
On Sorting an Intransitive Total Ordered Set Using Semi-Heap

Jie Wu
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431

jie@cse.fau.edu

Abstract

1 The problem of sorting an intransitive total ordered set,
a generalization of regular sorting, is considered. This gen-
eralized sorting is based on the fact that there exists a spe-
cial linear ordering for any intransitive total ordered set.
A new data structure called semi-heap is proposed to con-
struct an optimal�(n logn) sorting algorithm. Finally, we
propose a cost-optimal parallel algorithm using semi-heap.
The run time of this algorithm is�(n) with �(logn) pro-
cessors under the EREW PRAM model.

1. Introduction

Sorting is one of the fundamental problems in computer
science and many different solutions for sorting have been
proposed [5, 6]. Basically, given a sequence ofn numbers
(n1; n2; :::; nn) as an input, a sorting algorithm generates
a permutation (reordering)(n

0

1; n
0

2; :::; n
0

n) of the input se-
quence such thatn

0

1 � n
0

2 � ::: � n
0

n.
We consider a generalization of the sorting problem by

replacing� with �, where� is a total order without the
transitive property, i.e., it is intransitive. That is, ifni � nj
andnj � nk, it is not necessary thatni � nk. The total
order requires that for any two elementsni andnj , either
ni � nj or nj � ni, but not both (antisymmetric).

The setN of n elements exhibiting intransitive total or-
der can be represented by a directed graph, whereni � nj
represents a directed edge from vertexni to vertexnj . The
underlying graph is a complete graph. This graph is also
called a tournament[2], representing a tournament ofn
players where every possible pair of players plays one game
to decide the winner (and the loser) between them. Sorting
onN corresponds to finding a Hamiltonian path in the tour-
nament.

1This work was support in part by NSF grant CCR 9900646.

Hell and Rosenfeld [4] proved that the bound of find-
ing a Hamiltonian path is�(n logn), the same complex-
ity as the regular sorting. They also considered bounds on
finding some generalized Hamiltonian paths. It is easy to
prove that many regular sorting algorithms can be used to
find a Hamiltonian path in a tournament, such as bubble
sort, insertion sort, binary insertion sort, and merge sort.
Among parallel sorting algorithms, even-odd merge sort can
still be applied. However, heapsort and quicksort cannot be
used. Bar-Noy and Naor [1] studied different parallel solu-
tions based on different models and the number of proces-
sors. They showed that under theCRCW PRAM model, the
generalized sorting problem can be solved in�(logn) us-
ing �(n) processors. Other fast parallel algorithms can be
found in [7].

In this paper, we propose a new data structure called
semi-heap, which is an extension of a regular heap struc-
ture. We introduce an optimal�(n logn) algorithm to de-
termine a Hamiltonian path in a tournament based on the
semi-heap structure. Then, we propose a cost-optimal par-
allel algorithm based on the semi-heap structure that takes
�(n) in run time using�(logn) processors in the EREW
PRAM model. An implementation of the cost-optimal par-
allel algorithm in the network model with a linear array of
processors is also shown.

2. Semi-Heap Data Structure

In this section, we first show the existence of a Hamil-
tonian path in any given tournament and then propose the
semi-heap data structure.

Proposition: Consider a setN (jN j = n) with any two
elementsni andnj , eitherni � nj or nj � ni, but not
both. Then elements inN can be arranged in a linear order
n

0

1 � n
0

2 � ::: � n
0

n�1 � n
0

n:

The proposition states that a Hamiltonian path exists in
any given tournament, but not necessary for a Hamiltonian
circle. That is, we can always arrangen players in a linear

n
2

n
3

n
4n

5

n
1

1 i 2i 2i+1 heapsize

A[i] A[l(i)] * ... *A[r(i)]...

A[i]

A[l[i)] A[r(i)]

(a) (b)

Figure 1. (a) A directed graph with a complete
underlying graph. (b) A semi-heap structure
as a set of overlapping triangles.

order from left to right such that each player beats the one to
its right. Figure 1 (a) shows a directed graph with five ver-
tices. One linear order isn3 � n4 � n2 � n5 � n1. When
� is transitive, the linear order arrangement is reduced to
a regular sorting problem. Unlike the regular sorting prob-
lem, more than one solution exists for the generalized sort-
ing problem. For example,n1 � n3 � n2 � n5 � n4 is
another linear order for the example of Figure 1 (a).

