
Semi-Heap and Its Applications in Tournament Ranking

Jie Wu

Department of Computer Science and Engineering

Florida Atlantic University

Boca Raton, FL 33431

jie@cse.fau.edu

September 21, 2001

1

1. Introduction and Motivation

2. Preliminaries

3. Semi-Heap

4. Generalized Sorting Using Semi-Heap

5. Parallel Generalized Sorting Using Semi-Heap

6. Other Results

7. Conclusions

2

1 Introduction

Two di�erent worlds

� Hardyism

Utility as a goal is inferior to elegance and profundity.

� Maoism

Scienti�c research should serve proletarian polities, ..., and be inter-

grated with productive labor.

3

Golden-ratio-based Search:

Golden ratio: � =
p
5�1
2

= 0:618:::

quality/quantity

0 10.6181-0.618

peak

time/ratio

Questions:

� Why golden-ratio-based search?

� Golden-ratio-based search or binary-tree-based search?

4

� Tournament: n players where every possible pair of players plays one

game to decide the winner (and the loser) between them.

� Graph representation: A directed graph with a complete underlying

graph.

n
2

n
3

n
4n

5

n
1

� Hamiltonian path (also called generalized sorted sequence):

n3 � n4 � n2 � n5 � n1

� Lower bound: �(n logn)

� Sorting algorithms: bubble sort, binary insertion sort, merge sort

� We extend a heapsort algorithm using a semi-heap and then generalize

it to a cost-optimal parallel algorithm under the EREW PRAM model

with �(n) run time using �(logn) processors.

5

Tournament Ranking Problem:

� generalized sorted sequence (�(n logn))

� sorted sequence of kings (Wu 2000, conjectured to be �(n2))

� local median order (O(n4))

� median order (NP-complete)

n1 n2 n3 n4 n5

king: other players are beaten by the king directly or indirectly (via a

third player).

median order: ranking of players with a minimum number of total

upsets.

sorted sequence of kings

local median order

median order

generalized sorted sequence

6

2 Preliminaries

Tournament

Existence of a Hamiltonian path in any tournament:

Preposition: Consider a set N (jN j = n) with any two elements ni and nj,

either ni � nj or nj � ni. Elements in N can be arranged in a linear order

n
0

1 � n
0

2 � ::: � n
0

n�1 � n
0

n

� Assume that the preposition holds for n = k:

n
0

1 � n
0

2 � ::: � n
0

k

� When n = k + 1, we insert the (k + 1)th element n
0

k+1 in front of n
0

i,

where i is the smallest index such that n
0

k+1 � n
0

i:

n
0

1 � n
0

2 � ::: � n
0

k+1 � n
0

i::: � n
0

k

� If such an index i does not exist, n
0

k+1 is placed as the last element:

n
0

1 � n
0

2 � ::: � n
0

k � n
0

k+1

7

Heap

� Heap is an array A that can be viewed as a complete binary tree.

� The left child of A[i] is A[l(i)] = A[2i] and the right child of A[i] is

A[r(i)] = A[2i+ 1].

� Heap property: For every node i other than the root:

A[Parent(i)] � A[i]

1 i 2i 2i+1 heapsize

A[i] A[l(i)] * ... *A[r(i)]...
A[i]

A[l[i)] A[r(i)]

(a) (b)

8

Faculty Recruting Process:

n candidates

candidate pool

Yes/No Offer

A k-round selection process

selected candidate

Cost function:

Type Random Sorted Heap

Construct �(1) �(n logn) �(n)

Select �(n) �(1) �(1)

Maintain �(n) �(1) �(log n)

Overall cost:

Type Random Sorted Heap

k = �(1) �(n) �(n log n) �(n)

k = �(n) �(n2) �(n log n) �(n log n)

k = �(n= log n) �(n2) �(n log n) �(n)

9

3 Semi-Heap

De�nition 1: n1 = max�fn1; n2; n3g if both n2 = maxfn1; n2; n3g and n3 =

maxfn1; n2; n3g are false.

Four possible con�gurations of a triangle in a semi-heap.

A[i]

A[l(i)] A[r(i)]

A[i]

A[l(i)] A[r(i)]

A[i]

A[l(i)] A[r(i)]

(a) (b)

(c) (d)

A[i]

A[l(i)] A[r(i)]

De�nition 2: A semi-heap for a given intransitive total order � is a complete

binary tree. For every node n
0

in the tree, n
0

= max�fn
0

; L(n
0

); R(n
0

)g.

10

Construct a semi-heap from a random array:

� SEMI-HEAPIFY(A; i) constructs a semi-heap rooted at A[i], provided

that binary trees rooted at A[l(i)] and A[r(i)] are semi-heaps.

(Its cost is �(logn), where n = heapsize.)

� BUILD-SEMI-HEAP(A) uses the procedure SEMI-HEAPIFY in a bottom-

up manner to convert an arbitrary array A into a semi-heap.

