A Generalized Forward Recovery Checkpointing
Scheme

Ke Huang, Jie Wu, and Eduardo B. Fernandez
Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, Florida 33431
{huangk, jie, ed}@cse.fau.edu
http://www.cse.fau.edu/{~jie, ~ed}

Abstract. We propose a generalized forward recovery checkpointing
scheme, with lookahead execution and rollback validation. This method
takes advantage of voting and comparison on multiple versions of the
executing task. The proposed scheme is evaluated and compared with
other existing checkpointing techniques. The processor assignment prob-
lem is studied and an optimal processor assignment is identified. Details
on how to use this approach for tolerating both software and hardware
faults are also discussed.

Index terms: Checkpointing, fault tolerance, forward recovery, reliabil-
ity analysis

1 Introduction

In recently years, the checkpointing method has been studied frequently as one
of the most important fault tolerance methods [1], [2], [3], [5], [7]. Basically, this
method identifies the correctness of task execution before accepting its results.
At the end of a task execution, a checkpoint is set and an acceptance test (AT)
is applied. If the AT is passed, the task execution is accepted as correct and the
next task is executed based on the previous result; if the AT fails, the task is
rolled back and reexecuted to reach a consistent state. Two common acceptance
tests are voting and comparison. If several versions of a task are executed si-
multaneously, their results are voted at the checkpoint or compared if only two
versions are running.

The main goal of using the checkpointing method is to achieve high system
reliability. The checkpointing method can be applied in software, hardware, or
the combination of both. In fact, the behaviors of software errors are very dif-
ferent from that of hardware errors. Generally, software failure rates vary from
time to time because they are mainly based on their input data, but hardware
failure rates increase during the lifetime of hardware. This motivates us to study
the details of the checkpointing method in applications exhibiting both hardware
and software faults.

One of the main disadvantages of this basic checkpointing method is its
need for backward recovery, i.e., when the AT fails the task is rolled back and
reexecuted; as the next task is waiting for this result, time is wasted. To save



rollback time, several forward recovery techniques have been proposed [4], [5],
[6] (most of these techniques deal with tolerating hardware faults only). In a
forward recovery checkpointing method, a failure is detected by a checkpoint
mismatch that triggers a validation step. However, processors continue execution
and spares (processors and/or software versions) are used to determine which of
the divergent processors and/or software versions are incorrect. This approach
uses the fact that when a voting (comparison) fails, there might exist some
correct results. By using those correct results, the rollback time can be avoided,
i.e., the next task need not be kept waiting for the result of rollback.

We propose here a generalized forward recovery checkpointing scheme, which
uses an n-version voting as the AT and m-version for reexecution (also called
(n,m)-pattern). Versions here refer to processor versions. The (n,m)-pattern
proposed in this paper is a generalization of the method proposed by Long, Fuchs,
and Abraham [4], which is a (2, 1)-pattern, i.e., a 2-version comparison for the AT
and one version for reexecution. We evaluate this method and compare it with the
basic checkpointing method. We consider the processor assignment problem and
find that, after a voting fails the best processor assignment, in terms of achieving
high system reliability, is to assign all the used processors to a single cluster. Also,
we discuss some details of applying this forward recovery checkpointing method
to tolerate software and/or hardware faults, where versions are either software
Or Processor versions.

We consider an application which is a linearly ordered sequence of tasks,
i.e., the tasks are executed one after the other, and each task is based on the
result of its previous task. Let this application consists of (by order) Ty, T,
Ts, ..., then T;41 is based on the result of T;. For simplicity, we assume that
each task has the same execution time. At the end of the execution of each task,
there is a checkpoint. We assume that each version fails independently. Although
several versions may generate the same faulty result, the probability of forming
a majority of the same faulty result is negligible. A model that covers correlated
faults can be found in [8], where a Markov model is used to describe system
reliability. Furthermore, we do not set a limit on the number of faults in the
given application.

The rest of this paper is organized as follows. In Section 2, we illustrate
our method by using the (3,1)-pattern, i.e., 3-versions voting as the AT and
one version for reexecution during the validation step. Section 3 compares the
proposed scheme with an existing method, and Section 4 shows the results for
the general case, i.e., (n, m)-pattern. Section 5 proposes an optimal solution for
the processor assignment problem. Section 6 discusses some details for tolerating
software and/or hardware faults, while Section 7 presents some conclusions.