Consider three elementsn1; n2; n3 in N , denoten1 =
maxfn1; n2; n3g if n1 � n2 andn1 � n3. Note that in
a total order without the transitive property, the maximum
element may not exist among three elements. For example,
if n1 � n2, n2 � n3, andn3 � n1, maxfn1; n2; n3g does
not exist. Next we introduce a new concept of the maximum
element based on�.

Definition 1: n1 = max�fn1; n2; n3g if both n2 =
maxfn1; n2; n3g andn3 = maxfn1; n2; n3g are false.

Note that whenni = maxfn1; n2; n3g are false for all
i = 1; 2; 3, everyni is a maximum element.

A semi-heapis any array object that can be viewed as
a complete binary tree, like a regular heap. A complete bi-
nary tree of heighth is a binary tree that is full down to level
h� 1, with levelh filled in from left to right. However, the
regular heap property is changed. LetL(n

0

) andR(n
0

) rep-
resent left and right child nodes ofn

0

, respectively. When
a child, sayR(n

0

), does not exist, the relationn
0

� R(n
0

)
automatically holds.

Definition 2: A semi-heap for a given intransitive total or-
der� is a complete binary tree. For every noden

0

in the
tree,n

0

= max�fn
0

; L(n
0

); R(n
0

)g.

When an arrayA is used to represent a semi-heap,l(i)
and r(i) are used as indices of the left and right child
nodes ofi; they can be computed simply byl(i) = 2i and
r(i) = 2i + 1. Figure 1 (b) shows a semi-heap with 10
elements. A semi-heap can be viewed as a set of overlap-
ping triangles, with each triangle consisting ofA[i],A[l(i)],

A[i]

A[l(i)] A[r(i)]

A[i]

A[l(i)] A[r(i)]

A[i]

A[l(i)] A[r(i)]

(a) (b)

(c) (d)

A[i]

A[l(i)] A[r(i)]

Figure 2. Four possible configurations of a
triangle in a semi-heap.

A[r(i)]. Figure 2 shows four possible configurations of a
triangle under relation�. In this figure, ifA[i] � A[l(i)] is
true, a directed edge is drawn fromA[i] toA[l(i)]. Note that
A[i] = max�fA[i]; A[l(i)]; A[r(i)]g for all cases. In cases
(a) and (b) conditionA[i] = maxfA[i]; A[l(i)]; A[r(i)]g
also holds.

To simplify the presentation, we fill in a special symbol
�, with a smaller value than any one in the semi-heap for
entries that are outside the semi-heap. That is,A[i] � A[j]
is true for all i inside the semi-heap and allj outside the
semi-heap. Specifically,A[i] is an element of the semi-heap
if 1 � i � heapsize. A[j] is an element outside the semi-
heap ifj > heapsize.

3. Generalized Sorting Using Semi-Heap

Although a semi-heap resembles a heap, the traditional
heapsort algorithm cannot be directly applied to a semi-
heap to generate a generalized sorted sequence. Recall that
with the transitive property, rootA[1] of the heap is always
the maximum element in the heap, i.e., the player at the root
“beats” all the other players in the tournament. When we
“discard” the root, it is “replaced” by the last elementA[n]
in the heap, and then, the heap is reconstructed by pushing
A[n] down in the heap, if necessary, so that the new root
is the maximum element among the remaining elements.
However, in a semi-heap, we may face a situation in which
A[n] beats allA[1], A[2], andA[3], which is an impossible
situation in a regular heap.A[n], the new root, cannot be
selected (and is removed from the semi-heap) in the next
round to be placed afterA[1], the previously selected ele-
ment, becauseA[n] beatsA[1]. On the other hand, because
A[n] beatsA[2], its left child, andA[3], its right child,A[n]
cannot be pushed down in the semi-heap. Therefore, a dif-
ferent strategy has to be developed for semi-heap.

