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Abstract'

In this paper, techniques developedin the science of
genetic computing are applied to solve the problem of
optimally selecting robot measurement configurations,
which is an important element in successfully
completing a robot calibration experiment. Genetic
algorithms are customized for a type of robot
measurement configuration selection problem in which
the robot workspace constraints are definedin terms of
robot joint limits. Simulation studies are conducted to
examine the effectiveness of the genetic algorithms for
the application.

I. INTRODUCTION

Robot calibration is a process by the robot accuracy
is enhanced through modification of its control software
[1]. An important step towards a successful calibration
task is the planning of a robot experiment, whose main
purpose is to find a set of optimal robot measurement
configurations for robot calibration. The objective of
this work is to apply the available genetic computing
techniques to the problem of optimally selecting robot
measurement configurations in a robot calibration
experiment.

Qualitatively, optimal selection of robot
configurations can be stated as the problem of
determining a set of robot measurement configurations
within the reachablerobot joint space so that the effect
of measurement uncertainties on the estimation of robot
kinematic parameters is minimized [2-5].

Genetic algorithms (GAs) are heuristic search
algorithms based on the mechanics of natural selection
and natural genetics. They mimic a natural evolution
process, in which those highly-fit individuals will have
better chance to survive competition within a
generation. Individuals also exchange genes to form
new and potentially better offsprings in the new
generations. GAs search along different directions in
the hope to find better and better solutions in the search
process [6-9].

In this work, GAs are applied for the problem of
optimal selecting robot measurement configurations.
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We tune the GA parameters to solve a type of robot
measurement configuration selection problems in which
the robot workspace constraints are definedin terms of
robot joint limits. Simulation studies are conducted for
both cases to examine the efficiency of GAs.

II. Problem Statement

In order to state the problem of robot measurement
configuration selection, we first introduce the concept of
robot kinematic error parameter observability.
A. Observability of Error Parameters

The goal of kinematic identification is to estimate
an independent kinematic parameter vector p that
accounts in the least-squares sense for positioning and
orientation errors of the robot. A common approach to
the problem has been to define such a set of variables in
terms of additive changes dp to the robot nominal link
parameter vector ¢® in a given kinematic model.
Linearization of robot forward kinematic equations about
P at the ith particular joint measurement configuration
g; provides the Identification Jacobian matrix J; = J(g,,

P"), which relates y; € RX, end-effector pose errors at the

ith configuration to dp, the vector of independent
kinematic parameter errors [1]

yi = Jidp 2.1

Lety =[y,T,y,7, ..., ¥ JIT, wheres is the number
of measurements, and definean aggregated Identification
Jacobian matrix J that is obtained by stacking J; one on

top of the other, . The overall measurement equation
for least squares estimation of dp is then

y =Jdp 2.2)

It is said that the kinematic error parameter vector

dp is observable if and only if JZJ is full rank.
The condition number of J is used as an
observability index in this work,

Cond(J) = G2/ Fomin (23)

where ©,,,,, and 0,,;, are maximum and minimum

singular values of J.



B. Problem Formulation

Generally, the problem of optimal robot calibration
experiment planning can be stated as follows: Determine
m rtobot measurement configurations within the
reachable robot joint space so that the effect of
measurement uncertainties on the parameter estimation
errorsis minimized. Note that m should be sufficiently
large. For instance, when full poses of the robot end-
effector can be measured, a necessary condition is 6m >
t, where ¢ has been defined as the number of independent
kinematic parameters of the manipulator.

The problem stated above is difficult to solve since
the mathematical relationship among parameter errors,
measurement noise and measurement configurations is
yet to be properly modeled. However, if an error-model-
based technique is adopted for kinematic parameters
identification, the optimal configuration selection
problem may be solved through investigation of the
conditioning of the Identification Jacobian since the
upper bound of the parameter error norm is proportional
to the condition number of the Identification Jacobian.
In the following discussion, the error model based
technique is used to illustrate the concept of the
proposed method. The configuration selection method
is equally applicable to other robot calibration
techniques in which linear transformations relating pose
measurements to the unknown kinematic parameters are
avaijlable (that is, measurements and parameters are
related by a matrix J).

Let us define the problem of optimal robot
measurement configuration selection as follows:

Problem: Determine m robot measurement
configurations in the reachablerobot joint space such
that Cond(J) is minimized.

1. OVERVIEW OF GENETIC
ALGORITHMS
A. A Simple Genetic Algorithm
A GA typically has the following elements:
* A genetic representation (or an encoding) for the
feasible solutions to the optimization problem.
A population of encoded solutions.
A fitness function that evaluates the optimality of
each solution.
*  Genetic operators that generate a new population the
existing population.
*  Control parameters.

