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Abstract. Power conservation is a critical issue for ad hoc wireless networks. The main objective of the paper is to find the minimum
uniform transmission range of an ad hoc wireless network, where each node uses the same transmission power, while maintaining network
connectivity. Three different algorithms, Prim’s Minimum Spanning Tree (MST), its extension with Fibonacci heap implementation, and an
area-based binary search are developed to solve the problem. Their performance is compared by simulation study together with Kruskal’s
MST, a known solution proposed by Ramanathan and Rosales-Hain for topology control by transmission power adjustment, and an edge-
based binary search used by the same study in order to find the per-node-minimality after Kruskal’s algorithm is applied. Our results show
that Prim’s MST outperforms both Kruskal’s MST and the two binary searches. The performance between Prim’s MST implemented with
binary heap and Fibonacci heap is fairly close, with the Fibonacci implementation slightly outperforming the other.!
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1. Introduction

An ad hoc wireless network is an infrastructureless network.
The end nodes establish connections by themselves with-
out a base station, and communicate with each other in a
multi-hop manner. In this environment, each node, typically
a mobile computing device, is powered by battery. Example
applications include personal area networks, wireless sensor
networks, military, law enforcement, disaster recovery, etc
[4,6,13]. The limit of battery life places a constraint on the
power consumption. It is desirable for routing algorithms to
select route and transmission power that optimize energy ef-
ficiency whenever possible. Researchers have proposed dif-
ferent approaches to conserve power in routing [1,11,12,16].
Meanwhile, the ad hoc wireless network is highly dynamic and
autonomous, and algorithms that can operate in a distributed
fashion is therefore desirable. Some interesting works are done
on distributed algorithms and protocols [5,7,10,14,15].

In the routing of the ad hoc wireless network, it is believed
that the minimum transmission power required to sustain a
link between two nodes is
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where r is the distance between node i and node j, and « is
between 2 and 4. The transmission power cannot be reduced
without limit, since the transmission range of a node will be
shortened along with the reduction of transmission power.
When the transmission power is too low, the network could
suffer from partition.

Ad hoc wireless networks are typically modelled with the
transmission graph [8], a graph G = (V, E) in Euclidean
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space, where there exists an edge from node u to v, if u can
directly transmit to v. The topology of an ad hoc network
depends on several uncontrollable factors such as host mobil-
ity and interference, and on several controllable ones such as
antenna orientation and transmission power. This paper deals
with adjusting the controllable parameters, for example, the
transmission power, to create desired topology to meet certain
criteria, specifically, the network connectivity.

Among the alternative metrics to optimize transmission
power, this paper addresses optimizing power of a single node.
We believe this is more practical, because if to obtain a lower
overall power, certain nodes must transmit at an extra high
power level, this situation might not be acceptable for all cases.
Moreover, itis assumed that each node uses the identical trans-
mission power and therefore reaches the same transmission
range. In other words, each node does not have the ability to
dynamically adjust its transmission power for different des-
tinations. The unit disk graph G(V, E) is typically used to
model ad hoc wireless networks under this situation, where
two nodes are connected when their distance is within this
fixed transmission range. Throughout this paper, we consider
ad hoc wireless networks in which the node locations are fixed,
or are snapshots of the network at a particular time frame. The
focus is to develop algorithms that find the minimum uniform
transmission range that keeps the network connected, assum-
ing global information of node location, link state information,
and fixed network topology.

To find this minimum uniform transmission range, we ex-
plored five different algorithms, area-based binary search,
Prim’s minimum spanning tree (MST), its extension with Fi-
bonacci heap implementation, and the two well-known so-
Iutions by Ramanathan and Rosales-Hain [9], one based on
Kruskal’s MST, the other an edge-based binary search (used to
find the per node minimality). A network of #n nodes, which are
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randomly distributed over a region of size £ x ¢, is generated
in performance study. Each node has multiple transceivers,
and can thus support any multi-cast sessions within its trans-
mission range. A graph is constructed according to the node
location and the transmission range information; that is, an
edge between nodes u and v is added to the graph if u and
v are within the transmission range of each other. The exe-
cution time of different algorithms to find the minRange is
compared. Our simulation results show that Prim’s MST and
its extension outperform Kruskal’s MST and the two binary
searches under the given condition.

