
Apache Hadoop Goes Realtime at Facebook
Dhruba Borthakur

Kannan Muthukkaruppan
Karthik Ranganathan

Samuel Rash

Joydeep Sen Sarma
Nicolas Spiegelberg

Dmytro Molkov
Rodrigo Schmidt

Facebook

{dhruba,jssarma,jgray,kannan,
nicolas,hairong,kranganathan,dms,

aravind.menon,rash,rodrigo,
amitanand.s}@fb.com

Jonathan Gray
Hairong Kuang
Aravind Menon

Amitanand Aiyer

ABSTRACT
Facebook recently deployed Facebook Messages, its first ever
user-facing application built on the Apache Hadoop platform.
Apache HBase is a database-like layer built on Hadoop designed
to support billions of messages per day. This paper describes the
reasons why Facebook chose Hadoop and HBase over other
systems such as Apache Cassandra and Voldemort and discusses
the application’s requirements for consistency, availability,
partition tolerance, data model and scalability. We explore the
enhancements made to Hadoop to make it a more effective
realtime system, the tradeoffs we made while configuring the
system, and how this solution has significant advantages over the
sharded MySQL database scheme used in other applications at
Facebook and many other web-scale companies. We discuss the
motivations behind our design choices, the challenges that we
face in day-to-day operations, and future capabilities and
improvements still under development. We offer these
observations on the deployment as a model for other companies
who are contemplating a Hadoop-based solution over traditional
sharded RDBMS deployments.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous.

General Terms
Management, Measurement, Performance, Distributed Systems,
Design, Reliability, Languages.

Keywords
Data, scalability, resource sharing, distributed file system,
Hadoop, Hive, HBase, Facebook, Scribe, log aggregation,
distributed systems.

1. INTRODUCTION
Apache Hadoop [1] is a top-level Apache project that includes
open source implementations of a distributed file system [2] and
MapReduce that were inspired by Google’s GFS [5] and
MapReduce [6] projects. The Hadoop ecosystem also includes
projects like Apache HBase [4] which is inspired by Google’s
BigTable, Apache Hive [3], a data warehouse built on top of
Hadoop, and Apache ZooKeeper [8], a coordination service for
distributed systems.

At Facebook, Hadoop has traditionally been used in conjunction
with Hive for storage and analysis of large data sets. Most of this
analysis occurs in offline batch jobs and the emphasis has been on
maximizing throughput and efficiency. These workloads typically
read and write large amounts of data from disk sequentially. As
such, there has been less emphasis on making Hadoop performant
for random access workloads by providing low latency access to
HDFS. Instead, we have used a combination of large clusters of
MySQL databases and caching tiers built using memcached[9]. In
many cases, results from Hadoop are uploaded into MySQL or
memcached for consumption by the web tier.

Recently, a new generation of applications has arisen at Facebook
that require very high write throughput and cheap and elastic
storage, while simultaneously requiring low latency and disk
efficient sequential and random read performance. MySQL
storage engines are proven and have very good random read
performance, but typically suffer from low random write
throughput. It is difficult to scale up our MySQL clusters rapidly
while maintaining good load balancing and high uptime.
Administration of MySQL clusters requires a relatively high
management overhead and they typically use more expensive
hardware. Given our high confidence in the reliability and
scalability of HDFS, we began to explore Hadoop and HBase for
such applications.

The first set of applications requires realtime concurrent, but
sequential, read access to a very large stream of realtime data
being stored in HDFS. An example system generating and storing
such data is Scribe [10], an open source distributed log
aggregation service created by and used extensively at Facebook.
Previously, data generated by Scribe was stored in expensive and
hard to manage NFS servers. Two main applications that fall into
this category are Realtime Analytics [11] and MySQL backups.
We have enhanced HDFS to become a high performance low
latency file system and have been able to reduce our use of
expensive file servers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD ’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06...$10.00.

1071

The second generation of non-MapReduce Hadoop applications
needed to dynamically index a rapidly growing data set for fast
random lookups. One primary example of such an application is
Facebook Messages [12]. Facebook Messages gives every
Facebook user a facebook.com email address, integrates the
display of all e-mail, SMS and chat messages between a pair or
group of users, has strong controls over who users receive
messages from, and is the foundation of a Social Inbox. In
addition, this new application had to be suited for production use
by more than 500 million people immediately after launch and
needed to scale to many petabytes of data with stringent uptime
requirements. We decided to use HBase for this project. HBase in
turn leverages HDFS for scalable and fault tolerant storage and
ZooKeeper for distributed consensus.

In the following sections we present some of these new
applications in more detail and why we decided to use Hadoop
and HBase as the common foundation technologies for these
projects. We describe specific improvements made to HDFS and
HBase to enable them to scale to Facebook’s workload and
operational considerations and best practices around using these
systems in production. Finally we discuss ongoing and future
work in these projects.

2. WORKLOAD TYPES
Before deciding on a particular software stack and whether or not
to move away from our MySQL-based architecture, we looked at
a few specific applications where existing solutions may be
problematic. These use cases would have workloads that are
challenging to scale because of very high write throughput,
massive datasets, unpredictable growth, or other patterns that may
be difficult or suboptimal in a sharded RDBMS environment.

2.1 Facebook Messaging
The latest generation of Facebook Messaging combines existing
Facebook messages with e-mail, chat, and SMS. In addition to
persisting all of these messages, a new threading model also
requires messages to be stored for each participating user. As part
of the application server requirements, each user will be sticky to
a single data center.

2.1.1 High Write Throughput
With an existing rate of millions of messages and billions of
instant messages every day, the volume of ingested data would be
very large from day one and only continue to grow. The
denormalized requirement would further increase the number of
writes to the system as each message could be written several
times.

