from the marking process and it is further reduced
through different reduction methods proposed in this pa-
per. The main contributions of the paper include the local-
ity property of the marking process. That is, the change of
a host status, gateway (dominating) or non-gateway (domi-
nated), affects only the status of hosts in a restricted vicin-
ity. In addition, locality of host status update is also verified
through simulation. We show the different locality proper-
ties of gateway/non-gateway derived by different versions
of the marking process.
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Figure 1. Dominating set reduction examples.

2 Preliminaries

We first review themarking process [8]: (1) Initially
assign markerF to eachv in V . (2) Eachv exchanges its
neighbor setN(v) with all its neighbors. (3) Eachv as-
signs its markerm(v) to T if there exist two unconnected
neighbors.

The marking process is a localized algorithm, where
hosts only interact with others in the neighborhood. Sup-
posem(v) is a marker for vertexv ∈ V , which is either
T (marked) orF (unmarked). Each vertexv always main-
tains its neighbor setN(v) = {u|(v, u) ∈ E}. Assume
that V

′
is the set of vertices that are markedT in V ; i.e.,

V
′
= {v|v ∈ V, m(v) = T}. The induced graphG

′
is the

subgraph ofG induced byV
′
; i.e., G

′
= G[V

′
]. The fol-

lowing results [8] show thatV
′

is a connected dominating
set ofG.

Property 1 Given a connected graphG that is not com-
pletely connected, the vertex subsetV

′
, derived from the

marking process, forms a connected dominating set ofG.

Property 2 The shortest path between any two vertices
does not include any non-gateway vertex as an intermediate
host.

Since the problem of determining a minimum connected
dominating set of a given connected graph is NP-complete,
the connected dominating set derived from the marking pro-
cess is normally non-minimum. In some cases, the resultant
dominating set istrivial ; i.e.,V

′
= V or V

′
= {}. For ex-

ample, any vertex-symmetric graph will generate a trivial
dominating set using the proposed marking process. How-
ever, the marking process is efficient for ad hoc networks
where the corresponding unit disk graph tends to form a set
of localized clusters (or cliques).

Dominating-set-based routingusually consists three
steps: (1) If the source is not a gateway host, it forwards
the packets to asource gateway, which is one of the adjacent
gateway hosts. (2) This source gateway acts as a new source
to route the packets in theinduced graphgenerated from the
connected dominating set. (3) Eventually, the packets reach
a destination gateway, which is either the destination host
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Figure 2. A sample ad hoc network.

itself or a gateway that connects the destination host. In
the later case, the destination gateway forwards the packets
directly to the destination host.

There are in general two ways to perform routing within
the induced graph: proactive routing and reactive routing.
In [8], DSDV [5] is used as a sample proactive routing to
illustrate the dominating-set-based routing. Using thens-2
simulator, Sinha, Sivalumar, and Bharghavan [7] evaluate
the performance of DSR [1] and AODV [4] (both are re-
active routing), when they are operated over the dominat-
ing set (calledcore in [7]) and compare their performance
against those of their basic versions.

3 Dominating Set Reduction

In this section, we propose several ways (in form of
rules) to reduce the size of the connected dominating set
derived from the marking process. We first assign a distinct
id, id(v), to each vertexv in V

′
.

Rule 1: Consider two verticesu and v in G
′
. If N(u) −

{v} ⊆ N(v) in G andid(u) < id(v), change the marker of
u to F ; i.e., V

′
is changed toV

′ − {u}.
It is easy to prove thatV

′−{u} is still a connected dom-
inating set ofG. In addition, Property 2 still holds. Note
thatu andv in Rule 1 may or may not be neighbors.

In Figure 1 (a), sinceN(u) − {v} ⊆ N(v), vertexu is
removed fromV

′
if id(u) < id(v) and vertexv is the only

dominating vertex in the graph. In Figure 1 (b), sinceu and
v cover each other, eitheru or v can be removed fromV

′
.

To ensure one and only one is removed, we pick the one
with a smaller id.

Rule 2: Assume thatv and w are neighbors inG
′
. If

N(u) − {v, w} ⊆ N(v) ∪ N(w) in G and id(u) =
min{id(u), id(v), id(w)}, then change the marker ofu to
F .

Again, it is easy to prove thatV
′−{u} is still a connected

dominating set. However, Property 2 usually does not hold.
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Figure 3. Size of dominating set generated by
different versions of the marking process.

Although v andw are directly connected in Rule 2, they
may or may not be neighbors ofu.

