[image: image1.jpg]Problem 4
A directed graph G = (V, E) is unipathic if for any two vertices u,v € V,
there is at most one simple path from «u to v. Suppose a unipathic graph G
has both positive and negative edge weights. Design an efficient algorithm to
determine the shortest-path weights from a source s to all vertices v € V for
such a unipathic graph. If some shortest-path weights to vertices reachable
from s do not exist, your algorithm should report that & negative-weight cycle
exists in the graph.

Answer: The key observation is that since there is at most one simple path

from s to any vertex v, any method of finding a path from s to v finds the

shortest path. Thus we can use breadth-first search from s or depth-first
search (modified to start only at s) to find the paths in O(V + E) time. In
order to get the shortest-path weights as well as the paths themselves, augment

BFS or DFS to store shortest-path estimates for vertices by relaxing the edges

traversed, as in Dijkstra’s algorithm. This doesn’t affect the running time of

the algorithm.
Here are two ways to detect negative-weight cycles:

* When the path search with BFS or DFS completes, do the test that is
done for negative-weight cycles at the end of BELLMAN-FORD. This checks
each edge to see if relaxing it would decrease a shortest-path estimate.
An estimate can decrease iff there is a negative-weight cycle (for the same
Teason as in BELLMAN-FORD).

* During a DFS, relax an edge (u, v) even if v has already been visited.
There is & negative-weight cycle iff a relaxation improves the shortest-path
estimate to an already-visited vertex, because

> If such an improvement occurs, it must be on a back edge, because
there can’t be two tree edges to a single vertex and (as proved below) a
unipathic graph can’t have forward or cross edges. (u,v) is a back edge
= v is an ancestor of u in the depth-first tree = there is a tree-edge
path v ; u. This path v ; u followed by the back edge (u,v) is a cycle,
and it must have negative weight in order for the relaxation of (u,v) to
reduce the shortest-path estimate.

> If there’s a negative-weight cycle reachable from s, it will be detected.
Assume there is a cycle v; ; v, — vy, and assume (without loss of
generality) that v is the first vertex in the cycle visited by the DFS.
DFS will follow the cycle, and when it relaxes (vn,v1) the cycle will be
detected.

This negative-cycle detection doesn’t affect the O(V + E) running time.

Bonus points were given for realizing that the total running time is actually
O(V), because only O(V) edges can be encountered by BFS or DFS from a
single source s in a unipathic graph. To show this, consider the way edges
would be labeled by a depth-first search from s. There are
* O(V) tree edges (because a tree with |V| vertices always has [V| -1 edges,

and the depth-first tree has O(V) vertices)

[image: image2.jpg]Quiz 2 Solutions

* no forward edges, since a forward edge (u,v) implies that there are two
simple paths from u to v (one along the forward edge, one along the tree
edges), which can’t happen in a unipathic graph

* no cross edges, since a cross edge (u,v) implies there are two simple paths

from 8 to v (one along the tree edges, one along the tree-edge path to u
and then along (u,v))

* at most 1 back edge per vertex (O(V) total back edges)

To show this, assume there could be two back edges from a vertex w, as
shown in the drawing:

-y sk >y P -

Then there would be two simple paths from w to v — one along the edge
(w,v) and one along the edge (w, u) followed by the tree-edge path from u
to v.

Problem 5
Show how to implement a dynamic set that efficiently supports the FIFO
queue operations ENQUEUE and DEQUEUE, as well as MINIMUM.

{(This problem is from an idea suggested by Greg Frederickson.))
Answer: If we use an ordinary FIFO queue implemented as a doubly linked
list with head and tail pointers, we get running times

ENQUEUVE O(1)
Dequeve O(1)
MINIMUM O(n)

To find the minimum we must scan the whole list.

‘We can reduce the time for MINIMUM from O(n) to O(lgn) (at the expense
of increasing the other operations’ times from O(1) to O(lgn)) by keeping
each element in a heap that has the minimum at the root as well as in the
FIFO queue.

* When enqueuing an item in the FIFO queue, also insert it into the heap.
* When dequeuing an item in the FIFO queue, also delete it from the heap.
¢ The minimum is just root of the heap.

Run times are now

ENQUEVE O(lgn)
DEQUEUE O(lgn)
MinmtvuM O(1)

The above answer gets full credit.

1t is also possible to do all the operations in O(1) amortized time as follows.
(This solution earned bonus points.)

