[image: image1.jpg]Solutions to Quiz 2

Problem 1
Design an efficient elgorithm to find a spanning tree for & connected, weighted,
undirected graph G = (V, E) such that the weight of the maximum-weight
edge in the spanning tree is minimized.
Answer: The key observation js that any minimum spanning tree minimizes
the weight of the maximum-weight edge.

Algorithm: Run Prim’s algorithm to find an MST

Time: O(E + Vg V) if use Fibonacei hesp for queue

Correctness: We need to show that an MST minimizes the weight of the
‘maximum-weight edge.

Proof: We will use & cut-and-paste technique, similar to the proof of The-
orem 24.1

* Let T be o minimum spanning tree for G, and assume that some other
spanning tree T is “better” than T.

+ Let e be a maximum-weight edge in 7' and ¢’ be & maximum-weight edge
in T". Then we are assuming that w(e’) < w(e).

+ Removing e from T breaks T into two components. Some edge e” in 7"
must connect, these components, or T’ would be disconnected. Adding
that edge to our disconnected components reconnects them to form new
spanning tree T =T - ¢ + ¢.

* Note that w(e") < u(e’), because ¢’ is a maximum-weight edge in T, and
hence w(e”) < w(e) < w(e).

Thus 7" has lower weight than T:

W(T") = w(T) ~ w(e) + w(e") < w(T)

* But there cannot be a spanning tree T"" with lower weight than T, because
T is an MST,

‘Thus any MST minimizes the weight of the maximum-weight cdge.

Note: The above answer gets full credit. It is, however, possible to come
up with a better algorithm.

* Note that minimizing the weight of the maximum-weight edge is not as
strong a constraint es minimizing the totel weight of the tree. For example,
essume that there's an MST for G in which ll edges have weight 1, except
otie edge that has weight 5. There might also be a spanning tree in which
ell the edges have weight 5.

+ The required spanning tree can be constructed in O(E a(E, V) expected
time with & divide-and-conquer algorithm that uses RANDOMIZED-PARTITION
end ideas from Kruskal’s algorithm.

[image: image2.jpg]Problem 2
Professor Uriah has developed a hardware priority queue for his computer.
The priority queue device can store up to p records, each consisting of &
key and a small amount of satellite data (such as a pointer). The computer
to which it is attached can perform INSERT and EXTRACT-MIN operations
on the priority queue, each of which takes O(1) time, no matter how many
records are stored in the device. The professor wishes to use the hardvware
priority queue to help implement a sorting algorithm on his computer. He
has n records stored in the primary memory of his machine. If n < p, the
‘professor can certainly sort the keys in O(n) time by first inserting them into
the priority queue, and then repeatedly extracting the minimum. Design an
efficient algorithm for sorting n > p items using the hardware priority queue
Analyze your algorithm in terms of both n and p.

{(This problem is from an idea suggested by Mike Attallah })
Answer: The idea is to do a modification of merge sort.

One idea (worth a little partial credit) is based on Problem 1.2 in the book
Since the hardware can sort p items in O(p) time, we can divide the input
into n/p lists of length p, sort the lists using the queve in (n/p)- O(p) = O(n)
time, and then merge the lists in O(n g(n/£)) time as shown in Problem 1-2b.
The total time for this algorithm is O(nlg(n/p)).

The above approach uses the hardware only for sorting sublists; the hard-
ware doesn't help with the merging. A better idea (worth full credit) is to
use the hardware to implement & p-way merge that runs in O(n) time (for p
lists conteining n elements total), and use it the same way merge sort uses its
O(n)-time 2-way merge.

Algorithm:

Sorr(4)
if A has length 1
then return
Divide 4 evenly into p subarrays Ay,.
SORT(4y), ..., SoRT(4,)
P-WAY-MERGE(A, .., 4;)

P-WAY-MERGE works 2s follows. Like 2-way MERGE, it repeatedly moves
the smallest element (the minimum of the elements at the front of the p lists)
from the input lists to. the output list. The hardware queue is used to find
the minimum each time in only O(1) time (instead of the O(p) time it would
normelly teke to scan the p list minimums). At any given time, the queue
‘holds the minimum element each list.