2 Forward Recovery Checkpointing Method

In this section we only consider processor faults. Our forward recovery strategy
is lookahead execution with rollback. Initially, copies of a task are executed at
different processors. At the checkpoint, we vote (or compare) the results of those



versions. If the voting is successful, we have obtained a correct result. Based on
this result, copies of the next task are executed. If, on the other hand, the voting
fails, we execute copies of the next task based on the results of the previous
task. Simultaneously, a rollback execution of the previous task is implemented,
i.e., the previous task is reexecuted on spare processors in order to obtain a
correct result. Then, we keep the results of the next task which were based on
the correct versions of the previous task and discard the others. In this way, we
avoid wasting time to wait for rollback execution. Although waiting for rollback
execution cannot be avoided if all the versions fail (all the results are incorrect),
or if the reexecution of the previous task does not get a correct result, rollback
time is saved by taking advantage of existing correct results even when voting
(or comparison) fails.

We define an (n,m)-pattern as n versions for voting and m versions for
reexecution during the validation step. Figure 1 shows a (3, 1)-pattern, i.e., 3-
version voting and one version reexecution, where we have task T3 followed by
task T5. Initially, 3 versions of task T} are executed, described by arrows labeled
1, 2, and 3 as shown in Figure 1 (a). The results of these versions are voted. If
this voting is successful, task 75 starts. Note that, when one version fails, the
voting is still successful. On the other hand, if the voting fails, i.e., all results are
different, using the three results of 77, three clusters of T with three versions
in each are executed (which are the left three clusters in Figure 1 (b), where the
TJ cluster uses the result of the ith version of T}) and a reexecution of T is
carried out at the same time as shown in Figure 1 (b). That is, a total of ten
processors are used. Using the reexecution result of 77, we can determine the
correct version of T} (in the last time step) and discard the others. If we can find
out one correct result of 77 at the end of the execution in Figure 1 (b); in other
words, if the reexecution of T} is correct and not all the first three results of T
are incorrect, we get Figure 1 (c), where Ty is one of the three clusters T, T7,
and T3, i.e., the version of T» executed based on the correct results of T;. We
treat the configuration in Figure 1 (c) just as if the voting among the first three
results of T} has been successful. Thus, if such a T} exists, the rollback time is
saved although the voting among the first three results of T} failed. In this way,
after a voting fails we still achieve forward recovery by using the correct result
from one version of T7.

This forward-recovery method is evaluated in the subsequent sections. But
first we introduce several performance measures in the next section.

3 Comparisons

To achieve fault tolerance some redundant resources are used. Since a version
refers to a processor, a first measure is the number of processors used in the
proposed scheme:

— Np: the maximum number of processors used during a time slice;
— Np: the average number of processors used during a time slice.
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Fig. 1. The forward recovery checkpointing method: (3, 1)-pattern.




Another important measure is the number of checkpoints:

— N.: the maximum number of checkpoints needed;
— N.: the average number of checkpoints needed.

Other measures are related to time:

— T': the expected execution time.
— R;: the ratio of T over the fault-free execution time.

To simplify our discussion, we assume that the failure rate for each processor
has the same value p, where 0 < p < 1.

We evaluate our scheme by studying the 3-version voting and one version
reexecution, i.e., a (3, 1)-pattern. The evaluation of general patterns is discussed
in the next section. Again, the execution time for every version of any task takes
the same time ¢, which also includes checkpointing time. We assume that the
preparation time for reexecution, also called recovery time, can be ignored.

Clearly, the voting is successful if and only if at least two out of the three
versions are correctly executed. Thus, the probability of successful voting is:

pvoting—succ(?)a 1) = (1 - p)3 + 3p(1 - p)2
=1-3p* +2p°.

When the voting fails, the rollback can be avoided if and only if there existed

one correct result out of the three results of the first task and its reexecution is
correct. So, the probability of successful forward recovery with voting failure is:

pfarwardfsucc(?’y ]-) = (]- _p) * 3]72(1 _p)
= 3p® — 6p° + 3p*.

If all 3 versions fail, or the reexecution fails, rollback execution cannot be avoided.
So, the probability of successful forward recovery is:

psucc(?’a 1) =1- (p3 +Dpx* (3p2(1 _p)))
=1—4p° + 3p*.

Then, the probability of forward recovery failure is:

Dfail (37 ]-) =1 _psucc(?’: 1)
=1—(1—4p>+3p"
= 4p® — 3p*.