Consider the example in Figure 1 (c) where bothv andw
are neighbors ofu. Clearly,N(u)−{v, w} ⊆ N(v)∪N(w).
If id(u) = min{id(u), id(v), id(w)}, vertexu can be re-
moved fromV

′
based on Rule 2. Ifid(v) < id(u) then ver-

texv can be removed based on Rule 1, sinceN(v)−{u} ⊆
N(u). If id(w) < id(u) < id(v) no vertex can be removed.
Therefore, the id assignment also decides the final outcome
of the dominating set. In the subsequent discussion, we use
the alphabetic order of vertex label to order id’s. For exam-
ple,u < v < w.

If u andv are neighbors in Rule 1, Rule 1 is calledre-
stricted. Similarly, if u is neighbor of bothv andw in Rule
2, Rule 2 is calledrestricted. We will see later that it is
relatively easy to implement restricted Rule 1 (Rule 2) in
a localized way. To apply restricted Rule 1 or Rule 2, an
additional last step in the marking process needs to be in-
cluded: Ifu is marked (m(u) = T ), send its status to all its
neighbors; i.e., each host needs to keep 2-hop neighborhood
information. To apply non-restricted Rule 1 and Rule 2,u’s
status needs to be transferred one hop further; i.e., each host
needs to keep 3-hop neighborhood information.

Rule 1 and Rule 2 can be easily extended to a more gen-
eral rule where the neighbor set of vertexu is covered by
the union of neighbor sets of more than two vertices inV

′
.

Rule k: Assume that{v1, v2, ..., vk} is the ver-
tex set of a connected subgraph inG

′
. If N(u) −

{v1, v2, ..., vk} ⊆ N(v1) ∪ N(v2) ∪ ... ∪ N(vk) in G
and id(u) = min{id(u), id(v1), id(v2), ..., id(vk)}, then
change the marker ofu to F .

One problem in applying Rulek is its high computation
cost, even if the restricted Rulek is applied where the com-

putation complexity is choosingk out of |N(u)| neighbors
of u. Note that other metrics can be used to break a tie;
for example, vertex degree (number of neighbors), energy
level, and geographical location of vertex in a particular di-
mension.

Figure 2 shows an ad hoc network generated by the sim-
ulation software in a confined space of 100× 100. There
are 80 hosts each of which has a transmitter range of 20.
Rulek unmarks only two more gateways than Rules 1 and
2 do. Figure 3 shows simulation results on the average size
of dominating set generated byMP (), MP (1), MP (1)∗,
MP (1&2), MP (1&2)∗, MP (k), andMP (k)∗. It is clear
from the results thatMP (k) does not improve much in re-
ducing the number of gateways compared withMP (1) and
MP (1&2), especially in reasonably dense networks. Con-
sidering its high computation cost,MP (k) will not be con-
sidered in the subsequent discussion.

4 Dominating Set Update

Different versions of the marking process.We consider
five versions of the marking process: (1) Marking pro-
cess(MP) without Rule 1 and Rule 2:MP (). (2) MP with
restricted Rule 1 only:MP (1)∗. (3) MP with Rule 1 only:
MP (1). (4) MP with restricted Rules 1 and 2:MP (1&2)∗.
(5) MP with Rules 1 and 2:MP (1&2). In restricted Rule 1
and/or Rule 2 (MP (1)∗ andMP (1&2)∗), it is required that
u andv are neighbors in Rule 1 andv andw are neighbors of
u in Rule 2. In this case, 2-hop neighborhood information
is sufficient in implementingMP (1)∗ andMP (1&2)∗. In
MP (1) andMP (1&2), u andv are not necessarily neigh-
bors in Rule 1. Also,v andw are not necessarily neighbors
of u in Rule 2. In this way, 3-hop neighborhood information
is needed at each host. By default, vertex id is used to break
a tie in Rules 1 and 2. If vertex degree is used to break a tie,
subscript “deg” is used, such asMP (1&2)deg.

Consider a graph of four vertices,u, v, w, andx, with
four undirected edges(u,w), (v, w), (u, x), and(v, x) as
shown in Figure 4 (a). All four vertices are marked us-
ing the marking process. Also,N(u) = N(v) = {w, x}
(N(w) = N(x) = {u, v}). Using MP (1), one of u
andv (also one ofw andx) is unmarked (and such a ver-
tex is calledex-gateway), leaving two marked vertices (x
and v based on Rule 1). Note that ex-gateway hosts are
hosts marked by the marking process but unmarked by one
of the rules. UsingMP (1)∗, none of the gateways can
be unmarked. Figure 4 (b) shows an example of apply-
ing MP (1&2). Note that usingMP (1)∗ andMP (1&2)∗,
gatewayu cannot be unmarked.