This paper is organized as follows: Section 2 proposes our
three algorithms, Algorithm II, IIT and I'V. Kruskal’s MST and
edge-based binary search by Ramanthan and Rosales-Hain are
also reviewed as Algorithm I and V. Section 3 shows simu-
lation results. Section 4 concludes this paper and discusses
some future work.

2. Algorithms

As discussed above, our objective is to minimize the uniform
transmission range while maintaining the network connec-
tivity at the same time. Three new algorithms are proposed
below to solve the problem: Algorithms II and III are Prim’s
MST with either binary heap or Fibonacci heap implemen-
tation, Algorithm IV uses the area-based binary search tech-
nique. Ramanathan and Rosales-Hain’s algorithms based on
Kruskal’s MST as well as their edge-based binary search used
to achieve per-node-minimality are also reviewed, presented
as Algorithm I and V.

The notations used in this section are as follows: in an
area of size £ x £, the number of nodes is noted as n. D is
the largest possible distance between any two nodes in this
area, or Diameter, which is /2 ¢. In the undirected graph
representation of the area, V represents the number of vertices,
which is equal to n, and E is the number of edges. An edge
connecting nodes u and v is noted as (u, v).

2.1. Algorithm I: Kruskal’s minimum spanning tree (MST)

Algorithm I is proposed by Ramanathan and Rosales-Hain
[9]. An MST was constructed using Kruskal’s algorithm [2].
Briefly, each node is initialized as a separate connected com-
ponent. Edges are sorted first, and then traversed in a non-
decreasing order. An edge is added to the MST whenever it
connects two connected components, until all nodes are in-
cluded in a single connected component. The last edge added
to MST, which is also the largest edge in Kruskal’s MST, will
be the minimum uniform transmission range of the network
(see figure 1). The proof of correctness for the algorithm was
provided in the same paper [9].

The construction of MST takes O(E Ig E), which will be
O(V?1g V?) for a complete graph. Therefore, the asymptoti-
cal complexity of Algorithm Iis O(V?1g V).
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MinRange-Kruskal
minRange < 0
sort all edges in non-decreasing order
initialize n clusters, one per node
while numberOfClusters > 1
for each (u, v) in the sorted order
do if cluster(u) # cluster(v)
merge cluster(u) with cluster(v)
minRange « distance(u, v)
return minRange
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Figure 1. Algorithm I: compute minRange by Kruskal’s MST.

In this algorithm, all edges in the graph are sorted first,
which costs O(FE 1g E). In reality, the transmission range can
be determined without going through all the edges (in the
sorted order). Therefore, some efforts in the sorting process
could be wasted.

2.2. Algorithms Il and IIl: Prim’s MST

Algorithms II and III are modifications of Algorithm I, both
involving MST construction. In both Algorithms II and III,
a modified Prim’s algorithm [2] is used in building the MST
(see figure 2). Prim’s MST starts with an arbitrary root and
constructs a single tree, until it spans all the vertices. At each
step, an edge of the smallest possible distance that reaches a
non-tree node is added, and at any stage, all nodes in Prim’s
MST forms a single tree. To facilitate the MST construction
process, a key for each node is maintained to represent its
distance to the tree, and whenever a new node is included,
the key value of its direct non-tree neighbors are updated.
After the MST is constructed, the tree is traversed and the
maximum edge is the minimum uniform transmission range.
The correctness of the algorithm is proved in two different
methods below.