Notice that:

pvotingfsucc (3> ]-) + pforwardfsucc(?’; ]-) = Psucc (37 1)



If the voting fails, ten processors are needed (three for each of the three
clusters, another for the reexecution the previous task). But only three processors
are used if the voting is successful. Thus, the number of processors are:

N,(3,1) = 10;
Np(3,1) = 3% Puoting—suce(3, 1) + 10 % (1 = Puoting—suce(3, 1))
=10 = 7 * pyoting—suce (3, 1)
=10—-7(1 - 3p* + 2p°)
=3+ 21p? — 14p°.
One cluster has three checkpoints and ten more checkpoints are required if
the voting fails. Thus, the numbers of checkpoints are:

Ne(3,1) = 13;

Ne(3,1) = 3% puoting—suce(3, 1) + 13 (1 = Puoting—suce (3, 1))
=13 — 10 * pyoting—suce(3, 1)
=13 — 10(1 — 3p* + 2p%)
=3+ 30p? — 20p°.

Notice that the rollback time takes 2t (i.e., two intervals of checkpointing)
when the forward recovery fails. Then, for the time measures, we have:

T(37 1) = Z (2k + l)t *psucc(3: 1)(1 - psucc(3: 1))k
0<k<o0

(1 + 2(1 - psucc(?)a 1))

Psuce(3,1)
2p*(4 - 3p)
T4+ 3

)t

=(1+ )t;

1
T(3,1)
t

Rt(37 1) =

2p°(4 - 3p)

=1+ -————"
+1—4;03-+—?>p4

To compare our scheme with the existing ones (in [4] and [6]), i.e., (3,1)-
pattern v.s. (2, 1)-pattern, we need the results for the (2, 1)-pattern. Notice that,

pcomparison—succ(Qa 1) =1-2p+ p2;
psucc(2; ]-) =1- 3p2 + 2p3

Therefore,

Ny(2,1) = 5;
Np(Qa 1) =2x pcomparison—succ(Qa 1) +9* (1 - pcomparison—succ(Qa 1))
=5—3% pcomparisonfsucc(27 1)

=5-3(1-2p+p?)



=2+ 6p — 3p%;
2,1) =1
(2: 1) =2x pcomparison—succ(Qa 1) + 7% (1 - pcomparison—succ(Qa 1))
=T = 5% Peomparison—suce(2, 1)
=7-5(1-2p+p?)
=2+ 10p — 5p%;
2(1 - psucc(Qa 1))
Psuce(2,1)
2p°(3 — 2p)
1—3p? + 2p?
T(2,1)
t
2p°(3 — 2p)
1—3p2 +2p3°

Ne
N.

T(2,1) = (1+ )t

=(1+ ) ® t;

Rt(2) ]-) =

For the basic backward recovery the rollback time is ¢ (i.e., one interval of
checkpointing). Thus, the expected execution time of the basic checkpointing
method is:

Tyasic = Z kp(l_p)kil
0<k<oo

1+ -2

1-p

) x t.

Notice that the failure rate p of each version is also the probability of rollback
for the basic checkpointing method. Figure 2 shows a comparison of the failure
rates of the basic method, the (2,1)-pattern, and the (3,1)-pattern, where the
failure rates are functions of p. The basic method uses only one version and
no fault tolerance method. This figure shows that the (3, 1)-pattern always has
smaller failure rates than the (2, 1)-pattern (except for the trivial cases p = 0 or
1), i.e., the following expression holds:

Prait(2,1) > praa(3,1) (p#0,1)

Moreover, the failure rate of the (2, 1)-pattern is smaller than that of the basic
method when p is small (in fact, when p < 0.5), but larger when p is large (in
fact, when p > 0.5). In other words, the (2, 1)-pattern improves the basic method
only when the system uses versions with small failure rates. However, the (3, 1)-
pattern improves the basic method until p becomes 0.8. Thus, as a conclusion,
the (3,1)-pattern outperforms the (2,1)-pattern in terms of system reliability.
As a whole, however, the (3,1)-pattern costs more than the (2, 1)-pattern. The
(3, 1)-pattern is a better replacement scheme for the basic method than the (2, 1)-
pattern, when p is relatively large, especially within the range between 0.5 and
0.8. Figures 3 through 6 show comparisons of expected execution times between
the basic method, the (2, 1)-pattern, and the (3, 1)-pattern, where the expected