1. Start by moving the smallest element from each list into the hardware
quee, along with en indicator of which list it came from.

Time: p elements, O(1) time to INSERT each = O(p) totel time

[image: image3.jpg]2. EXTRACT-MIN to get the smallest element. Say it came from the ith sorted
list.
Move the next element (if any) from the ith list into the queue, to replace
the one that was just extracted.
Time: O(1) to EXTRACT-MIN and to INSERT
Repeat this EXTRACT-MIN/INSERT unil all n elements have been ex-
tracted.
Time: n iterations, O(1) time each = O(n) total time
Run time of P-WAY-MzRGE: O(p +) = O(n)
Correctness of SORT: Same as merge sort.
Run time of SORT: T(n) = pT(n/p) + O(n)
Solution: T(n) = O(nlog, n)
as can be seen from a recursion tree:

W aa

e "
Iog

|

(The master theorem is not appropriate because we don't want to treat p as.
a constant. Case 2 of the theorem would give us O(nlgn), in which p doesn’t
appear.)

This O(nlog,n) time is asymptotically better than the O(nlg(n/p)) of
the first approach shown above, since we are not treating p as & constant,
log, n = (Ign)/(igp) while lg(n/p) = (lgn —lgp)

Onlog, n)

Problem 3

A ski rental agency has m pairs of skis, where the height of the ith pair of
skis is ;. There are n skiers who wish to rent skis, where the height of the
ith skier is hy. Ideally, each skier should obtain a pair of skis whose height
‘matches his own height as closely as possible. Design an efficient algorithm to
assign skis to skiers 5o that the sum of the absolute ifferences of the heights
of each skier and his skis is minimized. (For partial credit, assume m = n.)
Answer: The key observation is that there is no advantage to “cross
‘matching” — reversing the height order of skiers and skis. That is, if 5, < 53
and hy < hy there is 1o reason to match #; +» by and 53 « Ay

* To show this, we first look at all the possible relationships of the 4 heights,
and show that the “cost” of matching the shorter of two skiers with the
shorter of two skis is always at least as good as the cost of cross-matching
them. Without loss of generality, we can assume sy is the smallest height
(51 < ha).

[image: image4.jpg]Case 1o H[n<m<m<sn
h by
Case 2| 5; & 81Shi <8 <hy, 81 <8, hy<hy
hy ha
Tase3 | o w<a<hi<h
kb

1 Casel:
‘The sum of the absolute differences of the matched ski/skier heights is
» If match sy o hy and 5 s b,
hi=s1+s—hy=(s3— 1)~ (ha—hy)
> If match sy« hy and 83 o by,
ha =81+ 83 —hi= (s~ 1) + (h2 — hy)
Since (h = hy) > 0, the first matching costs less than the second.
2. Case 2:
The sum of the absolute differences of the matched ski/skier heights is
> Ifmatch s; o hy and 3 e hy,
hi—sith—sp=(ha—s1) = (s2—hy)
> Ifmatch s; o hy and 53 o+ by,
ha—s1+ 82— hy=(ha— 1) + (32— hy)
Since (s2 = h1) 2 0, the first matching costs not more than the second
3. Case 3 can be verified similarly.

To show that there is always an optimal solution with no cross matching,
let S be an optimal matching. If § has no cross matches, we are done.

Otherwise, consider two skiers and two skis involved in a cross match, and
reverse their matching so that the shorter of the two skiers has the shorter
of the two skis. We saw above that this change cannot increase the cost of
the match, so this revised solution is at least as good as 5.

Algorithms:
1f m = n, simply sort the skiers by height, sort the skis by height, and
match the ith skier with the ith pair of skis.

Correctness: Any other assignment would have a cross match, so this so-
Iution is optimal.

Time: ©(nlgn) (to sort the lists)

If m # m, start as before by sorting the skiers and skis (because theres
7o advantage to matching them up out of order). Then use dynamic pro-
gramming, es follows.

First of all, notice that dynamic programming is an appropriate approach.

> If you try all ways of matching up the skiers and skis, there wil be lots
of repeated subproblems. Imagine that you've matched b «» s, and
then decide to match hy — s;. You're left with the same subproblem as
when you firt try matching hy + s; and then select f; - 5; mext.

