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With the rapid development of information storage and networking technologies, quintillion bytes of data
are generated every day from social networks, business transactions, sensors, and many other domains. The
increasing data volumes impose significant challenges to traditional data analysis tools in storing, processing,
and analyzing these extremely large-scale data. For decades, hashing has been one of the most effective tools
commonly used to compress data for fast access and analysis, as well as information integrity verification.
Hashing techniques have also evolved from simple randomization approaches to advanced adaptive methods
considering locality, structure, label information, and data security, for effective hashing. This survey reviews
and categorizes existing hashing techniques as a taxonomy, in order to provide a comprehensive view of
mainstream hashing techniques for different types of data and applications. The taxonomy also studies the
uniqueness of each method and therefore can serve as technique references in understanding the niche of
different hashing mechanisms for future development.
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1. INTRODUCTION

Recent advancement in information systems, including storage devices and networking
techniques, have resulted in many applications generating large volumes of data and
requiring large storage, fast delivery, and quick analysis. Such reality has imposed a
fundamental challenge on how to accurately and efficiently retrieve/compare millions of
records with different data types, such as text, pictures, graphs, software and so forth.
To support fast retrieval and verification, applications, such as database systems, often
use a short message “key” to represent a record in a large table, such that users can
efficiently retrieve items from a large repository.

Indeed, when collecting data for storing or processing, it makes sense to use less infor-
mation to represent them. This has motivated hashing techniques to transform a data
record into shorter fixed-length values or bucket addresses that can represent original
data with significantly reduced runtime or storage consumption. Such a transformation
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Fig. 1. A hashing example: Each string represents a name and the number represents the spot in the hash
space corresponding to the hash values of each string. A hash function h(-) maps each black string to a
corresponding number. The red “Collision” indicates that two different strings are mapped to the same spot
and therefore collide.

can be achieved by using a hashing function i() to map original data records to a
lower dimensional space, under conditions that (1) each item is randomly/strategically
mapped to a spot in the hash space, and (2) two items with the same values will gen-
erate the same hash values and are mapped to the same spot. With the help of hash
functions, typical data access operations such as insertion, deletion, and lookup on the
data can be done in almost constant time with O(1) costs.

When mapping each record to the hash space, data records with different values may
have the same hashing output and therefore be mapped to the same spot and resultin a
collision. Collisions are inevitable if there are more data records than hashing spots, as
shown in Figure 1. Accordingly, hashing is mainly challenged by two questions: (1) how
to design better hash functions to minimize the collision or increase the accuracy on
the basis of high efficiency and (2) when a collision occurs, how to deal with it.

Figure 1 demonstrates the conceptual view of using hashing for efficient data access.
A hash function A(-) maps each string as a numeric value. When searching a record, one
can hash the query term and directly generate the hashing value corresponding to this
record. Because the hashing value can be calculated using constant time, hashing can
retrieve a query with O(1) cost, which is much more efficient than searching through
all records (typically subject to O(n) or O(logn) costs for n records).

Hashing can be extremely beneficial for many applications, such as text classification
[Chi et al. 2014; Xu et al. 2011a], image retrieval [Chum et al. 2008; Kulis and Grauman
2009; Torralba et al. 2008], multimedia search [Zhu et al. 2013a, 2013b; Song 2015],
and data verification [FIPS 1995; Black et al. 1999; Breitinger et al. 2014; Hsieh 2004].
For example, in image retrieval, an essential challenge is to develop efficient similarity
measures and fast matching methods with very little memory consumption. In reality,
the image database is often very large, and it is difficult or even impossible to store all
image information in memory. On the other hand, directly comparing images is time-
consuming. Therefore, finding images similar to a query example, from a large image
database, is time-consuming. In such cases, it would be beneficial to compress data to
speed up the search process. For example, binary-code representation can map similar
points in the original feature space to nearby binary codes in the hash code space.
The compact representation in hashing can effectively save the storage and achieve
fast query for large-scale datasets. In addition, hashing can also help verify whether a
large volume of data has been modified by a third party, by comparing hash messages
instead of original data, for example, verifying whether software has been maliciously
modified to plant virus code [Hsieh 2004].

When using hashing techniques, applications are mainly driven by two distinct mo-
tivations: (1) how to retrieve or compare items from a large collection of data or (2) how
to verify whether a large volume of information is indeed from its owner, without any
change or modification by a third party. The first motivation is data driven, with data
access efficiency playing an essential role. On the other hand, the second motivation
is security driven, with a data validation purpose. Although they both employ the
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hashing principle, the focus on either the data or security perspective often results in
different hashing techniques and solutions. Data-oriented hashing normally employs
two types of approaches, data-independent hashing and data-dependent hashing. If the
hashing function set is defined independent of the data to be hashed without involving
a training process from the data, we refer to such methods as data-independent hash-
ing. Otherwise, they are classified as data-dependent hashing. For security-oriented
hashing, it often uses cryptographically secure hashing or cryptographically insecure
hashing approaches, with the former having stricter security properties than the latter.