It is interesting to note that the traditional minimum span-
ning tree algorithms can be applied to different problems. The
original MST algorithms minimize the the total weight of the
tree. In our problem, the objective is to minimize a single uni-
form transmission range that keeps the network connected. In
another word, it is the maximum edge in the spanning tree that
is minimized. The following theorem shows that the largest

MinRange-Prim
unreachedNodes < V[G]
for each u € unreachedNodes

do key[u] < oo
key[root] < 0
while unreachedNodes # 0

do u  extractMin(unreachedNodes)

for each v € Adj[u]
do if v € unreachedNodes and
distance(u, v) < key[v]

9 then key[v] < distance(u, v)
10 traverse the MST, find the longest edge minRange
11 return minRange.

0NN AW =

Figure 2. Algorithm II: Prim’s minimum spanning tree.
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Figure 3. Proof of Theorem 1.

edge selected in Prim’s MST algorithm is the minimum uni-
form transmission range.

Theorem 1. The maximum edge in Prim’s MST is the min-
imum uniform transmission range.

Proof 1. Suppose the longest edge in Prim’s MST is (u, v)
with d = distance(u, v) (see figure 3). And suppose to the
contrary that d is not minimum, then there must exist a path
p to connect 1 and v, and on this path, each of the edges is
less than d. By the time (u, v) is being added to change the
MST from 7; to T+ = T; U{(u, v)}, assume vertex u is in the
MST, and v is not, without loss of generality. If v is chosen
to be included to the MST, then it must have the smallest key
among all vertices currently not in the tree. Meanwhile, if
path p exists, then there must exist an edge (x, y) with d’ =
distance(x, y) on path p, where x is in the tree, and y is not.
(In extreme cases, x could be u, or y could be v, but not both).
d’ is less than d, because on path p, each edge is less than d.
Therefore, y should have a smaller key than v. According to
Prim’s algorithm, y should be added to the MST instead of v.
This is contrary to the result of Prim’s algorithm, where v is
added. Therefore, this path p, in which every edge is smaller
than d, does not exist, and d is the minimum. a

The same theorem can be proved in another way. For all
the MSTs, if all the edges of a connected graph have different
weights, it has been proved that the MST is unique [3]. In that
case, the largest edge in Kruskal’s and Prim’s MST is exactly
the same edge. Since the edge weights might not always be
distinct, we define edge weight set of a tree to be a set that
contains all the weights of tree edges, with each element in
this set corresponding to the weight of an individual edge. We
can prove that the edge weight set for any MST is the same,
that is, the edge weights for all MSTs is a unique set. Note
that there can be duplicates of edge weights within one MST,
as well as the MST edge weight set. For example, an MST
edge weight set A of MST, is {3,4,4,7,9,11, 11,31} and
contains two edges of weight 4 and two of weight 11. Also,
each element in an edge weight set is treated only as number,
without any edge identity information or meaning. If another
edge weight set B of an MSTp is {3,9,11,4,7,31, 11, 4},
we say it is identical to set A, even though the edge with the

weight 9 in MST4 might not be the same edge as the edge of
weight 9 in MST.

First, we know that for a graph of n nodes, all MSTs have
n — 1 edges. Therefore, all its MST edge weight sets have
n — 1 elements. Now we prove below that this set of numbers
is unique for a given graph.

Lemma 1. In any two different MSTs over the same graph,
MST,y and MST;, for each edge e that is in MST, but not in
MST);, we can find an edge ¢’ that is in MST) but not in MST)
such that w(e) = w(e’), where w(e) represents the weight of
edge e.

Proof 2. Let e be any edge that is in MST, but not in MST;.
The edge set {e} U MST; must contain a cycle, and at least one
edge ¢’ of this cycle is not in MSTy, since MST, can not contain
any cycle. MST, — {¢’} U {e} is a spanning tree, because it is a
tree of n — 1 edges. Since MST) is an MST, we have w(e) >
w(e’). Similarly, MSTy — {e} U {¢’} is also a spanning tree.
With MST, being a MST, we have w(e’) > w(e). Therefore,
we have w(e') = w(e). O

Theorem 2. The edge weight set of any MST for a certain
graph is unique.