2.1.2 Large Tables
As part of the product requirements, messages would not be
deleted unless explicitly done so by the user, so each mailbox
would grow indefinitely. As is typical with most messaging
applications, messages are read only a handful of times when they
are recent, and then are rarely looked at again. As such, a vast
majority would not be read from the database but must be
available at all times and with low latency, so archiving would be
difficult.

Storing all of a user’s thousands of messages meant that we’d
have a database schema that was indexed by the user with an
ever-growing list of threads and messages. With this type of

random write workload, write performance will typically degrade
in a system like MySQL as the number of rows in the table
increases. The sheer number of new messages would also mean a
heavy write workload, which could translate to a high number of
random IO operations in this type of system.

2.1.3 Data Migration
One of the most challenging aspects of the new Messaging
product was the new data model. This meant that all existing
user’s messages needed to be manipulated and joined for the new
threading paradigm and then migrated. The ability to perform
large scans, random access, and fast bulk imports would help to
reduce the time spent migrating users to the new system.

2.2 Facebook Insights
Facebook Insights provides developers and website owners with
access to real-time analytics related to Facebook activity across
websites with social plugins, Facebook Pages, and Facebook Ads.

Using anonymized data, Facebook surfaces activity such as
impressions, click through rates and website visits. These
analytics can help everyone from businesses to bloggers gain
insights into how people are interacting with their content so they
can optimize their services.

Domain and URL analytics were previously generated in a
periodic, offline fashion through our Hadoop and Hive data
warehouse. However, this yields a poor user experience as the
data is only available several hours after it has occurred.

2.2.1 Realtime Analytics
The insights teams wanted to make statistics available to their
users within seconds of user actions rather than the hours
previously supported. This would require a large-scale,
asynchronous queuing system for user actions as well as systems
to process, aggregate, and persist these events. All of these
systems need to be fault-tolerant and support more than a million
events per second.

2.2.2 High Throughput Increments
To support the existing insights functionality, time and
demographic-based aggregations would be necessary. However,
these aggregations must be kept up-to-date and thus processed on
the fly, one event at a time, through numeric counters. With
millions of unique aggregates and billions of events, this meant a
very large number of counters with an even larger number of
operations against them.

2.3 Facebook Metrics System (ODS)
At Facebook, all hardware and software feed statistics into a
metrics collection system called ODS (Operations Data Store).
For example, we may collect the amount of CPU usage on a given
server or tier of servers, or we may track the number of write
operations to an HBase cluster. For each node or group of nodes
we track hundreds or thousands of different metrics, and
engineers will ask to plot them over time at various granularities.
While this application has hefty requirements for write
throughput, some of the bigger pain points with the existing
MySQL-based system are around the resharding of data and the
ability to do table scans for analysis and time roll-ups.

1072

2.3.1 Automatic Sharding
The massive number of indexed and time-series writes and the
unpredictable growth patterns are difficult to reconcile on a
sharded MySQL setup. For example, a given product may only
collect ten metrics over a long period of time, but following a
large rollout or product launch, the same product may produce
thousands of metrics. With the existing system, a single MySQL
server may suddenly be handling much more load than it can
handle, forcing the team to manually re-shard data from this
server onto multiple servers.

2.3.2 Fast Reads of Recent Data and Table Scans
A vast majority of reads to the metrics system is for very recent,
raw data, however all historical data must also be available.
Recently written data should be available quickly, but the entire
dataset will also be periodically scanned in order to perform time-
based rollups.

3. WHY HADOOP AND HBASE
The requirements for the storage system from the workloads
presented above can be summarized as follows (in no particular
order):

1. Elasticity: We need to be able to add incremental capacity to
our storage systems with minimal overhead and no downtime. In
some cases we may want to add capacity rapidly and the system
should automatically balance load and utilization across new
hardware.

2. High write throughput: Most of the applications store (and
optionally index) tremendous amounts of data and require high
aggregate write throughput.

3. Efficient and low-latency strong consistency semantics
within a data center: There are important applications like
Messages that require strong consistency within a data center.
This requirement often arises directly from user expectations. For
example ‘unread’ message counts displayed on the home page
and the messages shown in the inbox page view should be
consistent with respect to each other. While a globally distributed
strongly consistent system is practically impossible, a system that
could at least provide strong consistency within a data center
would make it possible to provide a good user experience. We
also knew that (unlike other Facebook applications), Messages
was easy to federate so that a particular user could be served
entirely out of a single data center making strong consistency
within a single data center a critical requirement for the Messages
project. Similarly, other projects, like realtime log aggregation,
may be deployed entirely within one data center and are much
easier to program if the system provides strong consistency
guarantees.

4. Efficient random reads from disk: In spite of the
widespread use of application level caches (whether embedded or
via memcached), at Facebook scale, a lot of accesses miss the
cache and hit the back-end storage system. MySQL is very
efficient at performing random reads from disk and any new
system would have to be comparable.

5. High Availability and Disaster Recovery: We need to
provide a service with very high uptime to users that covers both
planned and unplanned events (examples of the former being
events like software upgrades and addition of hardware/capacity

and the latter exemplified by failures of hardware components).
We also need to be able to tolerate the loss of a data center with
minimal data loss and be able to serve data out of another data
center in a reasonable time frame.

6. Fault Isolation: Our long experience running large farms of
MySQL databases has shown us that fault isolation is critical.
Individual databases can and do go down, but only a small
fraction of users are affected by any such event. Similarly, in our
warehouse usage of Hadoop, individual disk failures affect only a
small part of the data and the system quickly recovers from such
faults.

7. Atomic read-modify-write primitives: Atomic increments
and compare-and-swap APIs have been very useful in building
lockless concurrent applications and are a must have from the
underlying storage system.

8. Range Scans: Several applications require efficient retrieval
of a set of rows in a particular range. For example all the last 100
messages for a given user or the hourly impression counts over
the last 24 hours for a given advertiser.