Many hashing techniques exist for different purposes, and the actual hashing mech-
anisms vary depending on the data characteristics or the objective of the underlying
applications. There is, however, no comprehensive survey providing a complete view
of major hashing techniques, the strength/weakness, and the niche of different types
of hashing methods. Such limitation has made it technically difficult to design new
hashing methods, particularly for data engineers or practitioners.

In this survey, we categorize existing hashing techniques as a hierarchical taxonomy
with two major groups: data-oriented hashing versus security-oriented hashing. Our
survey will review the uniqueness and strength of mainstream methods in each group,
and summarize major domain applications involving hashing. The combined review,
from the technique and application perspectives, offers both theoretical and practical
views and therefore makes this survey useful for motivating new hashing techniques,
as well as serving as a technique reference for real-world implementations.

The remainder of the survey is organized as follows. Section 2 briefly introduces
hashing history and defines some terminologies. Section 3 categorizes hashing methods
as a hierarchical taxonomy. Section 4 reviews detailed hashing techniques. Section 5
introduces hashing applications, and we conclude the survey in Section 6.

2. HISTORY AND PRELIMINARY
2.1. A Brief History of Hashing

The term “hash” is originated from the physical world, where the standard meaning of
“hash” is “chop and mix,” which intuitively means that the hashing function “chops and
mixes” information and derives hash results. The importance of hashing techniques has
been well recognized since the very early stage of computing systems. Soon after the
invention of the first true electronic computer in 1950, the concept of hashing was first
mentioned in 1953 [Luhn 1953], where a defined general hash function using random
keys could achieve the equivalent of the mathematical concept of uniformly distributed
random variables. In computer science, it is almost impossible to get a completely
even distribution. Creating even distributions can only be achieved by considering the
structure of the keys. For any arbitrary set of keys, it is also impossible to create a
general hash function that works better because the keys could not be obtained in
advance. In this case, a random uniform hash is the best.

In 1957, motivated by the needs of using a random-access system with very large ca-
pacity for business applications, Peterson [1957] provided an estimation of the amount
of search required for the exact location of a record in several types of storage sys-
tems, including the index-table method and the sorted-file method. In 1968, the word
“hashing” was first used [Morris 1968].

2.2. Definitions

Definition 2.1 (Hashing function). A hashing function is any function 7 (-) that can
be used to map an arbitrary size of data to a fixed interval [0, m]. Given a dataset
containing n data points X = [x1,9,...x,] € RP, and a hashing function A(-), the
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Fig.2. The hierarchical taxonomy of hashing techniques. Hashing methods are categorized into two groups:
data-oriented hashing versus security-oriented hashing. Each group contains two subgroups, with its content
being reviewed in respective subsections.

h(X)=[h(x1), h(x2),...,h(x,)] € [0, m] can be called the hash values or simply hashes
of data points X = [x1, x9, .. .x,] € RP.

One practical use of the hashing function is a data structure called a hash table,
which has been widely used for rapid data lookup.

Definition 2.2 (Nearest neighbor (NN)). Given a set of n data points X =
[x1, X9, ...x,] € RP, NN represents one or multiple data items in X that are closest
to a query point x,.

Definition 2.3 (Approximate nearest neighbor (ANN)). Given a set of n data points X =
[x1, %o, ...x,] € RP, ANN intends to find a data point x, € X that is an e-approximate
nearest neighbor of a query point x, in that for all x, € X, the distance between x, and
x satisfies d(x,, x) < (14 &)d(xy, x).

3. HASHING TECHNIQUE TAXONOMY

In Figure 2, we categorize hashing techniques as a hierarchical taxonomy from data-
and security-oriented perspectives, respectively. From the data-oriented perspective,
hashing is primarily used to speed up the data retrieval process, by using data-
independent hashing or data-dependent hashing. From the security-oriented perspec-
tive, hashing acts as a message digester to generate signatures for verification, where
data security is the primary concern. Security-oriented hashing also has two main
types, cryptographically insecure hashing and cryptographically secure hashing, con-
sidering whether certain security properties are guaranteed, such as collision resis-
tance or preimage resistance [Menezes et al. 1996].

3.1. Data-Oriented Hashing

Data-oriented hashing refers to methods that intend to use hashing to speed up data
retrieval or comparison, where a hash table is often maintained for a query.