execution times are functions of p with ¢ = 1. In Figure 2, p ranges from 0 to 1.
More detailed information is shown in Figures 3, 4, 5, and 6. From these figures,
we observe that when p is small (in fact, when p < 0.22), the (2,1)-pattern
improves the basic method, but the (3, 1)-pattern is the best among the three;
when p > 0.22, the (2, 1)-pattern no longer improves the basic method, but the
(3, 1)-pattern still does until p > 0.53; but after p is larger than 0.53, neither the
(2, 1)-pattern nor the (3, 1)-pattern improve the basic method. The (3, 1)-pattern
is always better than the (2, 1)-pattern in terms of shorter expected execution
time.
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Fig. 2. Failure rate as a function of p.

The cost to achieve smaller system failure rate and better performance is a
larger number of processors and checkpoints. Figures 7 and 8 show comparisons
of average number of processors and number of checkpoints between the (2, 1)-
pattern and the (3,1)-pattern. Note that for certain ranges of failure rate p,
around p = 0.2, the average number of processors (and checkpoints) for the
(3,1)-pattern is very close to the one for (2,1)-pattern. The reason is that a vote
has a much higher success probability than a comparison. Therefore, the 10-
processor activation in the (3,1)-pattern occurs less frequent that the 5-processor
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Fig. 3. Expected execution time as a function of p (range 0 - 0.2).

activation in the (2,1)-pattern.

0.2

Figure 9 shows the ratio comparisons of average number of processors and
number of checkpoints between the (2, 1)-pattern and the (3, 1)-pattern. Clearly,
these ratios reach a minimum at around p = 0.18. At that point, N,(3,1)/N,(2,1)
~ 1.2, i.e., the (3,1)-pattern requires about 20% more processor resources than
the (2,1)-pattern. On the other hand, based on Figure 3 the ratio between the
(2,1)-pattern and the (3,1)-pattern in terms of the expected execution time is
1.22/1.03=1.18,i.e., the (3,1)-pattern has about a 16% reduction in the expected

execution time compared to the (2,1)-pattern.

4 Extensions

We discuss our method by considering a special case, the (3,1)-pattern, i.e., 3
versions for voting and one version for reexecution. If we use n versions for voting
and m versions for reexecution when the voting fails (where these m reexecution
versions vote for the reexecution result), we then have the general (n, m)-pattern.
We derive the performance measures for the (n,m)-pattern in this section.

Again, we assume that the execution time for any task is the same time ¢
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Fig. 4. Expected execution time as a function of p (range 0.2 - 0.55).

and the probability of correct execution for each processor has the same value
p. The preparation time for task reexecution is again ignored.

When the voting fails, rollback can be avoided if and only if there exist
correct results among the n versions of the first task and we can identify at
least one of them. In other words, when the voting fails, we avoid rollback if
and only if not all the n versions of the first task fail and more than half of
the m reexecution versions of it are correctly reexecuted. Thus, the probabilities
of successful voting, of successful forward recovery with voting failure, and of
successful forward recovery are:

Puvoting—succ (n: m) = Z Cﬁpn_k(l - p)k;
[31<k<n

pforward—succ(nam) = ( Z Cﬁpn_k(l - p)k) * ( Cfnpm_k(l - p)k);

1<k<[2]-1 [g1<k<m

T<k<
DPsuce (TL, m) = pvotingfsucc (ny m) + pforwm‘dfsucc(na m)

Yoo Cchrta-pt+

[51<k<n
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Fig. 5. Expected execution time as a function of p (range 0.55 - 0.85).

(> Chprra-pf)y«( > Crpm 1 -p)).

1<k<[51-1 [5]1<k<m

Only n processors are used if the voting is successful. But after the voting
fails, at least m 4+ n? processors are required: m processors for reexecuting the
first task, and n for each of the n clusters executing the second task version.
That is, m + n? — n more processors are needed after the voting fails. Thus, the
numbers of processors used are:

Ny(nym) = m +n’;
Np(na m) =nx* pvotingfsucc(na m) + (m + TL2) * (]- - pvotingfsucc(na m))
=n+ (TLZ +m— TL) * (1 - pvoting—succ(n:m))

=n+@m*+m—n) Z Crpn=F(1 — p)*.
0<k<[%]

Notice that each cluster of a task version normally has n checkpoints, but
the reexecution cluster has m. Therefore, the numbers of checkpoints for the
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Fig. 6. Expected execution time as a function of p (range 0.85 - 0.95).