It is also worth pointing out non-requirements:

1. Tolerance of network partitions within a single data
center: Different system components are often inherently
centralized. For example, MySQL servers may all be located
within a few racks, and network partitions within a data center
would cause major loss in serving capabilities therein. Hence
every effort is made to eliminate the possibility of such events at
the hardware level by having a highly redundant network design.

2. Zero Downtime in case of individual data center failure: In
our experience such failures are very rare, though not impossible.
In a less than ideal world where the choice of system design boils
down to the choice of compromises that are acceptable, this is one
compromise that we are willing to make given the low occurrence
rate of such events.

3. Active-active serving capability across different data
centers: As mentioned before, we were comfortable making the
assumption that user data could be federated across different data
centers (based ideally on user locality). Latency (when user and
data locality did not match up) could be masked by using an
application cache close to the user.
Some less tangible factors were also at work. Systems with
existing production experience for Facebook and in-house
expertise were greatly preferred. When considering open-source
projects, the strength of the community was an important factor.
Given the level of engineering investment in building and
maintaining systems like these – it also made sense to choose a
solution that was broadly applicable (rather than adopt point
solutions based on differing architecture and codebases for each
workload).

After considerable research and experimentation, we chose
Hadoop and HBase as the foundational storage technology for
these next generation applications. The decision was based on the
state of HBase at the point of evaluation as well as our confidence
in addressing the features that were lacking at that point via in-
house engineering. HBase already provided a highly consistent,
high write-throughput key-value store. The HDFS NameNode

1073

stood out as a central point of failure, but we were confident that
our HDFS team could build a highly-available NameNode in a
reasonable time-frame, and this would be useful for our
warehouse operations as well. Good disk read-efficiency seemed
to be within striking reach (pending adding Bloom filters to
HBase’s version of LSM[13] Trees, making local DataNode reads
efficient and caching NameNode metadata). Based on our
experience operating the Hive/Hadoop warehouse, we knew
HDFS was stellar in tolerating and isolating faults in the disk
subsystem. The failure of entire large HBase/HDFS clusters was a
scenario that ran against the goal of fault-isolation, but could be
considerably mitigated by storing data in smaller HBase clusters.
Wide area replication projects, both in-house and within the
HBase community, seemed to provide a promising path to
achieving disaster recovery.

HBase is massively scalable and delivers fast random writes as
well as random and streaming reads. It also provides row-level
atomicity guarantees, but no native cross-row transactional
support. From a data model perspective, column-orientation gives
extreme flexibility in storing data and wide rows allow the
creation of billions of indexed values within a single table. HBase
is ideal for workloads that are write-intensive, need to maintain a
large amount of data, large indices, and maintain the flexibility to
scale out quickly.

4. REALTIME HDFS
HDFS was originally designed to be a file system to support
offline MapReduce application that are inherently batch systems
and where scalability and streaming performance are most
critical. We have seen the advantages of using HDFS: its linear
scalability and fault tolerance results in huge cost savings across
the enterprise. The new, more realtime and online usage of HDFS
push new requirements and now use HDFS as a general-purpose
low-latency file system. In this section, we describe some of the
core changes we have made to HDFS to support these new
applications.

4.1 High Availability - AvatarNode
The design of HDFS has a single master – the NameNode.
Whenever the master is down, the HDFS cluster is unusable until
the NameNode is back up. This is a single point of failure and is
one of the reason why people are reluctant to deploy HDFS for an
application whose uptime requirement is 24x7. In our experience,
we have seen that new software upgrades of our HDFS server
software is the primary reason for cluster downtime. Since the
hardware is not entirely unreliable and the software is well tested
before it is deployed to production clusters, in our four years of
administering HDFS clusters, we have encountered only one
instance when the NameNode crashed, and that happened because
of a bad filesystem where the transaction log was stored.

4.1.1 Hot Standby - AvatarNode
At startup time, the HDFS NameNode reads filesystem metadata
from a file called the fsimage file. This metadata contains the
names and metadata of every file and directory in HDFS.
However, the NameNode does not persistently store the locations
of each block. Thus, the time to cold-start a NameNode consists
of two main parts: firstly, the reading of the file system image,
applying the transaction log and saving the new file system image
back to disk; and secondly, the processing of block reports from a
majority of DataNodes to recover all known block locations of

every block in the cluster. Our biggest HDFS cluster [16] has
about 150 million files and we see that the two above stages take
an equal amount of time. In total, a cold-restart takes about 45
minutes.

The BackupNode available in Apache HDFS avoids reading the
fsimage from disk on a failover, but it still needs to gather block
reports from all DataNodes. Thus, the failover times for the
BackupNode solution can be as high as 20 minutes. Our goal is to
do a failover within seconds; thus, the BackupNode solution does
not meet our goals for fast failover. Another problem is that the
NameNode synchronously updates the BackupNode on every
transaction, thus the reliability of the entire system could now be
lower than the reliability of the standalone NameNode. Thus, the
HDFS AvatarNode was born.

Figure 1

A HDFS cluster has two AvatarNodes: the Active AvatarNode
and the Standby AvatarNode. They form an active-passive-hot-
standby pair. An AvatarNode is a wrapper around a normal
NameNode. All HDFS clusters at Facebook use NFS to store one
copy of the filesystem image and one copy of the transaction log.
The Active AvatarNode writes its transactions to the transaction
log stored in a NFS filesystem. At the same time, the Standby
opens the same transaction log for reading from the NFS file
system and starts applying transactions to its own namespace thus
keeping its namespace as close to the primary as possible. The
Standby AvatarNode also takes care of check-pointing the
primary and creating a new filesystem image so there is no
separate SecondaryNameNode anymore.