3.1.1. Data-Independent Hashing. If a hashing function is defined independently of the
data to be processed without involving a training process from the data, we refer to
such a hashing technique as data-independent hashing. A data-independent hashing
method does not have any labeled data/information to help assess the quality of the
hashing results. A hashing function is often prespecified, although some of them may
learn data distributions to improve hashing results, such as locality-sensitive hashing
or learning for hashing. The data-independent hashing functions can be divided into
four classes based on the underlying projection modes: random projection, locality-
sensitive projection, learning for hashing, and structured projection.
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3.1.2. Data-Dependent Hashing. Data-dependent hashing learns hashing functions
based on a given set of training data, such that hashing functions can find the best
compact codes for all data records. Because data-dependent hashing results are highly
sensitive to the underlying data, they are accompanied with faster query time and less
memory consumption. In order to better preserve locality information and achieve a
better selectivity, data-dependent hashing needs to closely fit the data distributions in
the feature space by uniquely defining the hashing function family for a given train-
ing dataset. Furthermore, data-dependent hashing usually considers comparing the
similarity with the features in the training data.

The data-dependent hashing methods are categorized into three major classes, un-
supervised hashing, semisupervised hashing, and supervised hashing, according to the
availability of label information in the training data.

Labels provide valuable information to reveal the semantic categorization of each
instance (or correlation between instances). Such labels provide additional information,
compared to the feature values of each instance, for finding good hash functions suitable
for the training data. In addition, even if the actual label of each instance is unknown,
one can still specify weak or partial label information, such as pairwise label, to indicate
whether some instances are close to each other (e.g., belonging to the same group) or
not. Such weak label information is also very helpful for designing hash functions.
Methods in this category are commonly referred to as semisupervised hashing. On the
other hand, if no label information is provided for training at all, we refer to such
hashing as unsupervised hashing.

3.2. Security-Oriented Hashing

Security-oriented hashing refers to methods that use hashing for verification or val-
idation. For example, a user may download software from a public web server but is
worried whether the software has been modified by a third party. For verification pur-
poses, the software owner can publish the MD5 [Rivest 1992] hash code of the software.
Users can download software from different sources and generate a new MD5 code. If
two MD5 codes are identical, it would mean that the downloaded copies are original,
and no change has been made to the software. Because MD5 codes are relatively small
(e.g., 128 bits), it is much easier than comparing hundreds of megabytes of original
data. Meanwhile, because security-oriented hashing codes are often much longer than
data-oriented hashing codes, a hash table is often not required or cannot be maintained.
Methods in this category are primarily concerned about security properties. For such
reasons, they are often computationally expensive and are less efficient, compared to
data-oriented hashing methods.

3.2.1. Cryptographically Secure Hashing. Cryptographically secure hashing, or crypto-
graphic hashing in short, refers to methods whose hashing function is designed to
be one-way and is very difficult, if not infeasible, to invert. When applying such meth-
ods, the length of input (also called “message”) is arbitrary, and the size of output (also
called “message digest”) is fixed. The fixed-size hash results are used as a signature to
represent the original message for validation. Due to such a security-sensitive nature,
cryptographic hashing has a strict avalanche effect, which requires that a hash output
changes significantly (e.g., ,approximately half the output bits change) if there is a
change of the input (e.g., changing one single bit in the input).

For cryptographic hashing, three properties are normally enforced: (1) preimage
resistance, (2) second preimage resistance, and (3) collision resistance. The preimage
resistance means that the input (message) is difficult to find if only output (message
digest) is known (i.e., the one-way attribute). The second preimage resistance refers to
the property that given a message m; and its hash output hash(k,m;), where & is the
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Table |. Categorization of Data-Independent Hashing Methods

Random Hashing Random Projection Hashing; Universal Hashing
Locality-Sensitive Hashing (LSH)

MinHash; Weighted MinHash (WMH)

Locality Sensitive Hashing | Shift-Invariant Kernel-Based Hashing (SIKH)

Nested Subtree Hashing (NSH)

Discriminative Clique Hashing (DICH)

Learning for Hashing BoostMap

Structured Projection Quadtree; Hilbert Curve; Z curve

hash key, it is difficult to find another message m; satisfying hash(k,m; = hash(k,m;)
(i.e., ,the second-preimage attacks). The collision resistance requires that two messages
m; and m; should have different hash results in order to avoid a birthday attack (i.e.,
attackers can find two input messages with the same hash output).

Applications using cryptographic hashing include digital signature, public key cryp-
tography, and message authentication. The cryptographic hashing can be further di-
vided into two categories, keyed cryptographic hashing and unkeyed cryptographic
hashing, depending on whether a secret key is used by the hashing function.