We follow closely the notation used in Cormen, Leis-
erson, and Rivest’s book [3]. The sorting using semi-
heap consists of four modules: SEMI-HEAPIFY(A; i),
BUILD-SEMI-HEAP(A), REPLACE(A; i), and SEMI-
HEAP-SORT(A). SEMI-HEAPIFY(A; i) constructs a

semi-heap

semi-heap semi-heap

A[r(i)]

A[l(l(i)]

A[l(i)]

A[r(l(i))]

A[i]

Figure 3. The construction of a semi-heap us-
ing SEMI-HEAPIFY.

semi-heap rooted atA[i], provided that binary trees rooted
at A[l(i)] andA[r(i)] are semi-heaps (see Figure 3). The
cost of SEMI-HEAPIFY is the height of nodeA[i], mea-
sured by the number of edges on the longest simple down-
ward path from the node to a leaf. That is, the cost
of SEMI-HEAPIFY is �(logn), wheren = heapsize.
BUILD-SEMI-HEAP uses the procedure SEMI-HEAPIFY
in a bottom-up manner to convert an arbitrary arrayA into
a semi-heap. The cost of BUILD-SEMI-HEAP is�(n),
which is the same cost of building a regular heap.

Generalized sorting is done through SEMI-HEAP-SORT
by repeatly printing and removing the root of the binary
tree (which is initially a semi-heap). The root is replaced
by either its leftchild or rightchild through REPLACE. The
selected child is replaced by one of its child nodes. The
process continues until reaching one of the leaf nodes and
the entry for that leaf node is replaced by�, i.e., that leaf
node is removed from the tree. A new tree derived is no
longer a semi-heap; however, each overlapping triangle in
the tree still meets the maximum element requirement in
Definition 2. The cost of REPLACE is the height of the
current tree, which is bounded by the height of the original
semi-heap,�(logn). Therefore, the cost of SEMI-HEAP-
SORT is�(n logn). Without loss of generality, we assume
thatn � 1.

SEMI-HEAPIFY(A; i)
1 if A[i] 6= max�fA[i]; A[l(i)]; A[r(i)]g
2 then findwinner such that

A[winner] � maxfA[i]; A[l(i)]; A[r(i)]g
3 exchangeA[i] ! A[winner]
4 SEMI-HEAPIFY(A;winner)

BUILD-SEMI-HEAP(A)
1 for i � bheapsize

2
c downto 1

2 do SEMI-HEAPIFY(A; i)

REPLACE(A; i)
1 if (A[l(i)] = �) ^ (A[r(i)] = �)
2 thenA[i] � �

3 else if(A[i] � A[l(i)]) ^ (A[l(i)] � A[r(i)])
4 thenA[i] � A[l(i)]
5 REPLACE(A; l[i])
6 else A[i] � A[r(i)]
7 REPLACE(A; r[i])

SEMI-HEAP-SORT(A)
1 BUILD-SEMI-HEAP(A)
2 while (A[l(1)] 6= �) _ (A[r(1)] 6= �)
3 do print (A[1])
4 REPLACE(A, 1)
5 print (A[1])

Theorem 1: BUILD-SEMI-HEAP constructs a semi-heap
for any given complete binary tree.

Proof: The procedure BUILD-SEMI-HEAP goes through
nodes that have at least one child node and runs SEMI-
HEAPIFY on these nodes. The order in which these nodes
are processed guarantees that the subtrees rooted at child
nodes ofA[i] are semi-heap before SEMI-HEAPIFY runs
atA[i].

When SEMI-HEAPIFY is called atA[i], if A[i] is the
maximum element amongA[i], A[l(i)], andA[r(i)] based
on�, the binary tree rooted atA[i] is automatically a semi-
heap. Otherwise and without loss of generality, one of the
child nodes, sayA[l(i)], is the winner among three, i.e.,
A[l(i)] beats bothA[i] andA[r(i)]. In this case,A[l(i)]
is swapped withA[i], which ensures that nodeA[i] and its
child nodes satisfy the semi-heap property. However, node
A[l(i)] now has the originalA[i] and thus the subtree rooted
at A[l(i)] may violate the semi-heap property. Therefore,
SEMI-HEAPIFY must be called recursively on that subtree.