To simplify the discussion, it is assumed that the mark-
ing process (together with Rule 1 and/or Rule 2) can be done
quickly between two switch-on/off operations, without re-
quiring each host to apply the marking process at the same
time. The period between two switch-on/off operations is
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Figure 4. Status after (a) Rule 1, (b) Rule 2.

called aphase. Each hostu keeps two statuses: (m(u),
m(u)∗). m(u) stores the result of the marking process.
m(u)∗ stores the final result after applying Rule 1 and/or
Rule 2.m(u)∗ is determined based onm(v) (notm(v)∗) of
its neighborv. m(u)∗ represents the final status ofu, and is
independent of the sequence in which hosts in the network
apply Rule 1 and/or Rule 2.

Update under MP (). The marking process has the fol-
lowing desirable locality property:The status of a host
(gateway/non-gateway) depends only on connections of its
neighbors, not the status of its neighbors.The implication
of the locality property is that the status of a host is inde-
pendent of the status of its neighbors. Therefore, when host
v switches on/off, hosts and only hosts that are neighbors of
v may change their status.

When a mobile hostv switches on, only its non-gateway
neighbors, along with hostv, need to update their status,
because any gateway neighbor will still remain as gateway
after a new vertexv is added.

Switch-on: (1) Mobile hostv broadcasts to its neighbors
about its switch-on. (2) Each hostu ∈ v ∪N(v) exchanges
its neighbor setN(u) with its neighbors. (3) Hostv assigns
its markerm(v) to T if there are(w, v) ∈ E and(v, w′) ∈
E, but (w,w′) 6∈ E. (4) Each non-gateway neighboru ∈
N(v) assigns its markerm(u) to T if there is(w, u) ∈ E,
but (w, v) 6∈ E.

When a mobile hostv switches off, only gateway neigh-
bors of the switch-off host need to update their status, be-
cause any non-gateway neighbor will still remain as non-
gateway after vertexv is deleted.

Switch-off: (1) Mobile hostv broadcasts to its neighbors
about its switch-off. (2) Each hostu ∈ N(v) exchanges
its neighbor setN(u) with its neighbors. (3) Each gateway
neighboru assigns its markerm(u) to F if all neighbors
are pairwise connected; that is,(w, w

′
) ∈ E for any two

neighborsw andw
′

of u.

Update under MP (1&2)∗. When the marking process is
used together with Rules 1 and 2, the locality property no
longer holds: the status of hostu depends also on the status
of other hosts (v in Rule 1 andv andw in Rule 2).

Lemma 1: When the status of hostu changes andu is not

a neighbor of any switch-on/off host, then it is caused only
by using Rule 1 or Rule 2.

Theorem 1: When the dominating set is derived by the
marking process with restricted Rules 1 and 2, and in addi-
tion, vertex id is used to break a tie in Rules 1 and 2, hosts
and only hosts that are neighbors of switch-on (switch-off)
hosts need to update their status.
Proof. Suppose an arbitrarily selected hostu is not a neigh-
bor of any switch-on/off host. Based on Lemma 1,u
changes its status by neighborv (v and w) using Rule 1
(Rule 2). Neitherv nor w is a switch-on/off host based on
restricted Rules 1 and 2 and the wayu is selected. The dif-
ference between neighbor sets ofv andw in the new phase
and the previous one is a subset of switch-on/off hosts, with
none of them being neighbors ofu. We consider the follow-
ing two cases: (1) If hostu is changed from non-gateway to
gateway, this means that Rule 1 (Rule 2) applied onu in the
previous phase cannot be used in the current phase. This
occurs when Rule 1 (Rule 2) fails the neighbor coverage
condition betweenu andv in Rule 1 (u, v, andw in Rule
2) in the current phase, which is impossible. (2) If hostu is
changed from gateway to non-gateway, based on neighbor
sets ofu andv for Rule 1 (u, v andw for Rule 2), Rule
1 (Rule 2) should have been applied tou in the previous
phase. This is a contradiction. 2

When a mobile hostu switches on, only its non-gateway
(including ex-gateway) neighbors, along with hostu, need
to update their status by the marking process, while any
gateway neighbor will remain as gateway. Specifically, non-
gateway neighbors may change to gateway neighbors. Us-
ing restricted Rules 1 and 2, gateway neighbors may change
to ex-gateway neighbors. Ex-gateways in the previous
phase that are re-marked by the marking process in the cur-
rent phase may or may not be unmarked again (back to ex-
gateways) by Rules 1 and 2. When a mobile hostv switches
off, only gateway neighbors (including ex-gateways) of the
host need to update their status by the marking process,
while any non-gateway (except ex-gateway) neighbor will
still remain as non-gateway after vertexv is deleted. Specif-
ically, gateway neighbors may change their status to the
non-gateway status. An ex-gateway neighbor may change
back to the gateway status by the marking process, by Rules
1 and 2, or it remains ex-gateway.