3.2.2. Cryptographically Insecure Hashing. While cryptographically secure hashing has
nice security properties, they are often computationally inefficient. For applications
without strong security concerns, a simpler hashing mechanism, called cryptographi-
cally insecure hashing or noncryptographic hashing, is more practical. For noncrypto-
graphic hashing, such as the Fowler-Noll-Vo (FNV) hash function [Fowler 1991], the
main objective is still to generate hash output for verification, but the hashing process
does not have to consider cryptography. As a result, it becomes possible to have faster
processing, a lower collision probability, a higher probability of detecting small errors,
and easier collision detection, compared to cryptographically secure hashing. This kind
of hashing method is especially popular in applications that require fast searches or
processing, such as Twitter, Domain Name Service (DNS) servers, or database imple-
mentations.

4. HASHING TECHNIQUE DESCRIPTION

In this section, we first review data-oriented and security-oriented hashing methods
by separating them into four subsections, as outlined in Figure 2. After that, we will
summarize time complexity of the methods across all four categories.

4.1. Data-Independent Hashing Methods

In the following, we first introduce the most simple projection method, random projec-
tion, and then advance to locality-sensitive projection to preserve the locality charac-
teristics of data. After that, we will further introduce learning hashing projection and
structured projection. The hashing algorithm category is in Table I.

4.1.1. Random Hashing. Random projection hashing is a general data reduction
technique, which randomly projects original high-dimensional data into a lower-
dimensional subspace. For example, an original data item with d-dimensional features
can be projected to £-dimensional (¢ « d) subspace after random projection hashing.

Random projection hashing was first proposed [Donald 1999] to use a random func-
tion A : U — V to generate a random hash value A(x) in domain V (corresponding
to the k-dimensional data) and be associated with data items in the original domain
U (corresponding to the d-dimensional data). In random projection, a random function
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requires dxlgk bits to represent, which leads to the infeasibility of storing a
randomly chosen function. Accordingly, some researchers began to use fixed functions
in the random projection. Carter and Wegman [1977] proposed a universal hashing
approach, which randomly chooses hashing functions from a small family of particular
functions, instead of from all functions. As a result, it guarantees the provable perfor-
mance and achieves feasible and succinct storage of hash functions. For example, in
Shakhnarovich [2005], a task-specific similarity measure was proposed to choose hash
functions uniformly from a family F of hash functions:

{x > ((ax +b) mod p)mod v|0 <a < p,0<b< p}. (1)

The whole family is defined by the parameters p and v, and a particular hashing
function is defined by the parameters a and b.

In this universal hashing, each set of n elements in U is uniformly projected to
random and independent values, and the corresponding family F is n-wise independent.
Wegman and Carter [1981] proposed such function families where a random function
requires nlgd bits of space to store. For quite a long time, the time complexity of all n-
wise independent families to evaluate a hash function was O(n). However, an important
breakthrough made in Siegel [2004] proposed extremely random constant-time hash
functions, where the hash families are relatively small and highly independent so they
can be evaluated in constant time.

Although random projection is technically simple and computationally efficient, its
main drawback is the high instability. In other words, different random hash functions
may lead to totally different hashing values. On the other hand, if two elements differ
in one bit, they will have two different hash values and be projected to two completely
different random spots. Therefore, pure random-projection-based hashing inherently
discards the characteristics of the original feature space and cannot achieve good per-
formance for certain applications. In order to preserve the data characteristics in the
original feature space, locality-sensitive hashing was introduced.

4.1.2. Locality-Sensitive Hashing. The most commonly known data-independent method
with randomized projection is locality-sensitive hashing (LSH) [Indyk and Motwani
1998; Gionis et al. 1999]. Due to its wide popularity, we briefly introduce this represen-
tative method, along with its advantages and disadvantages.

LSH: Given a dataset containing n data points/items X = [x1, o, ...x,] € R?, and
hashing functions H(-) containing K hashing functions, LSH maps a data point x; to a
K-bits hash code € {0,1}:

H (x;) = [h1 (i), ho (%), ... o (x) ] (2)

An important feature of LSH is that two data points within a smaller distance, in
the original feature space, are more likely to have similar hash codes. In other words,
in the Hamming space, LSH largely preserves the original locality information. Such
a locality-preserving property can be elaborated using the following equation between
two data points x and y:

P{H(x) = H(y)} = sim(x, y), (3)

where sim(x, y) is the similarity measure and can be represented by a distance func-
tion, such as p-norm distance (p € (0, 2]) [Datar et al. 2004], Mahalanobis distance
[Shakhnarovich 2005], angular similarity [Charikar 2002; Ji et al. 2012], and kernel
similarity [Kulis and Grauman 2009]. For the random projection hashing, LSH has

H(x) = sign(wTx + b), 4)
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where w represents a random hyperplane from the geometric point of view and &
represents a random intercept. The label of each data point is determined by the side
of the hyperplane w. Thus, LSH satisfies

