Summary

• Analysis Techniques

- 1. Asymptotic Analysis
 - $(\Theta, \Omega, O, \omega, \text{ and } o \text{ notations, recurrences and summations})$
- 2. Amortized Analysis (aggregate, accounting, and potential)
- 3. Adversary Arguments
 - (better lower bounds)

• Data Structure

- 1. Heap
- 2. Hash table, List, Stack, Queue, Tree, and Graph

• Basic Design

1. Sorting

 $(\Theta(n \lg n) \text{ algorithms}, \Theta(n) \text{ algorithms, lower bound, sorting networks})$

• Advanced Design

- 1. Dynamic Programming
- 2. Greedy Algorithms
- 3. Randomized Algorithms
- 4. Approximation Algorithms

• Bonus Problems

1. Marriage Problems

(stable marriage, seating problems, and mate-selection problems)

- 2. Special numbers:
 - (a) ϕ (Fibonacci number and golden-ratio)
 - (b) π (randomized algorithm)
 - (c) e (compound interest rate and harmonic series)

Other Topics (not covered)

• Design

- 1. Graph Algorithms
- 2. Combinatoric Algorithms
- 3. DNA Algorithms
- 4. Genetic Programming (Algorithms)
- 5. Others

• Data Structures

- 1. B-Trees
- 2. Binomial Heaps
- 3. Fibonacci Heaps
- 4. Others