[image: image1.jpg]Problem 7
The Colonel Motors Corporation of Frankfort, Kentucky has produced a new
line of vehicles which require chicken droppings for fuel. Because of this
unusul fuel requirement, there are only certain fueling stations in the country
where the vehicles can be refilled. Thus, to get from one place to another, an
owner must plan a route that ensures that he can get refills along the wey.
‘The Colonel Motors Corporation hs hired Professor Sanders of the Kentucky
Institute of Technology as & consultant to prepare an on-line route-finding
service. To use the computerized service, an owner will enter the driving
range of his vehicle (the distance the vehicle can go on a single fill-up), the
“distance to empty” (the distance the vehicle can go with the fuel that's now in
the tank), his initial location (source), and his desired destination. The service
will either respond with & shortest route from the source to the destination
such that the owner never runs out of fuel, or it will deem that no such route
exists. Model the professor’s problem in terms of a weighted, directed graph
in which streets are edges, intersections are vertices, and some intersections
have fueling stations, and design an efficient algorithm to solve it. Assume
that a driver’s source and destination are also at intersections. (For partial
credit, design an algorithm to find any feasible path from the source to the
destination.)
Answer: y
Let G = (V, E) be the graph representing the basic map, in which
* F={v,...,u5} C V are the vertices that heve fucling stations. The
‘number of fueling stations is f.
* The weight of edge (a,) is the distance between from a to b along the
corresponding street.
+ Edges are directed, to allow for one-way streets.
We want to find ROUTE(G, ,d,r, dte) — the shortest path in G from the
source vertex s to the destination vertex d such that
* 1m0 “leg” from s directly to d or from s to a fueling station is longer than
the given dte
+ 10 “leg” from a fueling station (to another fueling station or to d) is longer
than the given range T

Here’s the overall structure of the algorithm.
1. Construct & graph G* = (V*, E*) in which

* V* = FU{s,d} (ie, the vertices are the fucling stations, the source,
and the destination). Note that [V*| = O(f).
+ Let 5(u,v) be the shortest distance from u € V* to v € V" in G.

E* = {(u,v) such that (u,v) < dte if u =8, or 6(u,v) <7 if u s}

(s, v) = 8(u,v)

(except that we can omit edges to s and edges from d, if desired). Note
that |E*| = O(f2).

[image: image2.jpg]2. Find the shortest path p* from s to d in G*. That path gives us the overall
route we want, and its weight is the weight of the shortest path from s to
din G, because each edge in G corresponds to a shortest path in G.
(Note: If the edge (s, d) is in E*, we can skip this search and take that edge
as the shortest path. Since all vertices in G* are &ls0 in G, the shortest
path from s to d in G, represented by the edge (s,d) in G*, already goes
through whatever other vertices of G* it needs to.)

3. Construct the full path in G for which p* is the skeleton. That is, replace
each edge in p° by the corresponding path in G. (Those paths in G are
already known, since we found them in order to set up the edge weights in
G".) This path is the desired route.

Since all edge weights are nonnegative, we can use Dijkstra's algorithm for all
the shortest-path searches (in both G and G*).
The running time of this algorithm is:

« O(f) to set up V*

+ O(f-(E+V1gV)) to set up E*. For each of the O(f) vertices in 1* (except
d), run Dijkstra’s algorithm to find shortest paths from that vertex in G,
then select the paths with short enough distances from that source to each
vertex in V"

+ O(E" +V*1gV*) = O(f} + fIg f) = O(f?) to find shortest paths from s
in G* using Dijkstra’s algorithm.

* O(f - V) to replace each of the O(V*) = O(f) edges of p* with an O(V)-
length path from G.

Total: O(f(E + V1gV)) = O(/E+ fVIgV)

The above solution earned full credit.

The following improvement would earn bonus points,

We can improve this time by precomputing things that don’t depend on an
individual driver's query. In perticuler, &5 long as the basic map G doesn't
change, the shortest paths among fueling stations can't change, 5o we can
precompute the edges of G* that go between vertices in F. This is O(f - (E+
V1gV)) work (f shortest-path computations in G). Then to construct E”
for & driver's query, we only need to do the shortest-paths search in G twice
(for paths from s and for paths to d — the latter can be done by reversing
ell edges and looking for paths from d). For edges between fueling stations
we just select the precomputed edges that have distances < r. The work to
set up E* is thus reduced from O(f - (E+VIgV)) to O(E+V1gV) and the
total time is reduced to O(fV + E+VIgV).

[image: image3.jpg]Problem 8

Professor Babylonia wants to construct the tallest, tower possible out of build-
ing blocks. She has n types of blocks, and an unlimited supply of blocks of
each type. Each type-i block is a rectangular solid with linear dimensions
{zi,9421). A block can be oriented so that any two of its three dimensions
determine the dimensions of a base and the other dimension is the height. In
building a tower, one block may be placed on top of another block as long as
the two dimensions of the base of the upper block are each strictly smaller
than the corresponding base dimensions of the lower block. (Thus, for exam-
ple, blocks oriented to have equal-sized bases cannot be stacked.) Design an
efficient algorithm to determine the tallest tower that the professor can build.
(For partial credit, assume that the blocks cannot be reoriented.)