(n,m)-pattern are:

c(n,m) =m+n+n?
(TL, m) =Mn* pvotingfsucc(na m) + (m +n+ n2) * (]- - pvotingfsucc(ny m))
=n+ (TLZ + m) * (1 - pvoting—succ(n: m))

=n+ (n® +m) Z Crpn=F(1 — p)*.
0<k<[%5]

2| =

o

The rollback time for the (n,m)-pattern is 2¢ (i.e., two intervals of check-
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Fig. 7. Average number of processors as a function of p.

pointing), and the measures that are related to time are:

T(n,m)
= Zogk k(2k + 1)t * psuce(n, m)(1 — psuce(n, m))’c
= (1 + Bl
n kom—k (| _ k). ke on—k (] _ vk
. 207 04D g g Om?™ A2V gy Orp" TR O-RY)
D R D D
Rt(n7 m)

)t

T(n,m)
t

n k _m—k k k, _n—k k
2(p +(1+Z[%1Sk5m P (1-p) )*le,cg%]_lonp a-»*)

1+ .
kon—k(1_p\k kon—k(1_p)k k om—k(1_n\k
E ra1<k<n Cap (1-p) +(§ 19{%1710“@ (1-p) )*(E F%]geSmOmp (1=p)*)

Using common sense, it is clear that with larger m, as well as larger n, the
(n,m)-pattern improves the system reliability and the expected execution time
of the basic method. However, more processors and checkpoints are needed.
Figures 10 compares the failure rates and the expected execution times among
the (3, 1)-pattern, the (3,2)-pattern, and the (3, 3)-pattern, where failure rates
and execution times are functions of p.

The method discussed above is forward recovery for only two units of time,
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Fig. 8. Number of checkpoints as a function of p.

i.e., rollback happens when reexecution of the previous task T} does not match
any existing results of it after the next task, T», execution. If we try reexecution
of Ty again after T5, i.e., when task 73 is being executed, then we have to
rollback three units of time. But the advantage of this strategy is to make use of
the correct result of 77 more efficiently than that of the (n, m)-pattern discussed
here. However, many more versions are needed. By introducing recovery length [,
we can further generalize our method into a (n,m,[)-pattern. Again, the details
of such an extension are the subject of future research.

5 Processor Assignment

A forward recovery checkpointing scheme to tolerate hardware faults has been
discussed in Sections 2 and 3. This section discusses a non-trivial problem called
the processor assignment problem.

Let’s consider a system that consists of processors of the same type, i.e.,
all processors have the same failure rate. The failure rate increases during the
lifetime of the processor. We assume that the failure rates for new and used
processors are p and g, respectively. Then, p < q.
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Fig. 9. Ratio of (3,1)-pattern over (2,1)-pattern for number of processors and check-
points.

Now, let’s examine the processor assignment problem as follows: Initially, n
processors run n versions of the first task T;. At the checkpoint, i.e., the end
of T, these n results from these n different processors are voted. If a majority
voting exists, we can find out all the faulty processors (if there are any). Thus we
replace those faulty processors with new ones, and these n processors continue to
execute versions of the next task 75 based on the voting result of 7;. Otherwise,
if the voting is unsuccessful, m+n? —n new processors join for the next step, i.e.,
a total of m + n? processors (n old ones and m +n? — n new ones) are running.
Based on each of the n results of T, n processors run versions of 75, and the
remaining m processors reexecute versions of 7. These m + n? processors are
not the same in term of failure rate. In fact, those n used ones have failure rate
g, but the m 4+ n? — n new ones have failure rate p, which is smaller than gq.
Now, we have the following processor assignment, problem: how to assign these
m +n? processors? Notice that a rollback happens if and only if none of the first
n results of T} is correct or the voting for reexecution of 7; fails after the first
voting fails. Thus, to achieve larger probability of successful forward recovery,
we need to assign m new processors to reexecute 77. Now, we should divide the
remaining n? processors (n used ones and n? —n new ones) into n clusters with
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Fig. 10. Comparing system failure rates among different patterns.

n processors in each to execute the next task 7. Our goal here is to achieve a
high probability of correctly executing T5.