The GA may be viewedas an evolutionary process
wherein a population of solutions evolves over a
sequence of generations (refer to Figure 3.1). During
each generation, the fitness of each solution is
evaluated, and solutions are selected for reproduction

based on their fitness. Selection embodies the principle
of Survival of the fittest. ‘Good’ solutions are selected
for reproduction while ‘bad’ solutions are eliminated.
The ‘goodness’ of a solution is determined from its
fitness value. The selected solutions then undergo
recombination under the action of the crossover and
mutation operators.

The mechanics of a simple genetic algorithm, in its
simplest form, is just copying chromosomes, swapping
partial chromosomes and occasionally changing the
value of a randomly selected bit in a chromosome. Each
chromosome of Os and 1s is the encoded version of a
solution to the optimization problem. Using genetic
operators, crossover and mutation, the algorithm
creates the subsequent generation from the chromosomes
of the current population. This generational cycle is
repeated until termination criteria are reached. For
example, best fitness values do not change much aftera
number of generations, or a predefined number of
generations have been processed.

{
initialize the parameters of the GA;
randomly generate the old_population;
while convergence not achieved
{
clear the new_population;
evaluate the fitness of each individual in the
old_population;
copy individuals with highest fitness to the
new_population;
perform crossover based on crossover rate;
perform mutation based on mutation rate;
place offsprings from crossover and mutation to
the new_population;
replace the old_population by the
new_population;
}
}

Figure 3.1 Basic structure of a genetic algorithm

For the design of coding schemes and genetic
operators, readers are referred to [6,8,9].

IV. APPLICATION TGO CONFIGURATION
SELECTION PROBLEM
To apply genetic algorithms to the optimal robot
measurement selection problem, one has to consider the
following issues:

1. The fitness function.
2. The coding scheme.
3. The reproduction, crossover and mutation operators.

In this

application, we use some of the
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reproduction, crossover and mutation techniques
discussed above. Namely, we use rank-based
reproduction scheme combined with linear scaling to
control number of offsprings for each chromosome. We
then use stochastic remainder selection procedure to
refine the results produced by the rank-based procedure.
That is, a population of chromosomes are first ranked
based on the their fitness values. The ranked
chromosomes are then designatedto a number of copies
after scaling and stochastic remainder selection.
Furthermore, we use one-point crossover and one-point
mutation schemes to recombine genetic materials of the
chromosomes from the mating pool.

We now concentrate on issues regarding fitness
function and coding scheme.

A. The Fitness Function

For the measurement configuration selection
problem, one may use either condition number or the
observability index of the Identification Jacobian as the
fitness function. While these mathematical indices
reflect to a certain degree the estimation errors if the
selected joint variables are used for parameter estimation
in a later stage, the relationship between the values of
the condition number or the observability index to the
goodness of the solution is not certain. One cannot
claim that a set of measurement configurations that
produce a small condition number is certainly better
than the other set of measurement configurations with a
large condition number in terms of the effectiveness of
robot calibration in a later stage. The problem is that
we do not have a mathematical tool up till now that can
characterize the problem better than the cited
performance indices. Moreover, the variables of these
performance indices are the measurement configuration,
which can be represented by joint variables of the robot.
The physical significance of these variables goes
without saying. While we are striving to discover a
better fitness function for the problem at hand, in this
work we use the condition number of the Identification
Jacobian defined in Section 2 as the fitness function of
the problem. The correlation between this type of
objective functions and the efficiency of robot
calibration were demonstrated by experimentation in [3].

B. The Coding Scheme

Coding is a process that converts the values of
control variables to strings. One motivation of the
coding is the attempt to associate high fitness values
with similarities among strings in the population.
Next, we give an example of our coding scheme.
Assume that the robot has three joints, revolute-
revolute-prismatic (RRP), whose joint variables are ,,

6, and d;. One may use a 4-bit binary number for each
joint variable. Thus we need 12 bits to code each set of
joint variables (a measurement configuration). Assume
further that 4 measurement configurations are used to
compute the Identification Jacobian. In total we need
4x12 = 48 binary bits to form a binary string to
represent the variable vector of the fitness function.

The above scheme can be extendedto any robot
with any number of degrees of freedom and any number
of measurement configurations. The number of bits,
s, for each string can be calculated by the following
equation:

s; =mnb

where b is the number bits for each joint variable, n is
the number of degrees of freedom of the robot andm is
the number of measurement configurations planned for
the robot calibration experiment.

One has no choicein #, as the number of degrees of
freedom for a given robot is fixed. One does not have
much choice on m either, since normally twice as much
as the necessary number of measurements need to be
taken for a reliable estimation of robot parameters. For
instance, if the robot has 30 kinematic parameters and
each complete pose measurement provides 6 estimation
equations. The minimum number of measurements
required for the estimation of the 30 parameters is 30/6
=5. A good choice of m is thus about 10. As to b, the
number of bits for each joint variable, one does not have
much choice too. For instance, a joint can move from
0 degree to 90 degree. If one wants to explore the
fitness value for angles that are one degree apart, the
number of bits is then 6.

