On Sorting an Intransitive Total Ordered Set Using Semi-Heap

Jie Wu
Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431
jle@cse.fau.edu

Abstract Hell and Rosenfeld [4] proved that the bound of find-
ing a Hamiltonian path i®(nlogn), the same complex-

1 The problem of sorting an intransitive total ordered set, ity as the regular sorting. They also considered bounds on
a generalization of regular sorting, is considered. This gen- finding some generalized Hamiltonian paths. It is easy to
eralized sorting is based on the fact that there exists a spe-prove that many regular sorting algorithms can be used to
cial linear ordering for any intransitive total ordered set. find a Hamiltonian path in a tournament, such as bubble
A new data structure called semi-heap is proposed to con-sort, insertion sort, binary insertion sort, and merge sort.
struct an optimal (n log n) sorting algorithm. Finally, we ~ Among parallel sorting algorithms, even-odd merge sort can
propose a cost-optimal parallel algorithm using semi-heap. still be applied. However, heapsort and quicksort cannot be
The run time of this algorithm i®(n) with ©(logn) pro- used. Bar-Noy and Naor [1] studied different parallel solu-
cessors under the EREW PRAM model. tions based on different models and the number of proces-

sors. They showed that under 6RCW PRAM model, the

generalized sorting problem can be solved®ifiog n) us-

ing ©(n) processors. Other fast parallel algorithms can be
1. Introduction foundin [7].

In this paper, we propose a new data structure called
semi-heapwhich is an extension of a regular heap struc-
ture. We introduce an optim&(n logn) algorithm to de-
termine a Hamiltonian path in a tournament based on the
semi-heap structure. Then, we propose a cost-optimal par-
allel algorithm based on the semi-heap structure that takes
©(n) in run time using®(logn) processors in the EREW
PRAM model. An implementation of the cost-optimal par-
allel algorithm in the network model with a linear array of
processors is also shown.

Sorting is one of the fundamental problems in computer
science and many different solutions for sorting have been
proposed [5, 6]. Basically, given a sequence:. afumbers
(ny,ne,...,n,) a@s an input, a sorting algorithm generates
a permutation (reorderind)u; , n, ..., n,,) of the input se-
quence such that, > ny, > ... > ...

We consider a generalization of the sorting problem by
replacing> with >, where> is a total order without the
transitive property, i.e., it is intransitive. That isyif > n;
andn; > ny, it is not necessary that; > n;. The total)
order requires that for any two elemenmtsandn;, either 2. Semi-Heap Data Structure
n; > n; orn; > n;, but not both (antisymmetric).

The setN of n elements exhibiting intransitive total or- In this section, we first show the existence of a Hamil-
der can be represented by a directed graph, where n; tonian path in any given tournament and then propose the
represents a directed edge from vemgxo vertexn;. The semi-heap data structure.

unlclie(;Iylr:g graph 'Stg complete q[.raph' tTh'S grapht |sfalso Proposition: Consider a setN (|N| = n) with any two
called atournameny?2], representing a tournament o elementsq; andn;, eithern; > n; or n; > n;, but not

players where every possible pair of players plays one 9aM&,th. Then elements iN can be arranged in a linear order
to decide the winner (and the loser) between them. Sorting -

on N corresponds to finding a Hamiltonian path in the tour- ! SEies %.n"_l T o o
nament. The proposition states that a Hamiltonian path exists in

any given tournament, but not necessary for a Hamiltonian
1This work was support in part by NSF grant CCR 9900646. circle. That is, we can always arrangelayers in a linear

Al Alr)] All) Alr(i))
@ ®)

Ali] Alil

1 i 2 2+l hespsize AllO) Alr0)] All) AlfG)]

n n ‘ ‘A[\] ‘ ‘A[I(i)]‘/—\[r(\)]‘ |* ‘

(@) (b)
Figure 2. Four possible configurations of a

Figure 1. (a) A directed graph with a complete triangle in a semi-heap.

underlying graph. (b) A semi-heap structure

as a set of overlapping triangles.
A[r(i)]. Figure 2 shows four possible configurations of a
triangle under relatios-. In this figure, ifA[i] > A[l(¢)] is

, true, a directed edge is drawn frofifi] to A[I(¢)]. Note that
order from left to right such that each player beats the onetoA[Z-] — max. {A[i], A[I()], A[r(i)]} for all cases. In cases

iFs right. Figure 1(a) shows a directed graph with five ver- () and (b) conditiond[i] = max{A[i], A[I(i)], A[r(i)]}
tices. One linear order is; = n4 > na > ns = ni. When also holds.

