
COT 6401 Analysis of Algorithms Homework #4 by Changfu Wu

P.1/2

18-2 Making binary search dynamic
[Solution]

a. To perform search operation for this structure, we can just perform binary search
for each of the sorted arrays till we find the data we are searching for.

As we know, the time of the execution of the binary search algorithm on the array

iA is)()2(lg iOO i = . Therefore, the worst-case running time of the dynamic

binary search is

∑
−

=

==−=
1

0

22)(lg)())1(
2

1
()(

k

i

nOkOkkOiO ()1lg(+= nkQ)

b. To insert a new element into this data structure, we just insert a new array 0A into

the arrays. If another 0A exists, we merge these two 0A into one 1A . If another

1A exists, we merge these two 1A into one 2A . We going on and keep merging
till we do not need merge any longer.

 The worst case running time is

)(2
1

nO
k

i

k =∑
=

 ()1lg(+= nk)

 For the amortized time, we can notice the binary representation of n , i.e.,

021 ,,, nnn kk L−− . When we perform a series of insertion, 0n flips every time, 1n

flips every th2 time, …, 1−kn flips every thk2 time. A flip indicates a merge

operation. So the total running time for m insertions is

∑
−

=

+ =≤

≤

1

0

1)(lg22
2

k

i

i
i

nmOmk
m

T

So the amortized running time for each operation is)(lg/)(lg nOmnmO = .

c. To delete an element, say x , in iA , first we find the smallest array that is not

empty. Assume it is jA . Delete x from iA . If ji ≠ , take an element out of jA

and insert it into iA . Whether ji ≠ or not, now the length of jA is 12 −j . Then

we divide array jA into j arrays, 110 ,,, −jAAA L , which are consistent with this

data structure.

COT 6401 Analysis of Algorithms Homework #4 by Changfu Wu

P.2/2

5.22 [Solution]

Algorithm:

SELECTION(kn,)
1]1[Keycandidate ←
2 for 2←i to 1+− kn
3 if][iKeycandidate >
4][iKeycandidate ←
5 return candidate

Number of comparisons: kn −
Lower bound of comparisons: kn −