Answer:

First of all, note that although there’s an unlimited supply of blocks, at
most 3 blocks of each type — one with ; as the height, one with 3 as the
height, and one with z; as the height — can appear in the tower, because a
surface can only be placed on a strictly larger surface, so a block can’t be used
twice with the same base surface. So we can transform our problem to one
with 3n blocks. (In fact, only 2 blocks of each type can possibly be used in
the tower, but we don't know in advance which 2. This observation received
a small bonus.) ((Richard Anderson has shown that if there is only 1 block
of each type, the problem is NP~complete.)) For each block type i, we have
3 blocks: one with height z and base dimensions z; and v, one with height
i and base dimensions z; and =, one with height z; and bsse dimensions g
and . Let's call the dimensions of a block height, width (the smaller base
dimension), and length (the larger base dimension). Then block a can be
placed on block b if and only if lengthla] < length[t] and widthla) < widtht].

(Note: The ebove analysis turns the problem into one in which blocks can't
be reoriented. Thus the partial-credit solution would sssume that reformula-
tion of the problem without deriving it from the more general problem, and
start from here.)

Here are two ways of solving this restated problem, one using graphs and
one using dynsmic programming, and both running in O(n?) time. Either
of these algorithms is worth full credit. We also show a clever way to use
a balanced data structure to reduce the time for the dynamic programming
algorithm to O(nlgn).

+ Define & graph G in which

® Each of the 3n blocks is a vertex. There’s also a vertex t Tepresenting
the table.

> There is an edge (u,v) if block u can be placed on top of block v, and
an edge (u,¢) for every block u.

> The weight of edge (u, v) is the height of block u (i.e., the amount added
to the tower height if we actually place on v).

Note that

[image: image4.jpg]» G has ©(n) vertices and O(n?) edges.

> Setting up G takes O(n?) time.

> Gis adag. Directed because we defined it that way, acyclic because a
block can be placed only on a smaller block.

> The blocks on any path can be stacked to make a tower.

> The weight of any path in G is the height of a tower built from the
blocks on the path.

In terms of G, the tallest tower that can be built consists of the blocks
elong a longest-weight path in G. We will redefine G slightly so that we
can use DAG-SHORTEST-PATHS to find the answer.

> Change the sign of the weights o that they are all negative. A longest
path in the original G is a shortest path in the new G.

* We need a source vertex to find paths from, so add a source s with a
O-weight edge (s,v) to every v that has in-degree 0. (You could add
& O-weight edge (s,v) to every v, but an edge (s,v) into & v that has
another edge into it can't be part of the solution, since it's always better
to get to v through some edge with non-0 weight than to go directly
from s.)

Now the sequence of blocks on a shortest path from s to ¢ found by DAG-
SHORTEST-PATHS in G forms the tallest tower we can build.
DAG-SHORTEST-PATHS takes time 8(V + E) = O(n?), so the whole algo-
rithm runs in O(n?) time.

Dynamic programming

Fizst sort the blocks in reverse order by width. In the sorted order, width[Bi|
< width[B;] only if i > j, so a block can be placed only on blocks that ap-
‘pear earlier in the list

Let HIi) be the height of the tallest tower that can be built with block B;
on top. That tower consists of By on top of the tallest tower that can be
built with some Bj on top that can support By, which is some B; with
< i, length{B;] > length|By], and widih(B;] > width[By). (The width
‘must be checked because some B; may have the same width a5 B;.) Define
the set

biggers = {j : j < i and length(B;] > length{B;) and width(By] > width(B,]
Then

H = 0

Hf] = height{Bi]+ mex H[j]

sebigger;

Since each H value depends only on earlier H values, we can compute a te-

ble H from left to right. The height of the tallest tower i then max Hli)

[image: image5.jpg]To find the blocks in & tallest tower, we can keep track of which blocks are

placed on which. That is, when the max j is chosen to place i on, keep a

pointer from i to j. The chain of pointers starting at the i for which Hli]

is maximum shows the blocks that made up that H{i]-height tower

‘The run time is

> O(nlgn) to sort the O(n) blocks

* O(n?) to compute the O(n) entries in H if the max is found by scanning
H (because computing HIi] must scan i entries, o the entries scanned
for all i form an arithmetic series)

> O(n) to find the maximum height in H and trace the chain of blocks.

for a totel of O(n?)

Subsequent to the quiz, a student in the class (Lisa Zhang) devised a way to.
use an augmented red-black tree to hold the H values so that the maximum
that is needed to compute H[i] can be found in only O(lg) time. This
veduces the time to compute H, and hence the total time, to O(nlgn)

> When HIi] is about to be computed, the tree holds the H values for
all blocks with width > width(By]. As H is computed, each time & new
width is encountered, all H values for blocks with the previous width
are inserted into the tree.

> The key of the node for block j is length(B;].

> Nodes are augmented with fields H to hold H(j] and maz-H to hold
the maximum H in the subtree rooted at the node. Since H never
changes and mag-H can be computed from the node’s and its chil-
dren’s mas-H, the information can be maintained during insertion in
0(lgn) time.

> The maximum needed in the computation of H{i] is the maximum H
in the tree for nodes with key greater than length[By]. We leave as an
exercise for the reader how to deduce this value from the tree in O(lgn)
time,