0 ifwlx<bd

H(x):{ 1 otherwise ° 5

Specifically, based on this hash function, for any two points x, y € R?, LSH satisfies
1 1.7

LSH not only preserves data characteristics in the hash space but also guarantees
the collision probability between similar data points. Despite its noticeable advantages,
LSH still has an unavoidable disadvantage that is the inefficiency of the hash code.
First, the random generation of hash functions and independency of data in LSH cannot
guarantee the efficiency. Second, LSH usually needs long codes in each hash table to
guarantee an acceptable accuracy, which increases the lookup complexity. According to
Equation (6), the collision probability decreases exponentially with respect to the code
length, so LSH needs long binary codes to achieve good precision although enjoying
asymptotic theoretical properties, which also results in low recall when creating a
hash lookup table. Accordingly, several recent research works have been focused on
generating short compact hash codes. Among all these efforts, data-dependent hashing
has drawn significant attentios (as we will soon review in Section 4.2).

With the help of simple random projections, two objects within a smaller distance are
more likely to have the same LSH hash codes. For similarity measures in LSH, many
methods [Datar et al. 2004; Shakhnarovich 2005; Charikar 2002; Kulis and Grauman
2009; Ji et al. 2012] use p-norm distances for p € (0, 2] [Datar et al. 2004], Mahalanobis
distance [Shakhnarovich 2005], angular similarity [Charikar 2002; Ji et al. 2012], and
kernel similarity [Kulis and Grauman 2009]. The basic idea of LSH is to choose a
random hyperplane at the outset and use the hyperplane to hash input vectors. The
hyperplanes are often used to partition data points into two sets with two different
binary codes being assigned based on the set each data point is assigned to. For the hy-
perplane, in order to optimally allocate a variable number of bits per LSH hyperplane,
Moran et al. [2013a, 2013b] proposed dubbed Neighborhood Preserving Quantization
(NPQ) [Moran et al. 2013a] and dubbed Variable Bit Quantization (VBQ) [Moran et al.
2013b]. The former assigns multiple bits per hyperplane based on adaptively learned
thresholds, and the latter provides a data-driven nonuniform bit allocation across hy-
perplanes. Base on the randomized projection of LSH, Zhang et al. [2013] proposed
Distribution-Aware LSH (DALSH), which uses data-adaptive projection to address the
problem of lacking adaptation to real data.

MinHash, also known as the min-wise independent permutations locality-sensitive
hashing scheme, is another LSH-related hashing technique commonly used for text
mining or applications requiring quick similarity assessment between two sets [Broder
1997; Bharat and Broder 1998]. MinHash is efficient to estimate the similarity between
two sets, S; and Sg, each containing a number of elements (e.g., finding similarity be-
tween two documents by using shared keywords). In order to find similarity between
S; and Sy, K hash functions (random permutations) are applied to elements in S;
and Sj, respectively. The minimum hash value of Sy, Ss is the MinHash of Sy, Sz. By
checking minimum hash values between two sets, one can quickly assess the similar-
ity between S; and Sy without involving a complicated set operations to check their
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Fig. 3. An example of MinHash process: In the last two columns of the tables, “1” or “0” represents that the
corresponding element is in the set (Syor Sg) or not; the /; and 7y represent two different hash functions.

member relationships, as defined in Equation (7):

YK 1(h(S1) = I (Sa)) -
= :

where 1(7, (S1) = hy (S2)) = 1if 7, (S1) = R, (S2) , and 1(A (S1) = g, (S2)) = 0 otherwise.
As K — o0, j(Sl, Sg) — _](Sl, Sg)

In addition to its computational efficiency, MinHash also enjoys a very nice property:
the probability that S; and Ss can be hashed to the same min-hash value is equal to the
Jaccard similarity of Sy, Sg, as given in Equation (8). In other words, min-hash-based
similarity is equivalent to Jaccard similarity, a commonly used set similarity measure,
if a sufficiently large number of permutations are used:

|S1 N Sef
1S1U Sy

In Figure 3, we demonstrate an example of the Min-wise hashing process. Given two
sets S; ={1,2,4,7} and Se = {3,4,7}, and two independent random element permutations
h1 =12,5,7,6,4,3,1] and he = [7,3,1,2,5,4,6], for set S, the minimum #; hash value is 2,
and the minimum /s hash value is 1. For set So, the minimum #/; hash value is 7, and
the minimum /g hash value is 1. Therefore, the similarity between S; and Sy is 1/2.