Some of the strings may not represent a feasible
angle. For instance, string 111111 (representing a joint
displacement of 127 degrees) is not a viable string as the
corresponding angle exceeds the robot joint limit of 90
degrees. This problem can be avoided by normalize the
joint angles. That is, the smallest and largest string
values represent the smallest and largest values of the
joint angle, respectively. In between while the string
value is increased or decreased, the joint value will also
be proportionally increased or decreased.

V. EXPERIMENT DESIGN AND RESULTS

The main objective of this experimental study is to
find suitabie GA parameters for solving the problem of
robot measurement configuration selection. In order to
achieve this objective, experiments must be carefully
designed.

Because SCARA robots such as Adept one, IBM
7545 and Intelledex are most popular in the electronic
manufacturing industry, we choose an Intelledex robot
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as the manipulator for testing our algorithms.  To
examine the effectiveness of the proposed techniques, an
independent evaluation step will be employed to check if
so-called best-fit offsprings are really superior for our
application. This is achieved by using criteria that are
different from the fitness function of the GAs.

A. Environment Simulation

The Intelledex is a RRP-type robot. The Modified
Complete and Parametrically Continuous (MCPC)
convention was used to model the robot, and its
parameters are listed reference[10]. Furthermore, the
joint limits for 6y, 6, and dj are set according to the

manufacturing specifications.

To simulate the robot pose measurement process,
we randomly generate a number of robot measurement
configurations within the robot workspace to form an
initial population. Each chromosome of the population,
representing a set of robot measurement configurations,
is evaluated by its fitness function, the condition
number of the Identification Jacobian at these robot
measurement configurations.  This population is
continuously updated by three basic genetic operations.
After the algorithm converges, each candidate solution
obtained by the GA is then decoded to a set of robot
measurement configurations. This set of configurations
are then used to “calibrate” the robot, again by
simulation.

To be able to evaluate the performance of GAs, we
use the best, medium and worst fitness values as three
measures. Due to the randomness of the genetic
algorithms, results will be different from one run to
another, even if the values of the GA parameters are
identical. Therefore we run a genetic algorithm a
number of times for each set of parameter values. The
average fitness values of the multiple runs are used to
evaluate the performance of the GA algorithms under
different parameter settings.

B. GA Parameter Tuning

The GA we used in the simulation study have the
following characteristics. A concatenated binary coding
technique is adopted. Each joint variable is assigned a
p-bit substring. Each measurement configuration is
represented by np bits, where n is the degrees of freedom
of the robot. Becausea chromosome consists of m
measurement configurations, the length of a
chromosome is nmp bits. For instance, if 5 bits are
used for each joint angle, 3 joint angles form a
configurations, and 4 measurements are needed for
computing the Identification Jacobian and its condition
number, the chromosome length will be 60.

The reproduction procedure adopted in the
simulation studies can be described as follows. Afterall

the chromosomes in the old generation are ranked based
on their fitness values, a scaling procedure is introduced
to prevent super strings from being overly prosper. The
stochastic remainder approach is then used to determine
how many copies of each chromosome to be made to
form a mating pool.

Parameters in GA are population size, crossover
rate, mutation rate, and maximum number of copies for
the best chromosome. Other parameters related to the
problem are number of bits to represent a joint variable
in a chromosome and number of measurement
configurations in each chromosome. These two
parameters effectively change the chromosome length.
We applied the linear scaling procedure and limited the
maximum number of copies to the best chromosome in
the reproduction stage. In addition, we also test if using
the elitist strategy improves the performance of GA.

There exits a number of ways to select GA
parameters. A logic approachis to treat the selection
problem as an optimization problem and then to apply a
search technique to find best parameters for the GA.
Grefenstetee designed a meta level GA to tune the
parameters of GAs [9]. A population of GAs with
different parameters are competing one other. Based on
their performance, the meta level GA will adjust
parameters of the low-level GAs. The process continues
until some convergence criteria are satisfied.
Grefenstetee discovered that although the optimal
parameter values of GA found by the meta level GA
produce better performances, the improvement is
marginal, comparing with the set of parameter values
suggested by De Jone [9].

In our simulation studies study, we decided to use
the cyclic search (or successive search) method. Starting
from the initial parameters similar to those suggested by
De Jong and Grefenstetee, GA parameters are changed
one at a time, until all parameters are changed. This
process continues until no significant improvement can
be obtained.

The initial parameters for GA are given in Fig. 5.1.

Note that this set of parameters were chosen mainly
based on De Jone’s recommendation [8]. The identified
values of GA parameters for our application are listed in
Fig. 5.2.