>~ is transitivg, the linear order arrangement is r(_educed o o simplify the presentation, we fill in a special symbol
a regular sorting problem. Unlike the regular sorting prob- ' \yith a smaller value than any one in the semi-heap for
lem, more than one solution exists for the generalized sort-,iies that are outside the semi-heap. Thatjg, = A[j]

ing pr:obllgm. For ex?mprllen - ”3|> :}2 =15 = 14dS s trye for alli inside the semi-heap and glloutside the
another linear order for the example of Figure 1 (a). semi-heap. Specificallyi[i] is an element of the semi-heap

Consider three elements, ns, 73 in N, denoten, = if 1 <4 < heapsize. A[j] is an element outside the semi-
max{nl,ng,ng} if n1 > ne andn; = ns. Note that in heap If] > heapsize.

a total order without the transitive property, the maximum
element may not exist among three elements. For example
if ny > no, na > ng, andns > ny, max{n,, ns,nz} does

not exist. Next we introduce a new concept of the maximum

3. Generalized Sorting Using Semi-Heap

element based of. Although a semi-heap resembles a heap, the traditional
heapsort algorithm cannot be directly applied to a semi-
Definition 1: n; = max, {ni,n2,n3} if both ny = heap to generate a generalized sorted sequence. Recall that
max{ni,n2,n3} andns = max{ni,ns,n3} are false. with the transitive property, root[1] of the heap is always
Note that whem; = max{n;,n»,n3} are false for all the maximum elementin the heap, i.e., the player at the root
i =1,2,3, everyn; is a maximum element. “pbeats” all the other players in the tournament. When we

A semi-heags any array object that can be viewed as “discard” the root, it is “replaced” by the last elemetit]
a complete binary tree, like a regular heap. A complete bi- in the heap, and then, the heap is reconstructed by pushing
nary tree of height is a binary tree thatis full down to level ~ A[n] down in the heap, if necessary, so that the new root
h — 1, with level & filled in from left to right. However, the is the maximum element among the remaining elements.

regular heap property is changed. gk’) andR(n') rep- However, in a semi-heap, we may face a situation in which
resent left and right child nodes of, respectively. When A[n] beats allA[1], A[2], andA[3], which is an impossible
a child, sayR(n'), does not exist, the relation = R(n') situation in a regular heapA[n], the new root, cannot be
automatically holds. selected (and is removed from the semi-heap) in the next

o])] . round to be placed afted[1], the previously selected ele-
Definition 2: A semi-heap for a given intransitive total or- ment, becausd [n] beatsA[1]. On the other hand, because
der - is a complete binary tree. For every nodeinthe 41,1 peats4[2], its left child, andA[3], its right child, A[n]
tree,n = max, {n, L(n), R(n)}. cannot be pushed down in the semi-heap. Therefore, a dif-

When an arrayd is used to represent a semi-hed) ferent strategy has to be developed for semi-heap.
and r(7) are used as indices of the left and right child We follow closely the notation used in Cormen, Leis-
nodes ofi; they can be computed simply) = 2i and erson, and Rivest's book [3]. The sorting using semi-
r(i) = 2i + 1. Figure 1 (b) shows a semi-heap with 10 heap consists of four modules: SEMI-HEAPIR,(),
elements. A semi-heap can be viewed as a set of overlapBUILD-SEMI-HEAP(4), REPLACE(@,i), and SEMI-
ping triangles, with each triangle consisting4t], A[l(7)], HEAP-SORT@A). SEMI-HEAPIFY(4,4) constructs a

‘o< il
Noaren

L________x L________1

Figure 3. The construction of a semi-heap us-
ing SEMI-HEAPIFY.