The DataNodes talk to both Active AvatarNode and Standby
AvatarNode instead of just talking to a single NameNode. That
means that the Standby AvatarNode has the most recent state
about block locations as well and can become Active in well
under a minute. The Avatar DataNode sends heartbeats, block
reports and block received to both AvatarNodes.
AvatarDataNodes are integrated with ZooKeeper and they know
which one of the AvatarNodes serves as the primary and they
only process replication/deletion commands coming from the
primary AvatarNode. Replication or deletion requests coming
from the Standby AvatarNode are ignored.

1074

4.1.2 Enhancements to HDFS transaction logging
HDFS records newly allocated block-ids to the transaction log
only when the file is closed or sync/flushed. Since we wanted to
make the failover as transparent as possible, the Standby has to
know of each block allocation as it happens, so we write a new
transaction to the edits log on each block allocation. This allows a
client to continue writing to files that it was writing at the moment
just before the failover.

When the Standby reads transactions from the transaction log that
is being written by the Active AvatarNode, there is a possibility
that it reads a partial transaction. To avoid this problem we had to
change the format of the edits log to have a transaction length,
transaction id and the checksum per each transaction written to
the file.

4.1.3 Transparent Failover: DAFS
We developed a DistributedAvatarFileSystem (DAFS), a layered
file system on the client that can provide transparent access to
HDFS across a failover event. DAFS is integrated with
ZooKeeper. ZooKeeper holds a zNode with the physical address
of the Primary AvatarNode for a given cluster. When the client is
trying to connect to the HDFS cluster (e.g. dfs.cluster.com),
DAFS looks up the relevant zNode in ZooKeeper that holds the
actual address of the Primary AvatarNode (dfs-0.cluster.com) and
directs all the succeeding calls to the Primary AvatarNode. If a
call encounters a network error, DAFS checks with ZooKeeper
for a change of the primary node. In case there was a failover
event, the zNone will now contain the name of the new Primary
AvatarNode. DAFS will now retry the call against the new
Primary AvatarNode. We do not use the ZooKeeper subscription
model because it would require much more resources dedicated
on ZooKeeper servers. If a failover is in progress, then DAFS will
automatically block till the failover is complete. A failover event
is completely transparent to an application that is accessing data
from HDFS.

4.2 Hadoop RPC compatibility
Early on, we were pretty clear that we will be running multiple
Hadoop clusters for our Messages application. We needed the
capability to deploy newer versions of the software on different
clusters at different points in time. This required that we enhance
the Hadoop clients to be able to interoperate with Hadoop servers
running different versions of the Hadoop software. The various
server process within the same cluster run the same version of the
software. We enhanced the Hadoop RPC software to
automatically determine the version of the software running on
the server that it is communicating with, and then talk the
appropriate protocol while talking to that server.

4.3 Block Availability: Placement Policy
The default HDFS block placement policy, while rack aware, is
still minimally constrained. Placement decision for non-local
replicas is random, it can be on any rack and within any node of
the rack. To reduce the probability of data loss when multiple
simultaneous nodes fail, we implemented a pluggable block
placement policy that constrains the placement of block replicas
into smaller, configurable node groups. This allows us to reduce
the probability of data loss by orders of magnitude, depending on
the size chosen for the groups. Our strategy is to define a window
of racks and machines where replicas can be placed around the
original block, using a logical ring of racks, each one containing a

logical ring of machines. More details, the math, and the scripts
used to calculate these numbers can be found at HDFS-1094[14].
We found that the probability of losing a random block increases
with the size of the node group. In our clusters, we started to use a
node group of (2, 5), i.e. a rack window size of 2 and a machine
window size of 5. We picked this choice because the probability
of data loss is about a hundred times lesser than the default block
placement policy.

4.4 Performance Improvements for a
Realtime Workload
HDFS is originally designed for high-throughput systems like
MapReduce. Many of its original design principles are to improve
its throughput but do not focus much on response time. For
example, when dealing with errors, it favors retries or wait over
fast failures. To support realtime applications, offering reasonable
response time even in case of errors becomes the major challenge
for HDFS.

4.4.1 RPC Timeout
One example is how Hadoop handles RPC timeout. Hadoop uses
tcp connections to send Hadoop-RPCs. When a RPC client detects
a tcp-socket timeout, instead of declaring a RPC timeout, it sends
a ping to the RPC server. If the server is still alive, the client
continues to wait for a response. The idea is that if a RPC server
is experiencing a communication burst, a temporary high load, or
a stop the world GC, the client should wait and throttles its traffic
to the server. On the contrary, throwing a timeout exception or
retrying the RPC request causes tasks to fail unnecessarily or add
additional load to a RPC server.

However, infinite wait adversely impacts any application that has
a real time requirement. An HDFS client occasionally makes an
RPC to some Dataode, and it is bad when the DataNode fails to
respond back in time and the client is stuck in an RPC. A better
strategy is to fail fast and try a different DataNode for either
reading or writing. Hence, we added the ability for specifying an
RPC-timeout when starting a RPC session with a server.

4.4.2 Recover File Lease
Another enhancement is to revoke a writer’s lease quickly. HDFS
supports only a single writer to a file and the NameNode
maintains leases to enforce this semantic. There are many cases
when an application wants to open a file to read but it was not
closed cleanly earlier. Previously this was done by repetitively
calling HDFS-append on the log file until the call succeeds. The
append operations triggers a file’s soft lease to expire. So the
application had to wait for a minimum of the soft lease period
(with a default value of one minute) before the HDFS name node
revokes the log file’s lease. Secondly, the HDFS-append
operation has additional unneeded cost as establishing a write
pipeline usually involves more than one DataNode. When an error
occurs, a pipeline establishment might take up to 10 minutes.