(Its cost is �(n))

SEMI-HEAPIFY(A; i)

1 if A[i] 6= max�fA[i]; A[l(i)]; A[r(i)]g

2 then �nd winner such that

A[winner] � maxfA[i]; A[l(i)]; A[r(i)]g

3 exchange A[i] ! A[winner]

4 SEMI-HEAPIFY(A;winner)

BUILD-SEMI-HEAP(A)

1 for i � bheapsize
2
c downto 1

2 do SEMI-HEAPIFY(A; i)

11

The description of the SEMI-HEAPIFY algorithm:

semi-heap

semi-heap semi-heap

A[r(i)]

A[l(l(i)]

A[l(i)]

A[r(l(i))]

A[i]

12

Theorem 1: BUILD-SEMI-HEAP constructs a semi-heap for any given

complete binary tree.

An example of using BUILD-SEMI-HEAP:

n
1

n
2

n
3

n
4

n
8

n
5

n
6

n
7

n
1

n
2

n
3

n
4

n
5

n
6

n
7

n
8 * ... *

(a)

A:

1 2 3 4 5 6 7 8 9 .. 16

n
1

A:

1 2 3 4 5 6 7 8 9 .. 16

n
2

n
7

n
4

n
8

n
5

n
6

n
3

n
1

n
2

n
7

n
4

n
5

n
6

n
3

n
8 * ... *

(b)

13

4 Generalized Sorting Using Semi-Heap

Why the traditional heapsort cannot be used?

� With the transitive property, root A[1] \beats" all the other \players".

� When the root is discarded, it is replaced by the last element A[n] in

the heap.

� Then the heap is reconstructed by pushing A[n] down in the heap if

necessary so that the new root is the maximum element among the

remaining ones.

� In a semi-heap, the following situation may occur: A[n] \beats" all A[1],

A[2], and A[3].

...

...

A[1]

A[3]A[2]

A[n]

14

Generalized sorting using semi-heap

� Generalized sorting is done through SEMI-HEAP-SORT by repeatly

printing and removing the root of the binary tree (which is initially

a semi-heap).

� The root is replaced by either its left child or right child through RE-

PLACE.

� The selected child is replaced by one of its children. The process contin-

ues until a leaf node is reached and the entry for the leaf node is replaced

by �.

15

� REPLACE(A; i) repeatly replaces a node (starting from the root) by

either its leftchild or rightchild until the current node is a leave node.

(Its cost is bounded the height of the original semi-heap, �(logn)).

� SEMI-HEAP-SORT repeatly prints and removes the root of the binary

tree (which is initially a semi-heap).

(Its cost is �(n logn).)

REPLACE(A; i)

1 if (A[l(i)] = �) ^ (A[r(i)] = �)

2 then A[i] � �

3 else if (A[i] � A[l(i)])^ (A[l(i)] � A[r(i)])

4 then A[i] � A[l(i)]

5 REPLACE(A; l[i])

6 else A[i] � A[r(i)]

7 REPLACE(A; r[i])

SEMI-HEAP-SORT(A)

1 BUILD-SEMI-HEAP(A)

2 while (A[l(1)] 6= �) _ (A[r(1)] 6= �)

3 do print(A[1])

4 REPLACE(A, 1)

5 print(A[1])

16

Theorem 2: For any given semi-heap, SEMI-HEAP-SORT generates a gen-

eralized sorted sequence.

Tournament representation:

� A tournament is represented by an n� n matrix M .

� M [i; j] = 1 if ni beats nj (i.e., ni � nj).

� M [i; j] = 0 if ni is beaten by nj (i.e., nj � ni).

� M [i; i] = � represents an impossible situation.

M =

0
BB@

� 0 1 0 1 0 1 1

1 � 0 1 0 1 0 1

0 1 � 0 0 1 0 0

1 0 1 � 1 1 0 1

0 1 1 0 � 1 1 1

1 0 0 0 0 � 0 0

0 1 1 1 0 1 � 0

0 0 1 0 0 1 1 �

1
CCA

17

A step-by-step application of REPLACE(A; i):

n
1

n
7

n
1

n
7

n
3

n
1

n
1

n
7

n
3

n
4

n
8

n
6

n
2

n
5

n
5

n
8

n
6 * ... ** * * * *

(e)

*

n
5

n
1

n
7

n
3

n
4

n
2

n
3

n
1

n
7

n
2

n
5

n
6

n
8

n
4

n
5

n
6

n
8 * ... ** * *

n
4

* *

(d)

n
6

(f)

n
8 * ... ** * * * ***

n
2

n
3

n
4

n
8

n
5

n
6

n
1

n
2

n
3

n
4

n
5

n
6

* n
8 * ... *

(a)

n
7

(c)

n
2

n
6

n
4

n
8

n
5

n
3

n
2

n
6

n
4

n
5

n
8 * ... *

(b)

n
3

* *

n
4

n
6

n
8

n
5

n
2

n
2

n
4

n
6

n
8

n
5 * ... ** * *

n
6

n
8

18

5 Parallel Generalized Sorting Using Semi-Heap

A cost-optimal parallel algorithm

� A sorting algorithm is cost-optimal if the product of run time and the

number of processors is �(n logn).