semi-heap rooted at[i], provided that binary trees rooted
at A[l(7)] and A[r(i)] are semi-heaps (see Figure 3). The
cost of SEMI-HEAPIFY is the height of nodé[i], mea-
sured by the number of edges on the longest simple down-
ward path from the node to a leaf. That is, the cost
of SEMI-HEAPIFY is O(logn), wheren = heapsize.
BUILD-SEMI-HEAP uses the procedure SEMI-HEAPIFY
in a bottom-up manner to convert an arbitrary arsainto
a semi-heap. The cost of BUILD-SEMI-HEAP 8(n),
which is the same cost of building a regular heap.
Generalized sorting is done through SEMI-HEAP-SORT
by repeatly printing and removing the root of the binary
tree (which is initially a semi-heap). The root is replaced
by either its leftchild or rightchild through REPLACE. The
selected child is replaced by one of its child nodes. The

process continues until reaching one of the leaf nodes ano(1

the entry for that leaf node is replaced byi.e., that leaf
node is removed from the tree. A new tree derived is no

longer a semi-heap; however, each overlapping triangle in
the tree still meets the maximum element requirement in

Definition 2. The cost of REPLACE is the height of the
current tree, which is bounded by the height of the original
semi-heapP(logn). Therefore, the cost of SEMI-HEAP-
SORT is®(n logn). Without loss of generality, we assume
thatn > 1.

SEMI-HEAPIFY(A, i)
1 if Afi] # max, {Al], A[I(i)], A[r ()]}

2 thenfind winner such that

Alwinner] «— max{A[i], A[L(1)], A[r(?)]}
3 exchangel[i] +— A[winner]
4 SEMI-HEAPIFY(A, winner)

BUILD-SEMI-HEAP(A)
1 for i +— |eaLsize | downto 1
2 doSEMI-HEAPIFY(A, i)

REPLACHE A4, 1)
1if (A[I(3)] = %) A (A[r(i)]
2 then Afi] «— =

:*)

3 else if(A[i] = A[l(0)]) A (A[I(D)] > A[r(D)])

4 then A[i] «— A[i(i)]

5 REPLACHA, [[i])

6 else A[i] «— A[r(i)]

7 REPLACE A, r[i])
SEMI-HEAP-SORTA)

1 BUILD-SEMI-HEAP(A)

2 while (A[lI(1)] # %) V (A[r(1)] # *)

3 do print (A[1])
4 REPLACE@, 1)
5 print (A[1])

Theorem 1 BUILD-SEMI-HEAP constructs a semi-heap
for any given complete binary tree.

Proof: The procedure BUILD-SEMI-HEAP goes through
nodes that have at least one child node and runs SEMI-
HEAPIFY on these nodes. The order in which these nodes
are processed guarantees that the subtrees rooted at child
nodes ofA[i] are semi-heap before SEMI-HEAPIFY runs
at A[i].
When SEMI-HEAPIFY is called ati[:], if A[i] is the
maximum element among[i], A[l(7)], and A[r ()] based
on -, the binary tree rooted at[i] is automatically a semi-
heap. Otherwise and without loss of generality, one of the
child nodes, sayA[l(i)], is the winner among three, i.e.,
A[l(i)] beats bothA[i] and A[r(:)]. In this case,A[l(i)]
is swapped withd[i], which ensures that nod#i] and its
child nodes satisfy the semi-heap property. However, node
] now has the originall[i] and thus the subtree rooted
at A[l(7)] may violate the semi-heap property. Therefore,
SEMI HEAPIFY must be called recursively on that subtree.
A new problem (that does not appear in the original heap
structure) is how to ensure that the resultant td@t:)], af-
ter applying SEMI-HEAPIFY ati[i(7)], will not violate the
semi-heap property amordyi], A[l(i)], andA[r(i)]. In a
regular heapA[i] is the maximum elementin the tree rooted
at A[i], the heap property amondgfi], A[l(:)], and A[r(i)]
automatically holds. In a semi-heap, we need to prove that
the newly selected root[i(i)] (other than the original value
A[i]), which is eitherA[i(1(3))] or A[r(I(7))] in the original
tree, cannot beat bot#[i] (the originalA[l(:)]) and A[r(7)].
In fact, we prove thatd[i] (the original A[I(i)]) always
beats the newly selectedii(:)] (the original A[I(I(:))] or
A[r(1(i))]). We consider the following two cases in the
original tree with a semi-heap rooted4fi(i)] (see Figure
3):

e If A[l(i)] beats bothA[i(I(i))] and A[r(l(7))]. The
problem is solved, because in the resultant tree, node
A[l(7)] becomesi[i] and eitherA[I(I(i))] or A[r(1(2))]
becomesA[l(7)].