A new problem (that does not appear in the original heap
structure) is how to ensure that the resultant rootA[l(i)], af-
ter applying SEMI-HEAPIFY atA[l(i)], will not violate the
semi-heap property amongA[i], A[l(i)], andA[r(i)]. In a
regular heap,A[i] is the maximum element in the tree rooted
atA[i], the heap property amongA[i], A[l(i)], andA[r(i)]
automatically holds. In a semi-heap, we need to prove that
the newly selected rootA[l(i)] (other than the original value
A[i]), which is eitherA[l(l(i))] orA[r(l(i))] in the original
tree, cannot beat bothA[i] (the originalA[l(i)]) andA[r(i)].
In fact, we prove thatA[i] (the originalA[l(i)]) always
beats the newly selectedA[l(i)] (the originalA[l(l(i))] or
A[r(l(i))]). We consider the following two cases in the
original tree with a semi-heap rooted atA[l(i)] (see Figure
3):

� If A[l(i)] beats bothA[l(l(i))] andA[r(l(i))]. The
problem is solved, because in the resultant tree, node
A[l(i)] becomesA[i] and eitherA[l(l(i))] orA[r(l(i))]
becomesA[l(i)].

� If A[l(i)] beats only one child node, then without
loss of generality, we assume thatA[l(i)] (which is

n
1

n
2

n
3

n
4

n
8

n
5

n
6

n
7

n
1

n
2

n
3

n
4

n
5

n
6

n
7

n
8 * ... *

(a)

A:

1 2 3 4 5 6 7 8 9 .. 16

n
1

A:

1 2 3 4 5 6 7 8 9 .. 16

n
2

n
7

n
4

n
8

n
5

n
6

n
3

n
1

n
2

n
7

n
4

n
5

n
6

n
3

n
8 * ... *

(b)

Figure 4. An example tree: (a) the initial con-
figuration, (b) the semi-heap configuration,
after applying BUILD-SEMI-HEAP.

nowA[i]) beatsA[l(l(i))], A[l(l(i))] beatsA[r(l(i))],
and A[r(l(i))] beatsA[l(i)]. To select a winner
among the originalA[i] (now A[l(i)]), A[l(l(i))],
A[r(l(i))], other thanA[l(i)], A[l(l(i))] is the only
choice (sinceA[r(l(i))] has lost toA[l(l(i))]). Con-
sequently,A[l(l(i))] becomes the newly selected root
of the left subtree ofA[i], based on the assumption,
A[i] (the originalA[l(i)]) beatsA[l(i)] (the original
A[l(l(i))]) in the resultant tree.

Consider a complete binary tree with eight vertices, i.e.,
heapsize = 8. The initial configuration of arrayA is n1,
n2, n3, n4, n5, n6, n7, andn8. The tournament is repre-
sented by an8�8matrixM given below, whereM [i; j] = 1
if ni beatsnj (i.e.,ni � nj) andM [i; j] = 0 if ni is beaten
bynj (i.e.,nj � ni). M [i; i] = � represents an impossible
situation. Note thatM [i; j] = 1 if and only ifM [j; i] = 0.

M =

0
BBBBBBBB@

� 0 1 0 1 0 1 1

1 � 0 1 0 1 0 1

0 1 � 0 0 1 0 0

1 0 1 � 1 1 0 1

0 1 1 0 � 1 1 1

1 0 0 0 0 � 0 0

0 1 1 1 0 1 � 0

0 0 1 0 0 1 1 �

1
CCCCCCCCA

Figure 4 (a) shows the initial configuration of this com-
plete binary tree in arrayA, where the corresponding tree
structure is represented by a set of overlapping triangles.
Three edges among three vertices in each triangle repre-
sent tournament results between three pairs of players in
the triangle. That is, an edge directed fromni to nj exists
if M [i; j] = 1 in matrix M . Relationships between two
vertices from different triangles are not shown in the figure.
Figure 4 (b) shows the resultant semi-heap after applying
BUILD-SEMI-HEAP.A[j] is filled with � for j � 8. Actu-
ally, it is sufficient to define the size ofA to be2�heapsize.