To illustrate the point, we again use the (3,1)-pattern as an example. As
shown in Figure 11, there are three possible assignments, (a), (b), and (c) to
divide those 9 processors (3 used ones, and 6 new ones) into 3 clusters with each
containing 3 processors:

(a) 3 used processors are contained in one cluster, i.e., one cluster has 3 used
processors and the rest of the clusters have 6 new processors, with 3 in each;

(b) 3 used processors are distributed to each of the 3 clusters, i.e., every cluster
consists of one used processor and two new ones;

(c) 3 used processors are distributed into two clusters, i.e., one cluster has two
used processors and one new one, one cluster has one used one and two new
ones, and another cluster has three new ones.

The probabilities for correct voting after T execution are defined as p(a),
p(b), and p(c), corresponding to the above three schemes (a), (b), and (c). For
simplicity, we need to compare only the probabilities that are based on results
from correct versions of T7. Then, we have:

pla) =1—(¢* +3¢*(1 — q))(»* + 3p*(1 — p))?
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Fig. 11. 3 ways to assign 9 processors
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=1-(3¢° —2¢*)(3p* — 2p°)?
=1-¢’p*(3 - 2¢)(3 — 2p);

p(b) =1—(p* +2qp(1 — p))®
=1—(p* +2qp — 2qp°)*
=1-p’(p+2q — 2qp)*;

p(c) =1—(¢* +2¢(1 — q)p)(p* + 2qp(1 — p))(P* + 3p°(1 — p))
=1—(¢" +2qp — 2¢°p)(p” + 2qp — 2qp*)(3p° — 2p”)
=1—qp*(q+2p — 2qp)(p + 2q — 2pq)(3 — 2p).

Because,

p(a) — p(c) = qp*(3 — 2p)((q + 2p — 2qp)(p + 2q — 2pq) — qp(3 — 2¢)(3 — 2p))
= qp*(3 - 2p)(2p” + 2¢° — 4pq)
=2¢p°(3 — 2p)(¢ — p)* > 0;

p(c) — p(b) = p*(p + 2 — 2pq) ((p + 2q — 2pq)* — q(q + 2p — 2qp)(3 — 2p))
=p’(p+2q — 2pq) (P” + ¢ — 2pq)
=p*(p+2q — 2pg)(q — p)* > 0,

we have
p(a) > p(c) > p(b).

Therefore, assigning all the used processors to a single cluster is the best ap-
proach.

Following the idea used in the above proof, we can prove a general conclusion
for the (n, m)-pattern.

Theorem: After a voting fails, the best processor assignment, in terms of
achieving high system reliability, is to assign all the used processors to a single
cluster.

In other words, after the voting among versions of 7} fails, to place all the
used processors in one cluster that runs 75 is the best way to achieve high
probability of correct execution of T5. Note that the definition of used and new
processors is relative. It might happen that “new” processors themselves have
been used earlier and they are “older” than the used processors. In this case, the
above theorem should be interpreted as: Assign the similarly “aged” processors
to the same cluster.

6 Tolerating Software/Hardware Faults

So far, we have discussed only hardware fault tolerance, and we assumed that
the software is fault free. However, in the real world, the software might also
fail. The behavior of software errors is different from that of hardware errors.
Generally, software failure rates vary from time to time, while hardware failure
rates increase during the lifetime of the hardware.



In our earlier discussion, the task versions are the same software running
on several processors. Thus, our forward recovery checkpointing method can be
used in the following three environments under different fault assumptions:

1. Hardware fault tolerance
The software is fault free. The fault-free task versions are running on a set
of processors, which are either healthy or faulty.

2. Software fault tolerance
The hardware is fault free. The task versions (some of them might be faulty)
are running on some fault-free processors.

3. Software/hardware fault tolerance
Both software and hardware versions can be faulty.

Now, we consider using our forward recovery checkpointing method for soft-
ware fault-tolerance. To achieve software fault-tolerance, different software ver-
sions of a task are executed by a set of fault-free processors. Semantically, a
software fault exhibits the same behavior as a hardware fault in the forward
recovery checkpointing scheme. Therefore, we can use the same approach used
in achieving hardware fault tolerance for software fault tolerance, i.e., the ex-
pressions for system failure rate and execution time derived in Section 4 still
hold. One additional measure needed is the number of software versions that are
required:

— n,: maximal number of software versions needed for each task;
— Ty the expected number of software versions needed for each task.