e If A[i(i)] beats only one child node, then without
loss of generality, we assume thafi(i)] (which is

/A L

2 3 4 5 5 1 8 9.1 4 5 6 7 8 9.16
e [] Bl]

1
L
@ (®)

12 3
‘"‘ ‘n2 ‘n’

2 s

Figure 4. An example tree: (a) the initial con-
figuration, (b) the semi-heap configuration,
after applying BUILD-SEMI-HEAP.

now A[i]) beatsA[l(1(3))], A[l(1(2))] beatsA[r(I(i))],
and A[r(l(7))] beats A[l(i)]. To select a winner
among the originalA[i] (now A[l(i)]), A[l(1(7))],
A[r(l(i))], other thanA[l(¢)], A[I(I(7))] is the only
choice (sinced[r(I(z))] has lost toA[l(I(:))]). Con-
sequently,A[l(I(7))] becomes the newly selected root
of the left subtree ofd[i], based on the assumption,
A[i] (the original A[I(i)]) beatsAJl(¢)] (the original
A[l(1(3))]) in the resultant tree. [|

Consider a complete binary tree with eight vertices, i.e.,
heapsize = 8. The initial configuration of array is ng,
ns, N3, N4, N5, Ng, N7, andng. The tournament is repre-
sented by aB x8 matrix M given below, wheré/[i, j] = 1
if n; beatsn; (i.e.,n; > n;) andM|i, j| = 0 if n, is beaten
byn; (i.e.,n; > n;). M[i,i] = — represents an impossible
situation. Note thab/[i, j] = 1 if and only if M [j,¢] = 0.

-0 1 0 1 0 1 1
1 — 0 1 0 1 0 1
01 — 0 0 1 0 0
1 01 — 1 1 0 1

M=149 11 0 -1 1 1
1 00 0 0 — 0 0
01 1 1 0 1 — 0
o0 1 0 0 1 1 —

Figure 4 (a) shows the initial configuration of this com-
plete binary tree in arrayl, where the corresponding tree

(3 ()
G)—)
®
5 0 0 O
© © © ©® @
()) () O,
O—®

“2“‘5‘8‘5‘.“‘.“..‘
©

000000 @@@@@

‘5‘8‘6“““‘.““." ‘E“‘s“““‘.“H."
(©

Ul

0 O Y o
@

Figure 5. A step-by-step application of
REPLACE(A, 7) in the example of Figure 4.

A step-by-step application of REPLACE(1) to the exam-

ple of Figure 4 is shown in Figure 5, where the selected
(printed) elements are placed beside the root in a left-to-
right order. In this example, the final output sequence is
ny = Ny =Nz = Na = Ng > Ny = ng = ng. Once all
elements are printed, all entries in artdyare filled withsx.

The correctness of this result can be easily verified through
the given matrixi/.

Note that although the REPLACE process destroys the
semi-heap structure (since the resultant tree is no longer
a complete binary tree), each overlapping triangle in the
corresponding binary tree still maintains one of the four
possible configurations of a semi-heap as shown in Figure
2. Therefore, it always generates a generalized sorted se-
guence for any given semi-heap.

Theorem 2 For any given semi-heap, SEMI-HEAP-SORT

structure is represented by a set of overlapping triangles 9nerates a generalized sorted sequence

Three edges among three vertices in each triangle repreProof: It suffices to show that REPLACE always replaces
sent tournament results between three pairs of players irthe current root by an element beaten by the root. In ad-
the triangle. That is, an edge directed framto n; exists dition, each overlapping triangle in the binary tree is still
if M[i,j] = 1in matrix M. Relationships between two one of the four possible configurations of a triangle in a
vertices from different triangles are not shown in the figure. semi-heap, i.e., the root of each triangle is the maximum el-
Figure 4 (b) shows the resultant semi-heap after applyingement based og in the triangle. Based on the definition
BUILD-SEMI-HEAP. A[j] is filled with % for j > 8. Actu- of REPLACE, the current roati[i] is replaced byA[l(i)]

ally, itis sufficient to define the size afto be2 x heapsize. for cases (a) and (c) and by{r ()] for cases (b) and (d) of