n
1

n
7

n
1

n
7

n
3

n
1

n
3

n
1

n
7

n
2

n
5

n
6

n
8

n
4

n
5

n
6

n
8 * ... ** * *

n
4

* *

n
1

n
7

n
3

n
4

n
5

n
1

n
7

n
3

n
4

n
2

n
6

n
6

n
8 * ... ** * * * **

n
8

*

(f)

n
8

n
6

n
2

n
5

n
5

n
8

n
6 * ... ** * * * **

(e)

n
2

n
3

n
4

n
8

n
5

n
6

n
1

n
2

n
3

n
4

n
5

n
6

* n
8 * ... *

n
7

n
2

n
6

n
4

n
8

n
5

n
3

n
2

n
6

n
4

n
5

n
8 * ... *

n
3

* *

(a) (b)

n
4

n
6

n
8

n
5

n
2

n
2

n
4

n
6

n
8

n
5 * ... ** * *

(c) (d)

Figure 5. A step-by-step application of
REPLACE(A; i) in the example of Figure 4.

A step-by-step application of REPLACE(A; 1) to the exam-
ple of Figure 4 is shown in Figure 5, where the selected
(printed) elements are placed beside the root in a left-to-
right order. In this example, the final output sequence is
n1 � n7 � n3 � n2 � n4 � n5 � n8 � n6. Once all
elements are printed, all entries in arrayA are filled with�.
The correctness of this result can be easily verified through
the given matrixM .

Note that although the REPLACE process destroys the
semi-heap structure (since the resultant tree is no longer
a complete binary tree), each overlapping triangle in the
corresponding binary tree still maintains one of the four
possible configurations of a semi-heap as shown in Figure
2. Therefore, it always generates a generalized sorted se-
quence for any given semi-heap.

Theorem 2: For any given semi-heap, SEMI-HEAP-SORT
generates a generalized sorted sequence.

Proof: It suffices to show that REPLACE always replaces
the current root by an element beaten by the root. In ad-
dition, each overlapping triangle in the binary tree is still
one of the four possible configurations of a triangle in a
semi-heap, i.e., the root of each triangle is the maximum el-
ement based on� in the triangle. Based on the definition
of REPLACE, the current rootA[i] is replaced byA[l(i)]
for cases (a) and (c) and byA[r(i)] for cases (b) and (d) of

Figure 2. The replacing element, sayA[l(i)], is itself re-
placed by an element in the triangle rooted atA[l(i)]. This
process continues iteratively down the semi-heap. In addi-
tion, the new rootA[i] beats both of its child nodes (if any).
This property ensures when a child node is missing (i.e.,
the corresponding triangle contains only two nodes),A[i]
can still be replaced by another child node without causing
any problem. Therefore, the root of each triangle is still the
maximum element based on� in the triangle.

4. Parallel Generalized Sorting Using Semi-
Heap

We introduce in this section a cost-optimal parallel sort-
ing algorithm using semi-heap in the EREW PRAM model.
A sorting algorithm iscost-optimalif the product of run
time and the number of processors is�(n logn), the bound
for sequential solutions. Specifically, the pipeline technique
is used to reduce the run time of the sequential algorithm
from �(n logn) to �(n) using�(logn) processors with
different processors handling activities of different levels of
the heap.

Because procedure BUILD-SEMI-HEAP(A) takes only
�(n), no speed up is necessary for this part. Procedure
SEMI-HEAP-SORT can be improved by assigning one pro-
cessor to each level of the binary tree, which initially is a
semi-heap. REPLACE(A; 1) is pipelined level to level and
this procedure is called at every other step, because each
node is shared by two processors at adjacent levels, a pas-
sive step is inserted between two calls. The run time of
SEMI-HEAP-SORT is reduced to�(n) using�(logn) pro-
cessors. This parallel algorithm runs on the CREW PRAM
model, since two adjacent processors may access (read) ver-
tices in two overlapping triangles of the tree. However, si-
multaneous accesses can be avoided by creating a copy of
each vertex that appears in two overlapping triangles. The
enhanced version runs on the EREW PRAM model.