To avoid the HDFS-append overhead, we added a lightweight
HDFS API called recoverLease that revokes a file’s lease
explicitly. When the NameNode receives a recoverLease request,
it immediately changes the file’s lease holder to be itself. It then
starts the lease recovery process. The recoverLease rpc returns the
status whether the lease recovery was complete. The application
waits for a success return code from recoverLease before
attempting to read from the file.

1075

4.4.3 Reads from Local Replicas
There are times when an application wants to store data in HDFS
for scalability and performance reasons. However, the latency of
reads and writes to an HDFS file is an order of magnitude greater
than reading or writing to a local file on the machine. To alleviate
this problem, we implemented an enhancement to the HDFS
client that detects that there is a local replica of the data and then
transparently reads data from the local replica without transferring
the data via the DataNode. This has resulted in doubling the
performance profile of a certain workload that uses HBase.

4.5 New Features

4.5.1 HDFS sync
Hflush/sync is an important operation for both HBase and Scribe.
It pushes the written data buffered at the client side to the write
pipeline, making the data visible to any new reader and increasing
the data durability when either the client or any DataNode on the
pipeline fails. Hflush/sync is a synchronous operation, meaning
that it does not return until an acknowledgement from the write
pipeline is received. Since the operation is frequently invoked,
increasing its efficiency is important. One optimization we have is
to allow following writes to proceed while an Hflush/sync
operation is waiting for a reply. This greatly increases the write
throughput in both HBase and Scribe where a designated thread
invokes Hflush/sync periodically.

4.5.2 Concurrent Readers
We have an application that requires the ability to read a file
while it is being written to. The reader first talks to the
NameNode to get the meta information of the file. Since the
NameNode does not have the most updated information of its last
block’s length, the client fetches the information from one of the
DataNodes where one of its replicas resides. It then starts to read
the file. The challenge of concurrent readers and writer is how to
provision the last chunk of data when its data content and
checksum are dynamically changing. We solve the problem by re-
computing the checksum of the last chunk of data on demand.

5. PRODUCTION HBASE
In this section, we’ll describe some of the important HBase
enhancements that we have worked on at Facebook related to
correctness, durability, availability, and performance.

5.1 ACID Compliance
Application developers have come to expect ACID compliance,
or some approximation of it, from their database systems. Indeed,
strong consistency guarantees was one of the benefits of HBase in
our early evaluations. The existing MVCC-like read-write
consistency control (RWCC) provided sufficient isolation
guarantees and the HLog (write ahead log) on HDFS provided
sufficient durability. However, some modifications were
necessary to make sure that HBase adhered to the row-level
atomicity and consistency of ACID compliance we needed.

5.1.1 Atomicity
The first step was to guarantee row-level atomicity. RWCC
provided most of the guarantees, however it was possible to lose
these guarantees under node failure. Originally, multiple entries in
a single row transaction would be written in sequence to the
HLog. If a RegionServer died during this write, the transaction

could be partially written. With a new concept of a log transaction
(WALEdit), each write transaction will now be fully completed or
not written at all.

5.1.2 Consistency
HDFS provides replication for HBase and thus handles most of
the strong consistency guarantees that HBase needs for our usage.
During writes, HDFS sets up a pipeline connection to each replica
and all replicas must ACK any data sent to them. HBase will not
continue until it gets a response or failure notification. Through
the use of sequence numbers, the NameNode is able to identify
any misbehaving replicas and exclude them. While functional, it
takes time for the NameNode to do this file recovery. In the case
of the HLog, where forward progress while maintaining
consistency and durability are an absolute must, HBase will
immediately roll the log and obtain new blocks if it detects that
even a single HDFS replica has failed to write data.

HDFS also provides protection against data corruption. Upon
reading an HDFS block, checksum validation is performed and
the entire block is discarded upon a checksum failure. Data
discard is rarely problematic because two other replicas exist for
this data. Additional functionality was added to ensure that if all 3
replicas contain corrupt data the blocks are quarantined for post-
mortem analysis.

5.2 Availability Improvements

5.2.1 HBase Master Rewrite
We originally uncovered numerous issues during kill testing
where HBase regions would go offline. We soon identified the
problem: the transient state of the cluster is stored in the memory
of the currently active HBase master only. Upon losing the
master, this state is lost. We undertook a large HBase master
rewrite effort. The critical component of this rewrite was moving
region assignment information from the master’s in-memory state
to ZooKeeper. Since ZooKeeper is quorum written to a majority
of nodes, this transient state is not lost on master failover and can
survive multiple server outages.

5.2.2 Online Upgrades
The largest cause of cluster downtime was not random server
deaths, but rather system maintenance. We had a number of
problems to solve to minimize this downtime.

First, we discovered over time that RegionServers would
intermittently require minutes to shutdown after issuing a stop
request. This intermittent problem was caused by long
compaction cycles. To address this, we made compactions
interruptible to favor responsiveness over completion. This
reduced RegionServer downtime to seconds and gave us a
reasonable bound on cluster shutdown time.

Another availability improvement was rolling restarts. Originally,
HBase only supported full cluster stop and start for upgrades. We
added rolling restarts script to perform software upgrades one
server at a time. Since the master automatically reassigns regions
on a RegionServer stop, this minimizes the amount of downtime
that our users experience. We fixed numerous edge case issues
that resulted from this new restart. Incidentally, numerous bugs
during rolling restarts were related to region offlining and
reassignment, so our master rewrite with ZooKeeper integration
helped address a number of issues here as well.

1076

5.2.3 Distributed Log Splitting
When a RegionServer dies, the HLogs of that server must be split
and replayed before its regions can be reopened and made
available for reads and writes. Previously, the Master would split
the logs before they were replayed across the remaining
RegionServers. This was the slowest part of the recovery process
and because there are many HLogs per server, it could be
parallelized. Utilizing ZooKeeper to manage the split tasks across
RegionServers, the Master now coordinates a distributed log split.
This cut recovery times by an order of magnitude and allows
RegionServers to retain more HLogs without severely impacting
failover performance.