Figure 2. The replacing element, sayi(i)], is itself re- ProcessolP; has a copy of elements in levélandi + 1 of
placed by an element in the triangle rootedidit(i)]. This the semi-heap. In generd?; is assigned wit2? triangles
process continues iteratively down the semi-heap. In addi-(i.e.,3 x 2¢ consecutive elements in arraly.

tion, the new root[¢] beats both of its child nodes (if any). In the proposed parallel algorithm, each processor alter-
This property ensures when a child node is missing (i.e., nates between aactive ste@nd apassive stepProcessors

the corresponding triangle contains only two nodes)] with even ID’s take active steps in even steps, while with
can still be replaced by another child node without causing odd ID’s take active steps in odd steps. That is, at an even
any problem. Therefore, the root of each triangle is still the step, processoi®), P», Py, ... take the active step and pro-
maximum element based enin the triangle.] cessorsP;, P, P5 ... take the passive step. The role of
active and passive among these processors exchanges in the
next step, which is an odd step. Active and passive steps
include the following activities: At an active step, each pro-
cessor performs local update and sends relevant messages
to two adjacent processors (if they exist). At a passive step,
each processor receives messages from two adjacent pro-
cessors (if they exist) and saves them.

In the implementation using the network model, proces-
sor Py initiates the sorting process and the rBss are ac-
tivated in sequence. Procesdéralso generates a termina-
tion signal which is passed down the linear array of proces-
sors once the job is completed. To make our algorithm more
general, some activities are not ordered within a step.

4. Parallel Generalized Sorting Using Semi-
Heap

We introduce in this section a cost-optimal parallel sort-
ing algorithm using semi-heap in the EREW PRAM model.
A sorting algorithm iscost-optimalif the product of run
time and the number of processor$i§: logn), the bound
for sequential solutions. Specifically, the pipeline technique
is used to reduce the run time of the sequential algorithm
from O(nlogn) to ©(n) using ©(logn) processors with
different processors handling activities of different levels of
the heap.

Because procedure BUILD-SEMI-HEARYJ takes only
©(n), no speed up is necessary for this part. Procedure
SEMI-HEAP-SORT can be improved by assigning one pro-
cessor to each level of the binary tree, which initially is a
semi-heap. REPLACH, 1) is pipelined level to level and
this procedure is called at every other step, because each
node is shared by two processors at adjacent levels, a pas-
sive step is inserted between two calls. The run time of
SEMI-HEAP-SORT is reduced 1©(n) using®(log n) pro-
cessors. This parallel algorithm runs on the CREW PRAM
model, since two adjacent processors may access (read) ver-
tices in two overlapping triangles of the tree. However, si-
multaneous accesses can be avoided by creating a copy of
each vertex that appears in two overlapping triangles. The
enhanced version runs on the EREW PRAM model.

P, at an active step (starts from step 0):
1. Prints rootA[1].

2. If both child nodes are, A[1] is replaced by, and
then, P, sends a termination signal f§ and stops.

If at least one child node is net replacesA[1] by one
of two child nodesA[2] or A[3], following the rule in
REPLACE. If A[2] is selectedP, sendsd = 2 to pro-
cessorP; ; otherwisejd = 3 is sent. In the next step (a
passive stepl, receivegid, replacement) from Py,
and then, performs the updat¢id] := replacement.

P;,i > 0, in a passive step:

We use the network model to illustrate the parallel al-
gorithm. Thenetwork mode|8] can be viewed as a graph
where each node represents a processor, and each directed
edge(P;, P;) represents a two-way communication link be-
tween processorB; and P;. It is easy to convert the algo-
rithm back to the EREW PRAM model by replacing send
and receive commands in the network model by read and
write commands in the EREW PRAM model. Shared el-
ements are duplicated and stored in local memory of adja-
cent processors. Processors are connected as a linear array,
where each processor communicates with up to two adja-
cent processors.

Thelevelof each node in the semi-heap is its distance to
the root. Clearlyh = [log(n + 1)] is the maximum level
and is called thelepthof the semi-heap. A linear array bf
processors are used which are labele®ad, ..., P, 1.