The set of parameter values given in Fig. 5.2 is
very close to the set of initial parameter values listed in
Fig. 5.1. There are two reasons that can explain this
phenomenon. The first reason is that genetic
algorithms are very robust in the sense that changing its
parameter values usually will not its performance
significantly. The second reason is that the initial set of
parameter values is not selected arbitrarily. On the
contrary, they are chosen after taking into consideration
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of the suggestions made by researchers in the area of
genetic algorithms and by preliminary simulations.

Population size (Popsize) = 50,

Crossover rate (P_c) = 0.5,

Mutation rate (P_m) = 0.01,

Maximum number of copies for the best
chromosome (R_n) = 1.5,

Number of bits for each joint angle (N_b) = 6,

Elitist (Elit) = Yes.

Fig. 5.1 Initial parameters of GA

Population size (Popsize) = 70,

Crossover rate (P_c) = 0.6,

Mutation rate (P_m) = 0.01,

Maximum number of copies for the best
chromosome (R_n) =2,

Number of bits for each joint angle (N_b) =8,

Elitist (Elit) = Yes.

Fig. 5.2 Final parameters of GA

We plot also the best, median and worst fitness
values in Fig. 5.3, which were obtained using the set of
GA parameter values that are similar to those given in
Fig. 5.2,

4

% 10 Popsize: 70, M: 4, N_b: 8, P_c: 0.5, P_m: 0.01, R_n: 2, Elit: Yes
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Fig. 5.3 The best, median and worst fitness values

C. Verification Results

To simulate the calibration process, it is assumed
that the measurements obtained by a “measuring device”
are contaminated with measurement noise. We simulate
a moderately accurate measuring device, which can
guarantee a position accuracy of 0.001 cm. We further
assume that the measurementerrors by the joint sensors
are small enough therefore they can be ignored, and that
the robot parameters are not known exactly. We start
with the nominal robot parameters and iteratively solve
for the “actual” parameters, using a number of

“contaminated” robot end-effector pose measurements.
After the algorithm converges, the identified robot
kinematic parameters are then fed to a verification
routine. In this routine, a number of different robot
poses are generated by the identified robot parameters,
and are measured by the simulated “measuring device”.
The discrepancy between the computed robot pose and
the “measured” robot pose, referredto as pose error, is
computed for every robot pose generated at the
verification stage. The set of GA parameters that
produces the best result is considered to be the winner.
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Fig. 5.4 Position errors with GA
1. Error from using best chromosome
2. Error from using median chromosome
3. Error from using worst chromosome
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Fig. 5.5 Orientation errors with GA
1. Error from using best chromosome
2. Error from using median chromosome
3. Error from using worst chromosome
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The verification results are given in Figs. 5.4- 5.5.
From these figures, the following comments can be
made:

1. Using a set of well-selected robot measurement
configurations can improve significantly the
efficiency of robot calibration. This is evident from
the simulation results. Performance of the best
chromosome are 20 times better than that of the
worst chromosome and 10 times better than that of
the median chromosome in terms of both position
errors and orientation errors.

2. The performance of the genetic algorithms is not
much better than that of the random search
procedure. This is because when the size of the
population is large, there is a very good chance that
some good chromosomes are in the initial
population. This suggests that if only a single
good chromosome is needed, one may not need to
use genetic algorithms. On the other hand, the
average performance of the population after a
number of generations is improved significantly.
One can utilize this property to choose a set of
measurement configurations that is most suitable
for implementation.

VI. CONCLUSIONS

In this paper, the genetic computing technique has
been applied to the problem of optimally selecting robot
measurement configurations for robot calibration
experiments. Sets of reasonably good parameters for
GAs have been determined through simulations.
Verifications have also been conductedto explore the
advantages and limitations of the genetic algorithms. It
has been demonstrated that to seek a single set of
optimal measurement configurations, the performance of
genetic algorithms is only slightly better than that of
the random search algorithm. On the other hand, if
multiple optimal solutions are needed, the genetic
algorithms have an edge over random search.

The classical genetic algorithm is a very useful tool
to solve certain type of search problems. However, the
original GA may not be able to solve a type of optimal
robot calibration experiment planning problem, in
which the measurable robot workspace is definedin the
Cartesian space. The major problem is due to the
evolution process implemented by the crossover and
mutation operations in GA. Although two parents may
represent legal points in a measurable workspace of the
robot, their children may not.

This is a realistic problem for practical applications
because in most application cases, a measurable
workspace is only a subset of the entire robot

workspace. If some of the identified optimal
measurement configurations are not within the
measurable workspace, then the optimal solution is not
useful. One way to remedy this problem is to check the
validity of the children after crossover and mutation
before placing them in the new generation pool.
However, this is not a desirable approach theoretically,
although it may work in practice.

Another way of avoiding this problem is to devisea
genetic algorithm that always produce legal children.
Readers are referred to [11] for a more detailed account of
this issue.
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