Note that when a tie in Rules 1 and 2 is broken by vertex
degree instead of vertex id, the locality property no longer
holds for restricted Rules 1 and 2. When applying Rules 1
and 2, the host with a smaller vertex degree is changed to
ex-gateway. In case of a tie, vertex id is used to break it.
Consider the example in Figure 5 (a). When vertex degree
is used to break a tie in Rule 1, only hostu is gateway and
hostsv, w, x, andy are ex-gateways. When hostv switches
off, hostsu andw cover each other with the same vertex de-
gree,w becomes the new gateway (u becomes ex-gateway)
when vertex id is used to break a tie. However,w is not
a neighbor of the switch-off hostv. If vertex id is used to
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Figure 5. Violation of the locality property in
a switch-off operation (on v) when vertex de-
gree is used to break a tie.

break a tie in Rules 1 and 2, hostsu, w, andy are gateways
and hostv andx are ex-gateways before hostv switches off.

Theorem 2: When the dominating set is derived by the
marking process with the restricted Rules 1 and 2, and in
addition, vertex degree is used to break a tie, hosts and only
hosts that are within 2 hops of switch-on (switch-off) hosts
need to update their status.
Proof. Arbitrarily select a hostu that isk hops (k > 2)
away from the switch-on/off host. Based on Lemma 1, the
status change ofv can only be caused by Rule 1 or Rule 2.
Since Rule 1 (Rule 2) is restricted, other hostsv (v andw)
used in Rule 1 (Rule 2) must be neighbors ofu; i.e., (k −
1)-hop neighbors of the switch-on/off host. Clearly, vertex
degree and vertex id ofv and w both remain unchanged
in the new phase. Following the similar argument used in
the proof of Theorem 1, we conclude that the status ofv
remains unchanged. 2

Update under MP (1&2). In MP (1&2), a switch-on/off
host may cause the status change of a host that is 2 hops
away as shown in Figure 4 (b).
Theorem 3: When the dominating set is derived by the
marking process with Rules 1 and 2, and in addition, vertex
id is used to break a tie, hosts and only hosts that are within
2 hops of switch-on (switch-off) hosts need to update their
status.
Proof. Suppose an arbitrarily selected hostu is not a 1-
hop or 2-hop neighbor of any switch-on/off host. Based
on Lemma 1,u changes its status by neighborv (v andw)
using Rule 1 (Rule 2). Since the neighbor set ofu is cov-
ered by the neighbor set ofv in Rule 1 (and jointly with
the neighbor set ofw in Rule 2), bothv andw are no more
than 2 hops away fromu. Therefore, neitherv nor w is a
switch-on/off host. The difference between neighbor sets
of v andw in the new phase and the old one is a subset of
switch-on/off hosts, with none of them being neighbors of
u. The same arguments used in the proof of Theorem 1 can
be applied to show that it is impossible to change the status
of hostu. 2

In a new phase, in addition to the switch-on (switch-
off) procedures, Rules 1 and 2 need to be applied to all
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Figure 6. Average number of status changes
per switch-on/off.

switch-on hosts and 1-hop and 2-hop neighbors of switch-
on (switch-off) hosts.

Theorem 3 fails when vertex degree is used to break a tie.
Consider the example in Figure 5 (b) where vertex degree
is used to break a tie in Rules 1 and 2. Hostsu andy are
gateways,w andx are ex-gateways, andv is non-gateway.
When hostv switches off, hostsu andw cover each other.
Hostu becomes ex-gateway andw gateway. However,w is
3 hops away fromv. On the other hand, the switch-on/off
host can only affect the status of neighbors within 3 hops as
shown in the following result (its proof is similar to the one
for Theorem 3).

Theorem 4: When the dominating set is derived by the
marking process with Rules 1 and 2, and in addition, vertex
degree is used to break a tie, hosts and only hosts that are
within 3 hops of switch-on (switch-off) hosts need to change
their status.