We use the network model to illustrate the parallel al-
gorithm. Thenetwork model[8] can be viewed as a graph
where each node represents a processor, and each directed
edge(Pi; Pj) represents a two-way communication link be-
tween processorsPi andPj . It is easy to convert the algo-
rithm back to the EREW PRAM model by replacing send
and receive commands in the network model by read and
write commands in the EREW PRAM model. Shared el-
ements are duplicated and stored in local memory of adja-
cent processors. Processors are connected as a linear array,
where each processor communicates with up to two adja-
cent processors.

The levelof each node in the semi-heap is its distance to
the root. Clearly,h = dlog(n + 1)e is the maximum level
and is called thedepthof the semi-heap. A linear array ofh
processors are used which are labeled asP0; P1; :::; Ph�1.

ProcessorPi has a copy of elements in levelsi andi+ 1 of
the semi-heap. In general,Pi is assigned with2i triangles
(i.e.,3� 2i consecutive elements in arrayA).

In the proposed parallel algorithm, each processor alter-
nates between anactive stepand apassive step. Processors
with even ID’s take active steps in even steps, while with
odd ID’s take active steps in odd steps. That is, at an even
step, processorsP0, P2, P4, ... take the active step and pro-
cessorsP1, P3, P5 ... take the passive step. The role of
active and passive among these processors exchanges in the
next step, which is an odd step. Active and passive steps
include the following activities: At an active step, each pro-
cessor performs local update and sends relevant messages
to two adjacent processors (if they exist). At a passive step,
each processor receives messages from two adjacent pro-
cessors (if they exist) and saves them.

In the implementation using the network model, proces-
sorP0 initiates the sorting process and the restPi’s are ac-
tivated in sequence. ProcessorP0 also generates a termina-
tion signal which is passed down the linear array of proces-
sors once the job is completed. To make our algorithm more
general, some activities are not ordered within a step.

P0 at an active step (starts from step 0):

1. Prints rootA[1].

2. If both child nodes are�, A[1] is replaced by�, and
then,P0 sends a termination signal toP1 and stops.

If at least one child node is not�, replacesA[1] by one
of two child nodes,A[2] orA[3], following the rule in
REPLACE. If A[2] is selected,P0 sendsid = 2 to pro-
cessorP1; otherwise,id = 3 is sent. In the next step (a
passive step),P0 receives(id; replacement) fromP1,
and then, performs the updateA[id] := replacement.

Pi, i > 0, in a passive step:

If Pi receives(id; replacement) from Pi+1, it per-
forms the updateA[id] := replacement.

If Pi receives signalid = i fromPi�1, it performs the
following activities in next active step:

1. If both child nodes are�, A[i] is replaced by
�; otherwise,A[i] is replaced by eitherA[2i] or
A[2i+ 1] based the replacement rule.

2. Send(i; A[i]) to Pi�1.

3. If eitherA[2i] orA[2i+ 1] is selected to replace
A[i], the corresponding id (2i or 2i+1) is sent to
Pi+1, providedPi is not the last processor (i.e.,
i 6= h � 1); otherwise, the selected element is
replaced by�.

If Pi receives the termination signal fromPi�1, it for-
wards the termination signal to the next processorPi+1

(if it exists) in the next active step, and then,Pi stops.

Note that in the above algorithm, although each proces-
sor is assigned a different number of triangles, its workload
stays the same: each processor operates on at most two tri-
angles in a passive step and at most one triangle in an ac-
tive step. When a child node exceeds the boundary of the
semi-heap, it has a default value of� and no replacement
is needed. The step-by-step illustration of the above algo-
rithm is shown in Figure 6 for the first three steps of Fig-
ure 5, where the semi-heap is represented as a tree structure
without showing the detail orientation of each triangle. In
this example, each step of Figure 5 corresponds to two steps
in Figure 6. Replacement activities are shown using dashed
lines.

Theorem 3: The proposed parallel implementation is cost-
optimal with a run time of�(n) using�(logn) processors.

