[image: image1.png]Quiz 1 Solutions

Problem 4 (20 poiats]

Consider the following

a. Label the following binary tree with numbers from the set {6, 22,9,14,13,1,8}
50 that it is a legal binary search tree.

Answer:

b. Label each node in the figure above with x or b denoting the colors RED
and BLACK, respectively, so that the tree is a legal red-black tre.

Answer: (See above. There’s only one legal labeling.)

. Make the left child of the root be the root by performing a single rotation
Drew the binary search tree that results, and label your tree with the keys
from part (a). I it possible to label the nodes with colors so that the tree
is a red-black tree? Justify your answer.

Answer:

[image: image2.png]Problem 5 (20 points]
Consider a set S of n > 2 distinct numbers given in unsorted order. Each of
the following four problem parts asks you to give an algorithim to determine
two distinct mumbers = and y in the set S that satisfy a stated condition.
In as few words as possible, describe your elgorithm and justify its running
time. To keep your answers brief, use algorithms from lectures and the book
as subroutines.

a.In O(n) time, determine z,y € § such that

vizjw-z
forallw,z € S.

Answer: z,y are the two farthest apart.
Find min, max, each in O(n) time.

b.In O(nlgn) time, determine 7,y € S such that & # y and
lz=yl <]
for all w,z € S such that w# .

Answer: z,y are the two closest together.
First sort (with heapsort or merge sort) — O(n g n); then scan the sorted
numbers for the two adjacent numbers with the minimum difference —
O(n). Total: O(nlgn)

c. In O(n) expected time, determine ,y € S such that

z4y=2,

where Z is given, or determine that no two such numbers exist.
(Hint: y= 7 ~z.)

Answer: First put all the numbers into a hash table of size n.
Expected hashing time: n-O(1) = O(r), assuming simple uniform has
and collisions resolved by chaining, for example.

Then for each z € S, look for Z ~ z in the hash table. It takes at most n
lookups to either find one or try them all.

Expected lookup time: O(n) - O(1) = O(n)

Expected total time: O(n)

ing

[image: image3.png]d.In O(n) time, determine z,y € S such that.

1 :
~ 4l = (maxz-minz)
ao1lpes -

i.., determine any two numbers that are at least as close together as the
average distance between consecutive numbers in the sorted order.
(Hint: Use divide and conquer.)

Answer: The idea: Repeatedly split the set in half by partitioning around

the median and recursively ook in the half with the smaller average dis-
* tance. That half must have a pair of numbers at least as close together as

the original average distance, since (see hint for problem 3d) for any set of

numbers, at least one number must be < the average. When the recursion

gets down to just 2 numbers, those are the answer. Note one subtle point:

The median must be included in both sides of the partition, so that it will

be in a subset with each of its neighbors; otherwise if the answer includes

that median, it might not be found.

Algorithm: Input is in array A. Define

average-distance[4] = 717 (max,ea = ~ minsea 2), where n = length[A].

Takes ©(n) to compute (to find min and max).

Answer is FIND(A), where

FinD(4)
if length{4] = 2
then return 4
Find median z of A in linear time
Partition A around into A, and A in linear time
and include z in both A; and 4,
Calculate average-distance(A;] and average-distance(A] in linear time
> average-distance needn'’t recompute max(4,) = min(A;) = =
if average-distance[As] < average-distance(As)
then FIND(4,)
else FIND(42)

Running time: T(n) = T(n/2) + ©(n) = O(n) (master theorem case 3)