The Min-wise hashing scheme was initially introduced in Broder [1997] and later
used to detect and eliminate duplicate web pages from searching results in the
AltaVista search engine [Bharat and Broder 1998], large-scale document cluster-
ing [Broder 1997], near-duplicate image detection [Chum et al. 2008], and large-scale
text classification [Chi et al. 2014], which uses a Recursive Min-wise Hashing (RMH)
to preserve the context information. Similarly, another kind of similarity hashing func-
tion called SimHash [Sadowski and Levin 2007] is normally used to determine file
similarity. In order to compare MinHash with SimHash, Shrivastava and Li [2014c]
provided the first provable way to compare them under different similarity measures
and verified that MinHash is provably better than SimHash even for cosine similarity.

Even though the MinHash was verified to be an efficient hashing method, there is
still much space to be improved. In order to save storage space, Li et al. [2010], Li
and Konig [2010, 2011], and Li et al. [2011] extended MinHash techniques to a b-bit
Min-wise hashing by changing the traditional 64 bits used to store each hashed value
in Min-wise hashing methods. In order to make Min-wise hashing faster, Shrivastava
and Li [2014a, 2014b] made use of the idea of permutation and densification to offer
massive savings in computation cost compared to Min-wise hashing. From another
perspective inspired by the weighted sampling, Manasse et al. [2010], Ioffe [2010],
and Shrivastava [2016] gradually proposed a Weighted Minwise Hashing (WMH) and
verified that WMH is much simpler, significantly faster, and more memory efficient.

Another random projection hashing technique includes Shift Invariant Kernel-Based
Hashing (SIKH) [Shakhnarovich 2005; Raginsky and Lazebnik 2009], Nested Subtree
Hashing (NSH) [Li et al. 2012], and Discriminative Clique Hashing (DICH) [Chi et al.

3081, Se) =

Pr(i(S;) =nSq)) = = J(S1, S2). 8
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2013]. Shakhnarovich [2005] and Raginsky and Lazebnik [2009], based on random
projections, introduced a simple distribution-free encoding scheme, which could relate
the expected Hamming distance between two sets of binary codes corresponding to two
vectors to the value of a shift-invariant kernel between the two vectors. For data mining
applications involving networked data with dynamically increasing volumes, Li et al.
[2012] and Chi et al. [2013] proposed new hashing schemes to address the problem of
large-scale graph classification over streams. In Li et al. [2012], we proposed NSH to
extract multiresolution subtree patterns from graph streams and hash each pattern
to a low-dimensional feature space. In Chi et al. [2013], two random hashing schemes
were employed to speed up the clique-pattern mining process and address the unlimited
clique-pattern expanding problem.

4.1.3. Learning for Hashing. Learning for hashing represents a set of data-sensitive
hashing methods learning a new hash space with respect to the given data.
Shakhnarovich et al. [2006] proposed BoostMap, a data-independent machine-learning
method for Euclidean embedding construction.

BoostMap intends to learn a new embedding space for each task specified by the
underlying data, so the new hash space can optimally reveal the data similarity. It is
an efficient approximate nearest-neighbor method and can be used in arbitrary distance
measures, metric or nonmetric. Before introducing BoostMap, we first introduce some
basic methods for constructing Euclidean embeddings, such as Lipschitz embedding
[Johnson and Lindenstrauss 1984], Bourgain embedding [Hjaltason and Samet 2003;
Bourgain 1985], FastMap [Faloutsos and Lin 1995], MetricMap [Wang et al. 2000] and
BoostMap [Shakhnarovich et al. 2006].

The basic idea of Lipschitz embedding is to embed metric spaces into other spaces
with low distortion. In Lipschitz embedding, an object x € X (a space) is transformed
into an n-dimensional vector V = (v1, vg, ..., v,) such that each element v; corresponds
to the distance of object 0 € X to a predefined reference set [Hjaltason and Samet 2003].
The Bourgain embedding is a special type of Lipschitz embedding.

The equation P,(x) = Dx(x, o) can represent the 1D Euclidean embedding P, in space
X. The object o is called a reference object. If D, is obedient to the triangle inequality,
the nearby points in X are intuitively mapped to nearby points on the real line R by
P,. Even though D, violates the triangle inequality, the nearby points in X may still be
mapped to nearby points in R by P, [Athitsos and Sclaroff 2003]. On the other side, it
is also probable for distant points to be mapped to nearby points.

In FastMap, the basic idea is to choose two data objects x1, xo € X as pivot objects,
and then define the embedding P*1*2 of arbitrary x as the projection of x onto the line
between x; and x3. FastMap defines the projection according to the distance between x
and x; and between x and x93, respectively. The distances are then treated as the sides
of a triangle:

Dx(x, x1)* 4+ Dx(x1, x2)* — Dx(x, x3)
2Dx(x1, x2) ’

Figure 4 demonstrates an example of the FastMap projection used in Equation (9).