5.3 Performance Improvements
Data insertion in HBase is optimized for write performance by
focusing on sequential writes at the occasional expense of
redundant reads. A data transaction first gets written to a commit
log and then applied to an in-memory cache called MemStore.
When the MemStore reaches a certain threshold it is written out
as an HFile. HFiles are immutable HDFS files containing
key/value pairs in sorted order. Instead of editing an existing
HFile, new HFiles are written on every flush and added to a per-
region list. Read requests are issued on these multiple HFiles in
parallel & aggregated for a final result. For efficiency, these
HFiles need to be periodically compacted, or merged together, to
avoid degrading read performance.

5.3.1 Compaction
Read performance is correlated with the number of files in a
region and thus critically hinges on a well-tuned compaction
algorithm. More subtly, network IO efficiency can also be
drastically affected if a compaction algorithm is improperly
tuned. Significant effort went into making sure we had an
efficient compaction algorithm for our use case.

Compactions were initially separated into two distinct code paths
depending upon whether they were minor or major. Minor
compactions select a subset of all files based on size metrics
whereas time-based major compactions unconditionally compact
all HFiles. Previously, only major compactions processed deletes,
overwrites, and purging of expired data, which meant that minor
compactions resulted in larger HFiles than necessary, which
decreases block cache efficiency and penalizes future
compactions. By unifying the code paths, the codebase was
simplified and files were kept as small as possible.

The next task was improving the compaction algorithm. After
launching to employees, we noticed that our put and sync
latencies were very high. We discovered a pathological case
where a 1 GB file would be regularly compacted with three 5 MB
files to produce a slightly larger file. This network IO waste
would continue until the compaction queue started to backlog.
This problem occurred because the existing algorithm would
unconditionally minor compact the first four HFiles, while
triggering a minor compaction after 3 HFiles had been reached.
The solution was to stop unconditionally compacting files above a
certain size and skip compactions if enough candidate files could
not be found. Afterwards, our put latency dropped from 25
milliseconds to 3 milliseconds.

We also worked on improving the size ratio decision of the
compaction algorithm. Originally, the compaction algorithm
would sort by file age and compare adjacent files. If the older file

was less than 2x the size of the newer file, the compaction
algorithm with include this file and iterate. However, this
algorithm had suboptimal behavior as the number and size of
HFiles increased significantly. To improve, we now include an
older file if it is within 2x the aggregate size of all newer HFiles.
This transforms the steady state so that an old HFile will be
roughly 4x the size of the next newer file, and we consequently
have a steeper curve while still maintaining a 50% compaction
ratio.

5.3.2 Read Optimizations
As discussed, read performance hinges on keeping the number of
files in a region low thus reducing random IO operations. In
addition to utilizing comapctions to keep the number of files on
disk low, it is also possible to skip certain files for some queries,
similarly reducing IO operations.

Bloom filters provide a space-efficient and constant-time method
for checking if a given row or row and column exists in a given
HFile. As each HFile is written sequentially with optional
metadata blocks at the end, the addition of bloom filters fit in
without significant changes. Through the use of folding, each
bloom filter is kept as small as possible when written to disk and
cached in memory. For queries that ask for specific rows and/or
columns, a check of the cached bloom filter for each HFile can
allow some files to be completely skipped.

For data stored in HBase that is time-series or contains a specific,
known timestamp, a special timestamp file selection algorithm
was added. Since time moves forward and data is rarely inserted
at a significantly later time than its timestamp, each HFile will
generally contain values for a fixed range of time. This
information is stored as metadata in each HFile and queries that
ask for a specific timestamp or range of timestamps will check if
the request intersects with the ranges of each file, skipping those
which do not overlap.

As read performance improved significantly with HDFS local file
reads, it is critical that regions are hosted on the same physical
nodes as their files. Changes have been made to retain the
assignment of regions across cluster and node restarts to ensure
that locality is maintained.

6. DEPLOYMENT AND OPERATIONAL
EXPERIENCES
In the past year, we have gone from running a small HBase test
cluster with 10 nodes to many clusters running thousands of
nodes. These deployments are already serving live production
traffic to millions of users. During the same time frame, we have
iterated rapidly on the core software (HBase/HDFS) as well as the
application logic running against HBase. In such a fluid
environment, our ability to ship high quality software, deploy it
correctly, monitor running systems and detect and fix any
anomalies with minimal downtime are critical. This section goes
into some of the practices and tools that we have used during this
evolution.

6.1 Testing
From early on in our design of an HBase solution, we were
worried about code stability. We first needed to test the stability
and durability of the open source HBase code and additionally
ensure the stability of our future changes. To this end, we wrote

1077

an HBase testing program. The testing program generated data to
write into HBase, both deterministically and randomly. The tester
will write data into the HBase cluster and simultaneously read and
verify all the data it has added. We further enhanced the tester to
randomly select and kill processes in the cluster and verify that
successfully returned database transactions were indeed written.
This helped catch a lot of issues, and is still our first method of
testing changes.

Although our common cluster contains many servers operating in
a distributed fashion, our local development verification
commonly consists of unit tests and single-server setups. We were
concerned about discrepancies between single-server setups and
truly distributed scenarios. We created a utility called HBase
Verify to run simple CRUD workloads on a live server. This
allows us to exercise simple API calls and run load tests in a
couple of minutes. This utility is even more important for our
dark launch clusters, where algorithms are first evaluated at a
large scale.