All results in this section also apply toMP (1)∗ and
MP (1).

5 Simulation

The simulation software generates random connected ad
hoc networks within a confined area of100×100. Each host
in the network is marked as non-gateway, ex-gateway, and
gateway by the marking process and the reduction rules. For
each network, one random host is added (switch-on) and
the status change of other hosts is computed. In the same
manner, one random host is removed (switch-off) and the
status change is computed. Note that Rules 1 and 2 may be
implemented in different ways (restricted or non-restricted,
breaking a tie by vertex id or vertex degree). Networks are
generated with a fixed transmitter range (25 or 50), and the
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Figure 7. The difference between host switch-
on and host switch-off.

number of hosts ranges from 3 to 100. All the simulations
run for a time long enough to achieve a confidence level of
90% with a precision within 10%.

Figure 6 shows the number of status changes per switch-
on/off. Note that when a host switches on (off), only less
than one nearby host need to change its status. As to dif-
ferent versions of the marking process,MP () is the most
stable andMP (1&2) is the most unstable. The restricted
versions (MP (1)∗ andMP (1&2)∗) and the non-restricted
versions (MP (1) andMP (1&2)) of Rules 1 and 2 are very
close in their stability. However, breaking a tie with vertex
id is more stable than with vertex degree, unless when the
graph is extremely dense.

Figure 7 compares the difference between host switch-
on and host switch-off operations. When onlyMP () is ap-
plied or vertex degree is used to break a tie forMP (1) and
MP (1&2), the number of status changes caused by switch-
on and switch-off are very close. However, when vertex id
is used to break a tie forMP (1) andMP (1&2), switch-
off causes less status changes, thanks to its relatively higher
redundancy in the reduced dominating set.

Table 1 shows the average distribution of status changes
among the 1-3 hop neighbors of the switch-on/off hosts.
The result shows that for all marking processes, any sta-
tus change can only occur within 1 hop (MP (), MP (1)∗,
MP (1&2)∗), 2 hops (MP (1), MP (1&2), MP (1)∗deg,
MP (1&2)∗deg), and 3 hops (MP (1)deg, MP (1&2)deg).
Note that althoughMP (1) andMP (1&2) may cause sta-
tus change 1 hop further thanMP (1)∗ andMP (1&2)∗, the
probability of this kind of status change is very low (1.98%
when using vertex id and 0.12% when using vertex degree).

As a conclusion, we can draw the following summary
from the simulation results: (1) A host switch-on/off opera-
tion only affects the status of its neighborhood within 3 hops
(MP (1)deg, MP (1&2)deg). (2) Breaking a tie using vertex
id in Rules 1 and 2 is more stable (less status change) than
using vertex degree. (3)MP () is more stable thanMP (1),
which in turn is more stable thanMP (1&2). The restricted
and non-restricted versions of a reduction method are very
close in stability.

Table 1. Locality of marking processes.
Version Chg# 1-hop 2-hop 3-hop Total

MP () 0.23 100.00% 0.00% 0.00% 100%

MP (1)∗ 0.53 100.00% 0.00% 0.00% 100%
MP (1&2)∗ 0.66 100.00% 0.00% 0.00% 100%
MP (1) 0.53 98.92% 1.08% 0.00% 100%
MP (1&2) 0.67 98.02% 1.98% 0.00% 100%

MP (1)∗deg 0.58 94.89% 5.11% 0.00% 100%
MP (1&2)∗deg 0.80 81.07% 19.93% 0.00% 100%
MP (1)deg 0.55 93.66% 6.33% 0.01% 100%
MP (1&2)deg 0.80 78.94% 20.94% 0.12% 100%

6 Conclusion

In this paper, we have studied the locality property of
the dominating set derived from Wu and Li’s marking pro-
cess together with several dominating set reduction methods
(Rules 1 and 2). Results show that the marking process has
good locality property in a system with switch-on/off hosts.
Specifically, only 1-hop neighbors of switch-on/off hosts
need to update their gateway/non-gateway status when the
restricted Rules 1 and 2 is used. 2-hop neighbors of switch-
on/off hosts need to update their gateway/non-gateway sta-
tus when the non-restricted Rules 1 and 2 is applied. Our
results also show that vertex id is better than vertex degree
to break a tie situation in terms of stability of dominating
set. All these further confirm that the dominating-set-based
routing is a promising approach in ad hoc networks, espe-
cially for ones where switch-on/off operations are primary
operations that change the network topology.
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