In Equation (9), P*1*2 projects data objects, which are mutually close in the original
space, to nearby locations and preserves the proximity structure of data objects. In
FastMap, multiple pairs of pivot objects are used to project a finite set of data objects.
MetricMap [Wang et al. 2000] extends the FastMap and maps the finite data object set
onto a pseudo-Euclidean space, and outperforms FastMap when using non-Euclidean.

BoostMap [Shakhnarovich et al. 2006] optimizes the quantitative measure and pre-
serves better similarity rankings than using random choices and heuristics. Mean-
while, the learning of BoostMap is independent and does not require an original
distance measure, such as Euclidean or metric properties. The key point of the learning

prixe (x) - (9)
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Dx(x, x1) Dix(x, x2)

Xt PO ©
Dx(x1, x2)

Fig. 4. Example of FastMap projection used in Equation (9). The length of the sides xx1, xxg, x1x9 are
Dx(x, x1), Dx(x, x2), and Dx(x1, x2), respectively. A line xo from x is perpendicular to x;x9, and the length of
line segment x;0 is equal to P¥1-¥2(x).

process in BoostMap is to treat embedding as classifiers in order to estimate the dis-
tance of any three data objects, and use AdaBoost [Schapire and Singer 1999] to unite
all previous lower-dimensional embedding into one higher-dimensional embedding for
a higher-accuracy similarity ranking. The main process of BoostMap is as follows: af-
ter identifying a big family of 1D embeddings P based on a pair of pivot objects or a
reference object, each P is treated as a continuous output binary classifier and a weak
classifier [Schapire and Singer 1999]. After that, BoostMap uses AdaBoost to combine
1D embedding P into a multidimensional embedding that serves as a strong classifier
with relatively higher accuracy than a weak classifier. BoostMap makes full use of the
advantage of machine-learning techniques to assemble a higher-accuracy embedding
from many one-dimensional embeddings.

4.1.4. Structured Projection. Many hashing methods exist, but they are mainly effec-
tive for low-dimensional data. When applying such methods to data with a high (or
very high) dimensionality, their performance may degrade. For similarity search in
High-Dimensional Vector Spaces (HDVSs), a conventional approach is to use a multi-
dimensional index structure that requires data space partitioning.

Structured projection hashing methods represent a set of approaches that partition
data space along predefined lines, regardless of data features, where different hashing
methods define their unique line partitioning structures. For example, Weber et al.
[1998], Joly et al. [2004], and Poullot et al. [2007] proposed data-independent hashing
schemes with structured projection, including tree [Weber et al. 1998] and space-filling
curves [Joly et al. 2004 and Poullot et al. 2007].

Weber et al. [1998] studied the impact of dimensionality on nearest-neighbor simi-
larity search on HDVSs and demonstrated that any partitioning scheme and clustering
technique must degenerate to a sequential scan through all their blocks if the dimen-
sionality is sufficiently high. In the paper, some tree structures are used to partition
data space, and their results showed that, for high-dimensional data, tree-based struc-
tures outperform sequential scanning by orders of magnitude. An example is shown
in Figure 5(a) that uses Quadtree (tree data structure) based data space partitioning
[Finkel and Bentley 1974]. In Quadtree, each internal node has exactly four children
or no children. It is mainly used to recursively divide and subdivide a two-dimensional
space into four quadrants or regions. In the right panel of Figure 5(a), the space is
divided into four quadrants, with node 0 being in the center. Node 1 on one side of the
plane forms one region, and nodes 2, 3, and 4 on the other side form another region. In
this way using planes, recursively partitioning space produces the tree showing on the
left panel of Figure 5(a).

Joly et al. [2004] and Poullot et al. [2007] studied the content-based copy identification
by space-filling curve projection. More specifically, Joly et al. [2004] proposed a novel
strategy dedicated to pseudo-invariant feature retrieval suitable for content-based copy
identification. They adopted the Hibert curve as the line of projection and directly
mapped an approximate search range onto a Hilbert space-filling curve in order to
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(a) Data space partitioning by (b) 2D data space partitioning by (c) 2D data space partitioning by
Quadtree using Hilbert curve at depth 3 using Z curve at depth 3 (left) and
(left) and 4 (right) 4 (right)

Fig. 5. (a) Each node in the tree represents a bounding rectangle (in the right split rectangle) that covers
some part of the whole space; root node “0” represents the entire space; the shaded region represents the
hash prefixes or ranges corresponding to the nodes “5,” “8,” “9,” and “12” in the left tree. (b) The green line
illustrates the order in which a Hilbert curve “visits” each quad. (¢): The green line illustrates the order in
which the hashing approach “visits” each quad.

establish efficient access to the database. The advantage of the Hilbert curve is that it
can guarantee that two cells that are neighbors in the index are also neighbors in the
description space [Jagadish 1997].