When the first voting fails, some software versions of the first task are incor-
rect. As we proposed before, n clusters of the next task are running based on
the n results of the first task, and m versions of the first task are reexecuted.
Thus n + m software versions of the first task are needed. For the next task,
each of the n clusters has n different software versions, but the versions can be
replicated at different clusters. Thus n software versions are enough for the n
different clusters. Of course, m additional software versions are needed for fault
identification. Based on the results in Section 4 for the (n,m)-pattern, we have
the following conclusion:

nv(nam) =m+n;
Ty (n, m) =n* puotingfsucc(ny m) + (n + m) * (]. - puotingfsucc(ny m))
=N+ M — M * Pyoting—succ (na m)

=n+m—mx Z Crpn=hk(1 — p)*.
[31<k<n

We can also use our forward recovery checkpointing method to achieve soft-
ware and hardware fault tolerance. Again, we consider the (n,m)-pattern. We
define a task version as a software version of a task running on a processor, i.e.,
two task versions are identical if and only if they are the identical software version
of a task running on identical processors. Now, we need to answer the following



question: how many software versions and processors are needed? Again, let n,
(Ty) and n, (7p) be the maximal (expected) numbers of software versions and
processors needed for each task respectively, then we can drive as many as n, n,
(Ty * Tp) different versions of each task in the worst case (average). At first, n
versions of the first task are executed. If, however, the voting for the n results of
the first task fails, a total of n? +m versions (n? versions of the next task and m
versions reexecuting the first task) are executed simultaneously. Thus, we have:

ny(n,m) = m + n?;
ﬁp(na m) =nx* pvotingfsucc (ny m) + (m + n2) * (]- - pvotingfsucc (TL, m))

=n+ (n2 +m— TL) * (1 - pvoting—succ(na m))

This is the same result as for tolerating hardware faults only. Furthermore, the
number of software versions of each task does not matter for using our forward
recovery checkpointing scheme. As an extreme case, if we have only one software
version of a task, we cannot tolerate software faults. But we can still use our
forward recovery scheme to tolerate hardware faults. To tolerate software faults,
multiple software versions are needed. Of course, we can assign one software
version to several different processors to form several different task versions. But
this approach has a high system failure rate. A single faulty software version
will result in failure of several task versions, hence the voting at the end of this
cluster has a high probability of failure. In the worst case, it might invalidate the
assumption that the probability of forming a majority of the same faulty result
is negligible. Therefore, to achieve high system reliability, it is better to assign
different software versions to different processors, i.e., many software versions
are needed for each task. As we discussed above for tolerating software faults
only, m + n different software versions for each task are enough. In other words,
we cannot achieve higher system reliability by providing more than m + n soft-
ware versions for each task in our (n,m)-pattern forward recovery checkpointing
scheme, i.e.,
Ny =M+ n.

Let pp (py) be the failure rate for a single processor (software version) and assume
that the processor and software failures be independent, then the failure rate for
every task version (a software version running on a processor) is p = pp * py.
Thus, if we have m + n different software versions for each task, the expressions
for system failure rate and time measurement derived in Section 4 still hold after
replacing the version (processor) failure rate p by the task version failure rate

Dp * Dy, and
Mp(n, M) = 1% Pyoting—suce(M,m) + (N +m) * (1 = Pooting—suce(n, m))
=n+ (n® +m —n) * (1 = Puoting—suce (1, m))
=n+@m*+m-—n)x Z CH(pp * po)"F(1 — pp * po);
0<k<[%]
Ty (N, M) = N * Pyoting—suce (M, M) + (0 +m) * (1 — Puoting—suce (N, M))

=n+m-—mx* puotingfsucc(ny m)



=n+m—mx Y Crppp)” *(L—ppxp)*.
[31<k<n

It is clear that it is better to group all used processors to run one cluster
of the next task, and use m new processors to reexecute the first task after the
voting among the n results of the first task fails.

7 Conclusions

We have proposed a generalized forward recovery checkpointing scheme based on
n-version voting as acceptance test and m-version for reexecution. We evaluated
this method, and compared it with the basic checkpointing method. We showed
that the (3,1)-pattern improves on the basic method and on the (2, 1)-pattern
in terms of higher reliability and shorter expected execution time. Some details
for tolerating software and/or hardware faults have also been discussed. We
discussed how to assign processors after the voting fails to achieve high system
reliability; and we determined the number of program versions per task needed
to achieve software fault tolerance. For future work, we will introduce recovery
length [ in the model to further generalize our method into a (n,m,[)-pattern.
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