Proof 3. Because for any edge e that is in MST, but not in
MST),, we can always find a corresponding equal-weight edge
¢’ in MST but not in MST,, we replace ¢’ with e in MST) to
form MST,, which is still an MST. The number of different
edges between MST, and M STy is one less than that of between
MST, and MST,. Repeat the above process recursively. For
each replacement that changes MST; to MST;,, the number
of different edges will decrease by 1. During the replacement,
the edge weight set never changes. When there is no different
edge between MST, and MST, , the replacement procedure
terminates. The two MSTs are now identical trees. The edge
weight set of all these MSTs including MSTy, MSTy,. .., MST;,
..., MST,, are the same. Since MST, and MST) are any two
different MSTs, we can conclude that all MSTs have the same
edge weight set. O

Corallary 1 The maximum-weight edges in Kruskal’s MST
and Prim’s MST have the same weight.

Corallary 1 is obvious from Theorem 2. Because the edge
weight set for MSTs of a certain graph is unique, as one of
the edges in MST, the weight of the maximum edge is unique,
i.e., the weight of the maximum edge for any MST of the same
graph is equal.

We can now prove the correctness of Theorem 2 easily.

Proof 2 of Theorem 1. It has been proved that the maxi-
mum edge in Kruskal’s MST is the optimum maximum edge
that keeps a network connected [9]. Moreover, from Coral-
lary 1, the weight of the maximum edge in Prim’s MST equal
to that of the maximum edge in Kruskal’s MST. Therefore,
the maximum edge in Prim’s MST is the minimum uniform
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transmission range. This completes the second proof for
Theorem 1. O

Between the two proofs of Theorem 1 above, Proof 2 com-
bining Corallary 1 and the previous proof by Ramanathon and
Rosales-Hain is more general for the problem, because it is
independent of the MST algorithm used. As a result, for a
given graph, the maximum edge of any MST, including MST
obtained by distributed algorithms, has the same weight. For
an ad hoc wireless network instance, the distance of this max-
imum edge is the minimum uniform transmission range of the
network.

Algorithm II uses a binary-heap implementation, with a
complexity of O(E1gV), which will be O(V?1gV) in the
worst case, and is asymptotically the same as that of Algo-
rithm I. Because Prim’s algorithm has a Fibonacci heap im-
plementation, which can speed up torunin O(E 4V Ig V), or
O(V?) for a complete graph [2], Algorithm III takes advan-
tage of this property. It is the same algorithm as Algorithm II,
but uses the Fibonacci heap implementation. Fibonacci heap
is a data structure based on binomial heaps. It is more relaxed
so that work to maintain the structure can be delayed until
it is convenient to perform, therefore allowing for improved
asymptotic bounds [2]. Both Algorithms II and III are imple-
mented and their performance is compared through simulation
study.

2.3. Algorithm 1V: Area-based binary search

Algorithm IV adopts a simple brute force approach. Rang-
ing from O to the longest possible transmission range, the
diameter D of the area, we use binary search to find the low-
est transmission range that keeps the network connected. For
each curRange tested, a unit disk graph is generated, where
an edge (1, v) is added to the graph if the distance between
u and v is less than curRange. The value of curRange is then
either decreased or increased depending on whether the re-
sultant unit disk graph is connected or not (see figure 4). We
name it the area-based binary search, or area-binary in brief.

In this algorithm, it is important to decide when the bi-
nary search is completed, because theoretically, the curRange
adjustment could continue forever. We decide to use inte-
ger distance, and terminate the searching process whenever

MinRange-AreaBinary

1 min < 0, max < V20

2 while min < maz — 1

3 curRange < | (min + max) /2]

4 G + generateUnit DiskGraph(cur Range)
5 if G is connected

6 max < curRange

7 else

8 min < curRange

9 return minRange < mazx

Figure 4. Algorithm I'V: compute minRange by area-based binary search.
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MinRange-EdgeBinary

1 numNodes < n,numEdges + n* (n—1)

2 Sort all edges in edges[numEdges]

3 minIndex < 0, mazInder < numEdges — 1

4 while minIndex < mazxIndex — 1

5  curlIndex <+ |(minIndex + maxIndex)/2]