[image: image3.jpg]Again, keep the items in an ordinary FIFO queue, N. Keep a second queu
M, that is a subset of NV, , such that the minimum item in N is always at tl
head of M. Enqueuing and dequeuing the items on N take O(1) time, ar
getting the minimum from the head of M takes only O(1) time. But there
additional work involved in maintaining M,

N is an ordinary queue, in which items are inserted at the tail and remove
at the head. M is an input-restricted deque (double-ended queue), in whic
items are inserted only at the tail, but deleted at both ends. The set operatior
are implemented as follows (where we assume, without loss of generality, th.
the items in the set are just numbers):

Minmmum(S)
return head[M)]

DEQUEUE(S)

n — head[N]
delete head of N
if n = head[M]
then delete head of M
return n

ENQUEUE(S, n)
insert n at tail of N
while tail[M] > n
do delete tail of M
insert n at tail of M

* Correctness: Code preserves invariants that
> M monotonically increases from head to tail
®> Minimum key in IV is in M

* Example: Here are N and M (with head at the top)first after 3, 4,6, ar
7 are enqueued, then after 5 is enqueued:

N M enqu_e'ue 5 N

~N oA wl
N oA ol
9N oA W
RN

[image: image4.jpg]* Analysis:

> Minneom
Charge just the O(1) cost of accessing a queue head; use it to do the
operation.

> Dequeve
Charge just the O(1) cost of accessing and deleting a constant number
of queue heads; use it to do the operation.

> ENQUEUE
Charge the O(1) cost of the two insertions plus $1 extra; store the extra
$1 as credit on the item added to M. The credit associated with each
item on M pays to delete it.

Problem 6
A unimodal sequence is a sequence (ag,az, ..,) for which there exists
¢ such that (as, 41, -, G4y strictly increases and then strictly decreases,
where the subscript calculations are performed modulo n. That is, if the
sequence (ag,ay, .., an_1) is rotated to the left ¢ positions, it strictly increases
to a maximum and then strictly decreases. Design an eficient algorithm to
find the maximum value in & unimodal sequence. (For partial credit, consider
only unimodal sequences for which £ = 0.)

Answer: Of course, the maximum can be found in ©(n) time by looking
at all the elements. But we can do it in ©(Ign) time by using an approach
similar to binary search to divide the search interval in half on each iteration.

For the case where ¢ = 0, the sequence increases and then decreases. Find
the maximum as follows:

* Look at two consecutive elements a;,a5.1 from the middle of the interval.

* Ifthey are increasing (a; < a.41), recursively search the right half of the
intervel (including a;4,).
> If they are decreasing, recursively search the left half of the interval
(including a,).
+ Stop when the interval has only 2 elements: The answer is the larger of the
two.
Time: Tn) = T(n/2) + ©(1) = &(lgn)

In the general problem (¢ unknown), the sequence has one of the following.
patterns:

[image: image5.jpg]* Case 1: increases then decreases
* Case 2: decreases then increases
* Case 3: decreases, then increases, then decreases
* Case 4: increases, then decreases, then increases
First decide which case it is by comparing the first two clements and th
last two elements.

* If the first two are increasing and the last two are decreasing, it is case 1
This is the same as the £ = 0 case described above, so use the binary searc
algorithm described there to find the maximum in ©(lgn) time.

* If the first two are decreasing and the last two are increasing, it is case &
‘The maximum is the larger of the first element and the last element, de
termined in ©(1) time.

* Ifthe first two and the last two are both decreasing, it is case 3. To narror
the search, look at two consecutive elements. @i, 8441 from the middle of th
interval.

* Ifai < aiy, they are on segment b. Go to case 1 to search the right ha
of the interval (including ais1).

* I i > ajsy, they are on segment a or segment c. Note that becaus
the rotated sequence increases and then decreases, all values on segmen
a are less than all values on segment ¢, so we can decide what to d
by comparing a; to either endpoint of the interval. For example, if
is less than the left endpoint of the interval, it is on the same segmen
(segment a), so recursively do case 3 on the right half of the interva’

otherwise it is on segment c, so recursively do case 3 on the left half ¢
the interval.

* Ifthe first two and the last two are both increasing, it s case 4. This is han
dled analogously to case 3. To narrow the search, look at two consecutiv.
elements ;, a;a; from the middle of the interval,

> 1£a: > a4, they are on segment e. Go to case 1 to search the left hal
of the interval (including o).

> Ifa < aiys, they ere on segment d or segment f. Note that because th
rotated sequence increases and then decreases, all values on segment «
are greater than all velues on segment f, so we can decide what to d
by comparing a; to either endpoint of the interval. For example, if a; i
greater than the left endpoint of the interval, it is on the same segmen
(segment d), so recursively do case 4 on the right half of the interval
otherwise it is on segment f, so recursively do case 4 on the left half o
the interval.

In case 3 and case 4, the search interval is halved each time, just as in case 1
50 the worst-case running time of the algorithm is ©(lgn).