[image: image5.jpg]> Solutions have optimal substructure. Imagine that some subset of an
optimal matching is not optimal — that there’s a better way to match
that subset of skiers with that subset of skis. Substituting that better
subset match in the original solution improves the original solution, so
it couldn’t have been optimal

Assume that n < m (there are more skis than skiers). (This is okay because
the problem is symmetrical: If m < n just interchange the skiers with the
skis in the algorithm. Tn any case, you want to match up all of whichever
thing there are fewer of.)

After sorting the skiers and skis, consider how to match the first i skiers
with the first j pairs of skis. Let A[i,7] be the optimal cost (sum of absolute
differences of heights) for matching the first i skiers with the first j pairs
of skis o that all i skiers have skis. The solution we seck is Afn,m].

We can define A recursively as follows:

AL, j]

0 ifi=0orj
min(Ali,j— 1), A= 1,5 -1+ hi—s;l) #1<i<j
oo #i>5>1

This is correct because

> If there’s an optimal match not using s, it matches the first i skiers to
the first j — 1 pairs of skis.

> If there’s an optimal match using s, it can assign h; « s;, because
all skiers (h's) get matched up, and eny other way of using both h;
and s; would either be a cross match or would involve another skier of
height= hy or another pair of skis of height= s; (and would thus have
the same cost as this match).
‘The rest of the match must be an optimal match of the first i — 1 skiers
with the first j — 1 pairs of skis,

Since Ali,j] depends on & value in the previous row of A and an earlier
value in the same row of 4, calculate 4 in row-major order (top row to
bottom row, left to right within rows.)

skis (5)

skiers 2 .
DRI

A

Note that only the part of A between the diagonal lines needs to be com-
puted, because the triangle at the bottom left just has co and the triangle
at the upper right (marked *) does not influence the value Afn, m].

[image: image6.jpg]To find the actusl assignment of skiers to skis, we can trace a path from
Afn, m] to see where each value came from. At each step,

> If Ali, j] = Ali, j — 1), continue tracing at Ali,j — 1.
> Otherwise, match hy « o; and continue tracing at Ali — 1,5 — 1)

Time: (nlgn) to sort skiers + ©(mlgm) to sort skis + O(m — n)n to
compute A = O(nlgn +mlgm + (m — nn)

Notice that when m =, this comes to ©(nlgn), like the simple algorithm
shown above for the m = n case.

If you compute the whole A table, the time is @(nlgn +mlgm +mn).
Note: Full credit was given for the 8(nlgn + mlgm + mn)-time solution,
with bonus points for the O(nlgn +mlgm + (m — n)n)-time solution.

1f you come up with ©(nlgn + mlgm + mn), however, you might suspect
that there is a better solution, since this reduces to ©(n?) when m = n,
but the algorithm is doing essentially the same in-order matching-up as the
6(nlgn) algorithm we saw for the m = n case. This kind of observation
is typical of what happens in algorithms research: If the time needed by
& general algorithm in & special case is greater than the time needed by
& more specialized algorithm for that case, there may be a better general
algorithm.

Also note thet if n < m there’s & way to improve the algorithm by using
only n of the m skis during the dynamic programming. For example, if
m = Q(n?), working with m skis contributes (m — n)n = 9(n®) to the
time, but using only n? pairs of skis tightens that term to ©(n®). The total
time is ©(nlgn + mlgm + (min(m,n?) — n)n). (The n? candidate pairs
of skis can be picked in O(nlgm +n?) time, which doesn’t affect the totel
‘asymptotic running time of the algorithm.)

To pick the candidate skis,

> Assume the skis are sorted, which we need to do anyway.

> Match each skier to the best pair of skis, in O(nlgm) time. (n skiers x
O(lgm) time for a binary search of the skis.)

> Note that conflicting choices can’t force a skier to be bumped more than
n skis away, because at most n pairs of skis on either side of the best
choice can have been chosen for someone else.

> In O(n?) time, select the O(n?) candidate pairs of skis as follows: For
each skier, take the n skis preceding and the n skis following the best-
‘matching pair of skis.

It is also possible to devise a greedy matching algorithm in which each skier

is matched to the best pair of skis, and conflicts are resolved by bumping

& skier to a different pair of skis.