6 G <+ generateUnitDiskGraph(edges[curIndex])
7  if G is connected

8 mazlndex + curlndex

9 else

10 minIndex < curIndex

11 G <« generateUnitDiskGraph(edges[minIndezx])
12 if G is connected

13 mazIndex + minlndex

14 return edges[mazIndez]

Figure 5. Algorithm V: compute minRange by edge-based binary search.

the upper and lower boundary differs by less than 1 (max
—min < 1). This generally gives good performance in prac-
tice. Though the minRange obtained should be fairly close,
it might not be the ‘ultimate’ minimum transmission range
value, since the computation depends on the granularity of
D. Note that the precise minRange can be obtained with a
slight modification. We can sort all edges by distance first,
then perform binary search on the array of edge weights. This
modification achieves precision at the cost of higher com-
plexity, since the cost of sorting is O(E Ig E). It was used
in [9] to obtain per-node-minimality. We review it later as
Algorithm V (see figure 5).

Some optimizations could be done to improve the per-
formance of the area-binary algorithm. For example, we can
check whether there is more than one edge between the min
and max (min end exclusive, max end inclusive) for potential
earlier termination. If there is only one edge in between, we
can determine that the weight of this single edge will be the
minimum transmission power, since we know that the ulti-
mate minimum uniform transmission range must equal to one
of the edges, i.e., the maximum edge of the MST. Another
possible optimization is, we can traverse the edges to identify
the minEdge and the maxEdge first, and use them as the ini-
tial values of min and max, so as to decrease the range of the
binary search.

The complexity of the Area-based Binary approach can be
calculated as follows: each connectivity checking costs O(V +
E), with either depth-first search or breadth-first search. The
overall complexity of the algorithm is O((V + E)lg D), or
O(V?1g D) at the most. Ig D indicates how many connectivity
checks are needed in the worst case, which depends on the
area size. For an area of fixed size, Ig D can be treated as a
constant.

2.4. Algorithm V: Edge-based binary search

We review the binary search based algorithm used in [9] to
compute the per-node-minimality here as Algorithm V. In this
algorithm, all edges are sorted first, and binary search is per-
formed upon all edges of the graph. We name this algorithm
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edge-binary, to distinguish it from the previous area-binary.
Comparing to the area-binary, it might perform better when
area size is large and node number is very small, i.e., when
node distribution is sparse, because the number of connectivity
check required until the minRange is determined could be re-
duced.

One possible optimization for this algorithm is, after all
the edges are sorted, we could remove the duplicates, then
perform the binary search only on the remaining unique edge
weights, so that we could avoid repeating connectivity checks
with the same test range. This optimization is not currently
implemented in our simulation study.

The complexity of this approach can be calculated as fol-
lows: it costs O(V?1g V) to sort all the edges. Each connec-
tivity check costs O(V + E), the same as in area-binary. The
number of connectivity checksis O(lg E). Therefore, the over-
all complexity is O(V+E)Ig E), or o(V? lg V) for the com-
plete graph. When the node number grows fast, and the area
size is relatively stable, the complexity of edge-binary will be
higher than the area-binary.

3. Simulation study

A network of n nodes, which are randomly distributed over
an area of size £ x ¢, is generated. We compute the mini-
mum transmission range using all five different algorithms
described in the previous section, and record their execution
time. The first set of simulation uses the set of node numbers
from n = 20 to 800, but in different sizes of area, [ = 1000,
4000 and 16000, respectively.

Our results show that both Kruskal’s and Prim’s MST out-
perform the two binary search algorithms (see figure 6).
Prim’s MST has a better performance than Kruskal’s MST.
Between the two Prim’s implementations, the one with Fi-
bonacci heap slightly outperforms the binary-heap. Between
the two binary search techniques, the area-binary performs
better than the edge-binary.

Similar results are observed with the same number of
nodes in area of different size, 1000 x 1000, 4000 x 4000 and
16000 x 16000.

