COT 6401 The Analysis of Algorithms
 Midterm Test
 Open books and notes

1. (25%) A k-combination of an n-set S is simply a k-subset of S. For example, $\{a b, a c, a d, b c, b d, c d\}$ is the 2-combination of the 4 -set $\{a, b, c, d\}$. Write a pseudocode to generate the 3 -combination of an n-set S. Show the correctness of your code by showing the 3 -combination of the 5 -set $\{a, b, c, d, e\}$. What is the complexity of your solution?
2. (25%) Modify the HEAPIFY (A, i) (page 143) for a ternary heap which is a complete ternary tree where three children of a node are called LEFT, CENTER, and RIGHT. Assume that the heap property remains the same.
3. (25%) Give an efficient algorithm to count the total number of paths in a directed acyclic graph $(D A G)$ from u to v. Apply your algorithm to Figure 25.8 (page 537) where $u=r$ and $v=x$.
4. (25\%) Given a green onion of n inches, you are required to cut it into n pieces of one inch each. Assume that after the onion has been cut into k pieces, they can be "piled" together so that the following cut can generate up to $2 k$ pieces. What is the minimum number of cuts? Determine a greedy approach that generates a minimum number of cuts. Show the correctness of your approach for $n=13$.
(Bonus Points, 5 pts$)$
5. In the activity-selection problem of n activities (n is a large integer, say $n>1,000$), suppose a greedy approach always selects a compatible activity with an earliest starting time. Provide a sufficient condition such that this greedy approach always generate an optimal solution.