� REPLACE(A; 1) is pipelined level to level and this statement is called at

every other step (since each node is shared by two processors at adjacent

level, an idle step is inserted between two calls).

� The run time of SEMI-HEAP-SORT is reduced to �(n) with �(logn)

processors.

� This parallel algorithm runs on the CREW PRAM model, but can be

easily modi�ed to the EREW PRAM model without additional cost.

19

From CREW PRAM to EREW PRAM: resolve memory access conict

n
1

1

2 3

4 5 6 7

8

n
2

n
2

n
4

n
4

n
8

n
5

n
5

n
6

n
6

n
3

n
3

n
7

n
7

P
1

P
2

P
0

The network model: a linear array of processors P0, P1, P2, ... Ph, where

h = dlogne.

20

Active and passive steps:

P
0

P
1

P
2i-1

P
2i

P
2i+1

P
0

P
1

P
2i-1

P
2i

P
2i+1

passive step

active step

Step 2k

Step 2k+1

.........

........

........

.........

� At an even step, processors P0, P2, P4, ... take the active step and

processors P1, P3, P5, ... take the passive step.

� The role of active and passive among these processors exchanges in the

next step.

21

Theorem 3: The proposed parallel implementation is cost-optimal with a

run time of �(n) using �(logn) processors.

P0 at an active step (starts from step 0):

1. Prints root A[1].

2. If both child nodes are �, A[1] is replaced by � and then P0 sends a

termination signal to P1 and stops.

If at least one child node is not �, replaces A[1] by one of two child nodes,

A[2] and A[3], following the rule in REPLACE.

� If A[2] is selected, P0 sends id = 2 to processor P1; otherwise, id = 3

is sent.

� In the next step (a passive step), P0 receives (id; replacement) from

P1, and then, performs the update A[id] := replacement.

22

Pi, i 6= 0, at a passive step:

� If Pi receives (id; replacement) from Pi+1, it performs the updateA[id] :=

replacement.

� If Pi receives signal id = j from Pi�1, it performs the following activities

in next active step:

1. If both children are �, A[j] is replaced by �; otherwise, A[j] is re-

placed by either A[2j] or A[2j + 1] based the replacement rule.

2. Send (j; A[j]) to Pi�1.

3. If either A[2j] or A[2j + 1] is selected to replace A[j], the corre-

sponding id (2j or 2j+1) is sent to Pi+1, provided Pi is not the last

processor (i.e., i 6= h�1); otherwise, the selected element is replaced

by �.

� If Pi receives the termination signal, it forwards the termination signal

to the next processor Pi+1 (if it exists) in the next active step, and then,

Pi stops.

23

A step-by-step illustration:

n
1

n
7

n
7

n
1

n
3

n
3

n
3

n
6

n
6

n
6

n
3

n
3

n
6

n
6

n
7

n
2

n
2

n
6

n
6

n
7

n
4

n
4

n
4

(a)

1

2 3

4 5 6 7

8

n
2

n
2

n
4

n
4

n
8

n
5

n
5

n
6

n
6

n
3

n
3

P
1

P
2

3

P
0

1

2 3

4 5 6 7

8

n
2

n
2

n
4

n
4

n
8

n
5

n
5

n
6

n
6

P
1

P
2

n
7

7

(b)

P
0

1

2 3

4 5 6 7

8

n
2

n
2

n
4

n
4

n
8

n
5

n
5

P
1

P
2

n
3

6

(d)

n
7

n
1

*

*

P
0

(3, n)6

1

2 3

4 5 6 7

8

n
2

n
2

n
4

n
4

n
8

n
5

n
5

n
6

n
6

P
1

P
2

3

(7, *)

(c)

n
7

n
1

*

*

P
0

1

2 3

4 5 6 7

8

n
4

n
4

n
8

n
5

n
5

P
1

P
2

(6, *)

(e)

*

*

n
1

n
3

2

*

*

P
0

1

2 3

4 5 6 7

8n
8

n
5

n
5

P
1

P
2

4

(f)

*

*

n
1

n
3

n
2

*

*

(2, n)4

P
0

(3, n)3

24

6 Other Results

Sorted Sequence of Kings:

Quicksort

� in(u): a set of players that beat u.

� out(u): a set of players that are beaten by u.

uin(u) out(u)

25

Parallel Merge:

An EREW PRAM model with running time O(log2 n) using O(n= log2 n)

processors.

(a) (b)

(c) (d)

p

q

1 nsplit

first=1 last=m

p

q

split1 n

p

q

split1 n

first=1 last=m

first=1

cut cut+1

last=m

split

p

q

1 n

first=1 last=m

26

7 Conclusions

� A data structure called semi-heap.

� An optimal solution to the generalized sorting problem.

� A cost-optimal EREW PRAM algorithm with �(n) in run time using

�(logn) processors.

� An implementation of the proposed parallel algorithm under the network

model using a linear array of processors.

27