To further study the effect of node number on the perfor-
mance, simulation with larger numbers of nodes, up to 2400,
is performed (see figure 7). Due to the large number of nodes,
bigger areas of 8000 x 8000 and 16000 x 16000 are used. In
this simulation, Prim’s MST still outperforms both Kruskal’s
MST and the two binary searches.

In the future, it would be interesting to see whether bi-
nary search could outperform Kruskal’s MST (Algorithm
I), or even Prim’s MST with binary heap implementation
(Algorithm II). Theoretically, the complexity of area-binary
is O(V + E)lg D, which is close to O(V?) if D is con-
sidered constant, in contrast to the complexity of edge-
binary and Kruskal’s MST, which are both O(V?1gV) in
the worst case. When V is small and D is large, the ef-
fect of 1g D is greater than 1g V. But when V is extremely
large and D is relatively small, area-binary should eventu-
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Figure 6. Simulation results. Number of nodes from 20 to 800, in an area of
1000 x 1000 (a), 4000 x 4000 (b), and 16000 x 16000 (c).

ally outperform Kruskal’s MST. Although it is possible that
at this point, the V might be too large to have any practical
value.

The above simulation studies provide us with the basic
understanding of the relative performance among different al-
gorithms to find the minimum uniform transmission range
in ad hoc wireless networks. Their practical performance
versus theoretical complexity also helps us in making de-
cisions such as which algorithm to choose under a specific
network environment with certain node number and area
size.
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Figure 7. Simulation results. Number of nodes from 100 to 2400, distributed in 8000 x 8000 (a) and 16000 x 16000 area (b).

4. Discussion and conclusion

In this paper, minimum spanning tree algorithms from classic
graph theory have been applied to solve the energy efficient
routing problem in ad hoc wireless networks of finding the
minimum uniform transmission range. We proposed three new
algorithms, Prim’s MST, Prim’s MST with Fibonacci heap im-
plementation, and the area-binary. We proved the correctness
of using Prim’s MST to determine the minimum uniform
transmission range. The performances of the algorithms are
compared with the two previously proposed ones, Kruskal’s
MST and the edge-binary.

From our simulation result, it seems that for node number
up to 2400, Prim’s MST has better performance than both
Kruskal’s MST and the two binary searches. The performance
between the two Prim’s implementations is fairly close, with
the Fibonacci heap implementation slightly outperforming the
binary-heap implementation. Between the two binary search
based algorithms, area-binary shows better performance than
the edge-binary.

A challenge would be to find distributed algorithms to solve
the same problem. LINT and LILT introduced in [9] are help-
ful examples of finding the optimum transmission range in a
distributed manner using local information and some available
global topology information. In a previous research, a dis-
tributed algorithm has been proposed to construct a minimum
spanning tree [3], by joining of MST nodes and fragments
through the minimum-weight outgoing edge of different frag-
ments. The same algorithm could be modified and applied to
our problem of finding the minimum uniform transmission
range, if each fragment saves the maximum weight of all its
branches. Comparison of maxBranchWeight between joining
fragments takes place at the time of their connection. The up-
dated maxBranchWeight information is then broadcast again
to all nodes of the new fragment at the start of a new cy-
cle. When no node has outgoing edges, the fragment is now
the MST, and the maxBranchWeight is the minimum uniform
transmission range. The correctness of the algorithm to solve
our problem can be proved similarly by applying the second
proof for Theorem 1, since the maximum edges of any MST
for a graph all have the same weight, and is consequently

the minimum uniform transmission range for the network in-
stance.

In our future study, first we plan to further increase the
number of nodes, to examine the performance of different
algorithms. Meanwhile, mobility and directional antenna will
be taken into consideration in the future model. We would also
like to further study and implement the distributed algorithm
to compute the minimum uniform transmission range.

Note

1. The work was supported in part by a grant from Motorola Inc., and NSF
grants CCR 9900646, ANI 10073737, EIA 0130806, and CCR 0329741.
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