6.2 Monitoring and Tools
As we gained more experience with production usage of HBase, it
became clear that our primary problem was in consistent
assignment of regions to RegionServers. Two RegionServers
could end up serving the same region, or a region may be left
unassigned. These problems are characterized by inconsistencies
in metadata about the state of the regions that are stored in
different places: the META region in HBase, ZooKeeper, files
corresponding to a region in HDFS and the in-memory state of the
RegionServers. Even though many of these problems were solved
systematically and tested extensively as part of the HBase Master
rewrite (see Section 5.2.1), we were worried about edge cases
showing up under production load. To that end, we created HBCK
as a database-level FSCK [17] utility to verify the consistency
between these different sources of metadata. For the common
inconsistencies, we added an HBCK ‘fix’ option to clear the in-
memory state and have the HMaster reassign the inconsistent
region. Nowadays we run HBCK almost continuously against our
production clusters to catch problems as early as possible.

A critical component for cluster monitoring is operational metrics.
In particular, RegionServer metrics are far more useful for
evaluating the health of the cluster than HMaster or ZooKeeper
metrcs. HBase already had a number of metrics exported through
JMX. However, all the metrics were for short-running operations
such as log writes and RPC requests. We needed to add metrics to
monitor long-running events such as compactions, flushes, and
log splits. A slightly innocuous metric that ended up being critical
for monitoring was version information. We have multiple
clusters that often have divergent versions. If a cluster crash
happens, we need to understand if any functionality was specific
to that cluster. Also, rolling upgrades mean that the running
version and the installed version are not necessarily the same. We
therefore keep track of both versions and signify when they are
different.

6.3 Manual versus Automatic Splitting
When learning a new system, we needed to determine which
features we should utilize immediately and which features we
could postpone adopting. HBase offers a feature called automatic
splitting, which partitions a single region into 2 regions when its
size grows too large. We decided that automatic splitting was an
optional feature for our use case and developed manual splitting

utilities instead. On table creation, we pre-split a table into a
specific number of equally sized regions. When the average
region size becomes too large, we initiate rolling splits of these
regions. We found a number of benefits from this protocol.

Since our data grows roughly uniform across all regions, it's easy
for automatic splitting to cause split and compaction storms as the
regions all roughly hit the same data size at the same time. With
manual splits, we can stagger splits across time and thereby
spread out the network IO load typically generated by the splitting
process. This minimizes impact to production workload.

Since the number of regions is known at any given point in time,
long-term debugging and profiling is much easier. It is hard to
trace the logs to understand region level problems if regions keep
splitting and getting renamed.

When we first started using HBase, we would occasionally run
into problems with Log Recovery where some log files may be
left unprocessed on region failover. Manual post-mortem recovery
from such unexpected events is much easier if the regions have
not been split (automatically) since then. We can go back to the
affected region and replay unprocessed logs. In doing this, we
also leverage the Trash facility in HDFS that retains deleted files
for a configurable time period.

An obvious question emerges: doesn’t manual splitting negate
one of the main benefits of HBase? One of the advantages with
HBase is that splitting is logical not physical. The shared storage
underneath (HDFS) allows easy reassignment of regions without
having to copy or move around large datasets. Thus, in HBase, an
easy way to shed load isn’t to create more regions but to instead
add more machines to the cluster. The master would
automatically reassign existing regions to the new RegionServers
in a uniform manner without manual intervention. In addition,
automatic splitting makes sense in applications that don’t have
uniform distribution and we plan to utilize it in the future for
these.

6.4 Dark Launch
Migrating from a legacy messaging system offered one major
advantage: real-world testing capability. At Facebook, we widely
use a testing/rollout process called “Dark Launch” where critical
back-end functionality is exercised by a subset of the user base
without exposing any UI changes to them [15]. We used this
facility to double-write messaging traffic for some users to both
the legacy infrastructure and HBase. This allowed us to do useful
performance benchmarks and find practical HBase bottlenecks
instead of relying purely on artificial benchmarks and estimations.
Even after product launch, we still found many uses for Dark
Launch clusters. All code changes normally spend a week running
on Dark Launch before a production push is considered.
Additionally, Dark Launch normally handles at least 2x the load
that we expect our production clusters to handle. Long term
testing at 2x load allows us to weather multiple traffic spikes and
verify that HBase can handle outlier peak conditions before we
vertically scale.

6.5 Dashboards/ODS integration
We have metrics being exported by JMX, but we needed an easy
way to visualize these metrics and analyze cluster health over
time. We decided to utilize ODS, an internal tool similar to
Ganglia, to visualize important metrics as line graphs. We have

1078

one dashboard per cluster, which contains numerous graphs to
visualize average and outlier behavior. Graphing min/max is vital
because it identifies misbehaving RegionServers, which may
cause the application server processing queue to congest. The
greatest benefit is that we can observe statistics in realtime to
observe how the cluster reacts to any changes in the workload (for
example, running a Hadoop MapReduce job or splitting regions).

Additionally, we have a couple different cross-cluster dashboards
that we use for high-level analysis. We place vital stats of all
clusters in a single overview dashboard to provide a broad health
snapshot. In this dashboard, we currently display four HBase-
specific graphs: Get/Put Latency, Get/Put Count, Files per Store,
and Compaction Queue size. We also realized after exceeding a
half-dozen clusters that we needed some way to visualize our
version differences. We display the HMaster version, HDFS
Client version, NameNode version, and JobTracker version for
each cluster on 4 different heat maps. This allows us to scan our
versions for consistency and sorting allows us to identify legacy
builds that may have known bugs.

6.6 Backups at the Application layer
How do we take regular backups of this large dataset? One option
is to copy and replicate the data from one HDFS cluster to
another. Since this approach is not continuous, there is a
possibility that data is already corrupt in HDFS before the next
backup event. This is obviously not an acceptable risk. Instead,
we decided to enhance the application to continuously generate an
alternate application log. This log is transported via Scribe and
stored in a separate HDFS cluster that is used for web analytics.
This is a reliable and time-tested data capture pipeline, especially
because we have been using the same software stack to capture
and transport huge volumes of click-logs from our web
application to our Hive analytics storage. The records in this
application log are idempotent, and can be applied multiple times
without any data loss. In the event of a data loss problem in
HBase, we can replay this log-stream and regenerate the data in
HBase.