Proof: It is clear that�(logn) processors are used. Also,
one element is selected (printed) in every other step and all
n elements are printed in2n steps, and hence, the run time
is�(n). Because the product of run time and the number of
processors used matches the lower bound�(n logn) for a
sequential algorithm, the proposed parallel implementation
is cost-optimal.

The proposed implementation can be extended without
having to identify the last processor. This extension can be
done by adding one extra processorPh which handles the
last level of the semi-heap (this last level is also duplicated).
Clearly, each child node of any element in the last level is
an�. Therefore, no other processor will be activated byPh.
Also, each processor can terminate itself without using a
termination signal originated fromP0. Pi terminates itself
once all3�2i elements (that it controls) become�; however,
the bookkeeping process is more complicated than the one
in the original design.

5. Conclusions

We have proposed a data structure called semi-heap
which is a generalization of the traditional heap structure.
The semi-heap structure is used to solve a generalized sort-
ing problem. We have shown that the generalized sorting
problem can be solved optimally using semi-heap. The
solution can be easily extended to a cost-optimal EREW
PRAM algorithm with�(n) in run time using�(logn) pro-
cessors. An implementation of this parallel algorithm un-
der the network model is shown, where processors are con-
nected as a linear array. We are currently studying the prob-
lem of generalized merging, where the relation between el-
ements does not have the transitive property. The result of
this study will be reported in a separate paper [9].

n
1

n
7

n
7

n
1

n
3

n
3

n
3

1

2 3

4 5 6 7

8

n
2

n
2

n
4

n
4

n
8

n
5

n
5

n
6

n
6

P
1

P
2

n
7

7

P
0

(3, n)3

(b)

n
3

n
3

1

2 3

4 5 6 7

8

n
2

n
2

n
4

n
4

n
8

n
5

n
5

n
6

n
6

P
1

P
2

3

(7, *)

n
7

n
1

*

*

P
0

(c)

n
6

n
6

n
7

n
2

n
2

1

2 3

4 5 6 7

8

n
4

n
4

n
8

n
5

n
5

P
1

P
2

(6, *)
*

*

n
1

n
3

2

*

*

P
0

(e)

n
6

n
6

n
6

1

2 3

4 5 6 7

8

n
2

n
2

n
4

n
4

n
8

n
5

n
5

P
1

P
2

n
3

6

n
7

n
1

*

*

P
0

(3, n)6

(d)

n
6

n
6

n
7

n
4

n
4

n
4

1

2 3

4 5 6 7

8n
8

n
5

n
5

P
1

P
2

4
*

*

n
1

n
3

n
2

*

*

(2, n)4

P
0

(f)

1

2 3

4 5 6 7

8

n
2

n
2

n
4

n
4

n
8

n
5

n
5

n
6

n
6

n
3

n
3

P
1

P
2

3

P
0

(a)

Figure 6. A step-by-step illustration of the first
three steps of Figure 5.

References

[1] A. Bar-Noy and J. Naor. Sorting, minimal feedback
sets, and Hamilton paths in tournaments.SIAM Journal
of Discrete Mathematics. 3, (1), Feb. 1990, 7-20.

[2] J. A. Bondy and U.S.R. Murthy.Graph Theory and
Applications. The Macmillan Press. 1976.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Intro-
duction to Algorithms. The MIT Press. 1994.

[4] P. Hell and M. Rosenfeld. The complexity of find-
ing generalized paths in tournaments.Journal of Al-
gorithms. 1983, 4, 303-309.

[5] J. JaJa. An Introduction to Parallel Algorithms.
Addison-Wesley Publishing Company. 1992.

[6] D. Knuth. The Art of Computer Programming, Vol
3, Sorting and Searching. Addison-Wesley Publishing
Company, second edition. 1998.

[7] D. Soroker. Fast parallel algorithms for finding Hamil-
ton paths and cycles in a tournament.Journal of Algo-
rithms. 1988, 276-286.

[8] J. Wu. Distributed Systems Design. The CRC Press.
1999.

[9] J. Wu and S. Olariu. On optimal merge of two intransi-
tive sequences. in preparation.