If P; receives(id, replacement) from P;yq, it per-
forms the updatel[id] := replacement.

If P; receives sighald = i from P;_q, it performs the
following activities in next active step:

1. If both child nodes are, A[i] is replaced by
x; otherwise,A[i] is replaced by eitheA[2:] or
A[2i + 1] based the replacement rule.

2. Senc{i, A[Z]) to P_1.

3. If either A[2i] or A[2: + 1] is selected to replace
A[i], the corresponding id2¢ or 2i + 1) is sent to
P;y1, providedP; is not the last processor (i.e.,
i # h — 1); otherwise, the selected element is
replaced by.

If P; receives the termination signal froRy_, it for-
wards the termination signal to the next proceg3qx
(if it exists) in the next active step, and then,stops.

Note that in the above algorithm, although each proces-
sor is assigned a different number of triangles, its workload
stays the same: each processor operates on at most two tri- .
angles in a passive step and at most one triangle in an ac-
tive step. When a child node exceeds the boundary of the
semi-heap, it has a default value ofind no replacement a
is needed. The step-by-step illustration of the above algo- L .
rithm is shown in Figure 6 for the first three steps of Fig- '
ure 5, where the semi-heap is represented as a tree structure
without showing the detail orientation of each triangle. In [v
this example, each step of Figure 5 corresponds to two steps =
in Figure 6. Replacement activities are shown using dashed
lines.

Theorem 3 The proposed parallel implementation is cost-
optimal with a run time 0®(n) using®(log n) processors.

Proof: It is clear that®(logn) processors are used. Also,

one element is selected (printed) in every other step and all

n elements are printed in, steps, and hence, the run time

is ©(n). Because the product of run time and the number of

processors used matches the lower bo@rtd logn) for a

sequential algorithm, the proposed parallel implementation

is cost-optimal. m Figure 6. A step-by-step illustration of the first
The proposed implementation can be extended without ~three steps of Figure 5.

having to identify the last processor. This extension can be

done by adding one extra processggrwhich handles the

last level of the semi-heap (this last level is also duplicated). References

Clearly, each child node of any element in the last level is

anx. Therefore, no other processor will be activatedgy ~ [1] A. Bar-Noy and J. Naor. Sorting, minimal feedback

Also, each processor can terminate itself without using a

P . .) . of Discrete Mathematics3, (1), Feb. 1990, 7-20.
termination signal originated frof%,. P; terminates itself

sets, and Hamilton paths in tournamer@5AM Journal

once all3x 2’ elements (thatit controls) becomghowever, [2] J. A. Bondy and U.S.R. Murthy.Graph Theory and

the bookkeeping process is more complicated than the one Applications The Macmillan Press. 1976.

in the original design. [3] T. H. Cormen, C. E. Leiserson, and R. L. Rivelsttro-

duction to AlgorithmsThe MIT Press. 1994.

5. Conclusions [4] P. Hell and M. Rosenfeld. The complexity of find-
) ing generalized paths in tournamentdournal of Al-

gorithms 1983, 4, 303-309.
We have proposed a data structure called semi-hea

which is a generalization of the traditional heap structure.
The semi-heap structure is used to solve a generalized sort-
ing problem. We have shown that the generalized sorting[G]
problem can be solved optimally using semi-heap. The Company, second edition. 1998.
solution can be easily extended to a cost-optimal EREW
PRAM algorithm with® (n) in run time usingd(log n) pro-
cessors. An implementation of this parallel algorithm un- rithms 1988, 276-286.
der the network model is shown, where processors are con
nected as a linear array. We are currently studying the prob-" 1999
lem of generalized merging, where the relation between el-
ements does not have the transitive property. The result of{g]
this study will be reported in a separate paper [9].

Addison-Wesley Publishing Company. 1992.

tive sequences. in preparation.

F15] J. JaJa. An Introduction to Parallel Algorithms

D. Knuth. The Art of Computer Programming, Vol
3, Sorting and SearchingAddison-Wesley Publishing

[7] D. Soroker. Fast parallel algorithms for finding Hamil-
ton paths and cycles in a tournamedournal of Algo-

18] J. Wu. Distributed Systems DesigrThe CRC Press.

J. Wu and S. Olariu. On optimal merge of two intransi-