6.7 Schema Changes
HBase currently does not support online schema changes to an
existing table. This means that if we need to add a new column
family to an existing table, we have to stop access to the table,
disable the table, add new column families, bring the table back
online and then restart the load. This is a serious drawback
because we do not have the luxury of stopping our workload.
Instead, we have pre-created a few additional column families for
some our core HBase tables. The application currently does not
store any data into these column families, but can use them in the
future.

6.8 Importing Data
We initially imported our legacy Message data into HBase by
issuing normal database puts from a Hadoop job. The Hadoop job
would saturate the network IO as put requests were sent across
servers. During alpha release we observed that this method would
create over 30 minutes of severe latency as the import data
intermixed with the live traffic. This kind of impact was not
acceptable—we needed the ability to import data for millions of
users without severely affecting latencies for production
workload. The solution was switching to a bulk import method
with compression. The Bulk Import method partitions data into

regions using a map job and the reducer writes data directly to
LZO-compressed HFiles. The main cause of network traffic
would then be the shuffle of the map output. This problem was
solved by GZIP compressing the intermediate map output.

6.9 Reducing Network IO
After running in production for a couple months, we quickly
realized from our dashboards that we were network IO bound. We
needed some way to analyze where our network IO traffic was
coming from. We utilized a combination of JMX statistics and log
scraping to estimate total network IO on a single RegionServer for
a 24-hour period. We broke down the network traffic across the
MemStore flush (15%), size-based minor compactions (38%), and
time-based major compactions (47%). We found a lot of low-
hanging optimizations by observing these ratios. We were able to
get 40% network IO reduction by simply increasing our major
compaction interval from every day to every week. We also got
big gains by excluding certain column families from being logged
to the HLog. Best effort durability sufficed for data stored in these
column families.

7. FUTURE WORK
The use of Hadoop and HBase at Facebook is just getting started
and we expect to make several iterations on this suite of
technologies and continue to optimize for our applications. As we
try to use HBase for more applications, we have discussed adding
support for maintenance of secondary indices and summary views
in HBase. In many use cases, such derived data and views can be
maintained asynchronously. Many use cases benefit from storing
a large amount of data in HBase’s cache and improvements to
HBase are required to exploit very large physical memory. The
current limitations in this area arise from issues with using an
extremely large heap in Java and we are evaluating several
proposals like writing a slab allocator in Java or managing
memory via JNI. A related topic is exploiting flash memory to
extend the HBase cache and we are exploring various ways to
utilize it including FlashCache [18]. Finally, as we try to use
Hadoop and HBase for applications that are built to serve the
same data in an active-active manner across different data centers,
we are exploring approaches to deal with multi data-center
replication and conflict resolution.

8. ACKNOWLEDGEMENTS
The current state of the Hadoop Realtime Infrastructure has been
the result of ongoing work over the last couple of years. During
this time a number of people at Facebook have made significant
contributions and enhancements to these systems. We would like
to thank Scott Chen and Ramkumar Vadalli for contributing a
number of enhancements to Hadoop, including HDFS
AvatarNode, HDFS RAID, etc. Also thanks are due to Andrew
Ryan, Matthew Welty and Paul Tuckfield for doing a lot of work
on operations, monitoring and the statistics setup that makes these
tasks easy. Thanks are also due to Gautam Roy, Aron Rivin,
Prakash Khemani and Zheng Shao for their continued support and
enhancements to various pieces of the storage stack.
Acknowledgements are also due to Patrick Kling for
implementing a test suite for HDFS HA as part of his internship at
Facebook. Last but not the least, thanks are also due to the users
of our infrastructure who have patiently dealt with periods of
instability during its evolution and have provided valuable

1079

feedback that enabled us to make continued improvements to this
infrastructure.

9. REFERENCES
[1] Apache Hadoop. Available at http://hadoop.apache.org

[2] Apache HDFS. Available at http://hadoop.apache.org/hdfs

[3] Apache Hive. Available at http://hive.apache.org

[4] Apache HBase. Available at http://hbase.apache.org

[5] The Google File System. Available at
http://labs.google.com/papers/gfs-sosp2003.pdf

[6] MapReduce: Simplified Data Processing on Large Clusters.
Available at http://labs.google.com/papers/mapreduce-
osdi04.pdf

[7] BigTable: A Distributed Storage System for Structured Data.
Available at http://labs.google.com/papers/bigtable-
osdi06.pdf

[8] ZooKeeper: Wait-free coordination for Internet-scale
systems. Available at
http://www.usenix.org/events/usenix10/tech/full_papers/Hun
t.pdf

[9] Memcached. Available at
http://en.wikipedia.org/wiki/Memcached

[10] Scribe. Available at http://github.com/facebook/scribe/wiki

[11] Building Realtime Insights. Available at
http://www.facebook.com/note.php?note_id=101501039002
58920

[12] Seligstein, Joel. 2010. Facebook Messages. Available at
http://www.facebook.com/blog.php?post=452288242130

[13] Patrick O'Neil and Edward Cheng and Dieter Gawlick and
Elizabeth O'Neil. The Log-Structured Merge-Tree (LSM-
Tree)

[14] HDFS-1094. Available at
http://issues.apache.org/jira/browse/HDFS-1094.

[15] Facebook Chat.
https://www.facebook.com/note.php?note_id=14218138919

[16] Facebook has the world's largest Hadoop cluster! Available
at
http://hadoopblog.blogspot.com/2010/05/facebook-has-
worlds-largest-hadoop.html

[17] Fsck. Available at http://en.wikipedia.org/wiki/Fsck

[18] FlashCache. Available at
https://github.com/facebook/flashcache

1080

