18-2 Making binary search dynamic
[Solution]
a. To perform search operation for this structure, we can just perform binary search for each of the sorted arrays till we find the data we are searching for.

As we know, the time of the execution of the binary search algorithm on the array A_{i} is $O\left(\lg 2^{i}\right)=O(i)$. Therefore, the worst-case running time of the dynamic binary search is

$$
\sum_{i=0}^{k-1} O(i)=O\left(\frac{1}{2} k(k-1)\right)=O\left(k^{2}\right)=O\left(\lg ^{2} n\right) \quad(\because k=\lceil\lg (n+1)\rceil)
$$

b. To insert a new element into this data structure, we just insert a new array A_{0} into the arrays. If another A_{0} exists, we merge these two A_{0} into one A_{1}. If another A_{1} exists, we merge these two A_{1} into one A_{2}. We going on and keep merging till we do not need merge any longer.

The worst case running time is

$$
\sum_{i=1}^{k} 2^{k}=O(n) \quad(k=\lceil\lg (n+1)\rceil)
$$

For the amortized time, we can notice the binary representation of n, i.e., $\left\langle n_{k-1}, n_{k-2}, \cdots, n_{0}\right\rangle$. When we perform a series of insertion, n_{0} flips every time, n_{1} flips every 2 th time, ..., n_{k-1} flips every 2^{k} th time. A flip indicates a merge operation. So the total running time for m insertions is

$$
T \leq \sum_{i=0}^{k-1}\left\lfloor\frac{m}{2^{i}}\right\rfloor 2^{i+1} \leq 2 m k=m O(\lg n)
$$

So the amortized running time for each operation is $m O(\lg n) / m=O(\lg n)$.
c. To delete an element, say x, in A_{i}, first we find the smallest array that is not empty. Assume it is A_{j}. Delete x from A_{i}. If $i \neq j$, take an element out of A_{j} and insert it into A_{i}. Whether $i \neq j$ or not, now the length of A_{j} is $2^{j}-1$. Then we divide array A_{j} into j arrays, $A_{0}, A_{1}, \cdots, A_{j-1}$, which are consistent with this data structure.
5.22 [Solution]

```
Algorithm:
\(\operatorname{SELECTION}(n, k)\)
1 candidate \(\leftarrow\) Key[1]
2 for \(i \leftarrow 2\) to \(n-k+1\)
3 if candidate \(>\operatorname{Key}[i]\)
\(4 \quad\) candidate \(\leftarrow \operatorname{Key}[i]\)
5 return candidate
```

Number of comparisons: $n-k$
Lower bound of comparisons: $n-k$