Figure 5(b) demonstrates a 2D data space partitioning by using the Hilbert curve
at depth 3 (left) and 4 (right). In Figure 5(b) (left), the Hilbert curve replicates in four
quadrants Ry, Ri, R, and Rs. In the process of replicating, the quadrant R, is rotated
clockwise 90°, and the quadrant R3 is rotated counter-clockwise 90°. After rotation,
the sense of both lower quadrants Ry, R3 is reversed. The two upper quadrants R;, Re
will not be rotated. According to this rule, we can obtain a Hilbert curve of depth 4.
All rotation and sense computations are relative to the previously obtained rotation
and sense in a particular quadrant. Figure 5(b) (left) shows the basic Hilbert curve of
a 2¥2 grid. The procedure to derive a deeper depth of this curve is to rotate and reflect
the curve at Ry and R3. The curve can keep growing recursively by following the same
rotation and reflecting pattern at each vertex of the basic curve. Figure 5(b) shows
Hilbert curves of depth 3 and 4, respectively.

For the Hilbert curve, one disadvantage is that it is difficult to compute the key
in the index starting from the position in the description space for high-dimensional
space and higher-order partitioning. In order to simplify the computation of the keys
(cell addresses in the index) and to tightly link it to a component-wise search process,
Poullot et al. [2007] replaces the Hilbert curve by using a Z space-filling curve and
hierarchically partitions the description space into hyperrectangular cells following the
Z-curve, as shown in Figure 5(c). The advantage of the Z-curve for space partitioning is
clear: regardless of the depth, all the cells are partitioned along the same dimensions.

4.2. Data-Dependent Hashing Methods

The data-dependent hashing can be divided into three categories: unsupervised hash-
ing, semisupervised hashing, and supervised hashing.

4.2.1. Unsupervised Hashing. For unsupervised hashing, no label information, including
weak labels such as pairwise labels between instances, is provided. Unsupervised
hashing methods use unlabeled data to generate binary codes for given training data
and try to preserve the similarity information in the original feature space.

According to the actual forms of functions used for hashing, including eigenfunc-
tions, linear functions, and nonlinear functions, we categorize unsupervised hashing
approaches into three types: spectral hashing, linear hashing, and nonlinear hashing.
The categories and some important algorithms are summarized in Table II.

Spectral Hashing. Spectral hashing (SH) [Weiss et al. 2009] is one of the most
popular data-dependent unsupervised hashing methods. Many methods use spectral
hashing to address the problem of learning hashing code with semantics. For example,
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Table Il. Categorization of Unsupervised Hashing Methods

Spectral Hashing

Anchor Graph Hashing (AGH)
Product Quantization (PQ)
Angular Quantization-Based
Binary Coding (AQBC)
Linear Unsupervised Spherical Hashing
Hashing Isotropic Hashing
Manhattan Hashing
Predictable Dual-View Hashing (PDH)
Inductive Manifold Hashing (IMH)
Locally Linear Hashing (LLH)
Topology Preserving Hashing (TPH)
Nonlinear Kernelized LSH (KLSH)
Unsupervised Hashing Multiple Feature Kernel Hashing (MFKH)

Unsupervised
Hashing

Data Points Learning Code Hash Table NN List
X1 11111 00001 .
L Hash Function 00011 00011 f—'\ X2, Xn
. H) . B [lnverse Lookup .
Xa 00011 11111 x1

Fig. 6. The process of learning compact codes.

Salakhutdinov and Hinton [2009] proposed to design compact binary codes for a large
number of documents, under the objective that documents with a short Hamming dis-
tance in terms of the hashing codes are semantically similar to each other. Weiss et al.
[2009] defined a hard criterion for a good code that is related to graph partitioning.

Due to the popularity of spectral hashing, we now introduce its detailed procedures.
The common process of learning compact codes in SH is shown in Figure 6, where
the far left list represents a set of data points. By using hash function H(x), one can
learn the corresponding compressed code of each data point. After that, the NN list
is obtained by using inverse lookup in the hash table. Therefore, spectral hashing not
only maintains the sample similarity in the reduced Hamming space but also seeks the
ones where the average Hamming distance between similar data points is minimal.

Spectral hashing assumes that the inputs are embedded in RP, and A;; =
exp(—|lx; — xJ-||2 /€2). A;; is the similarity between a pair of data points (x;, x;) in the
input space. The parameter ¢ defines the distance in R?, which corresponds to sim-
ilar items. Based on these settings, the average Hamming distance between similar
neighbors is >, Ajlly; — yill?.

As a result, spectral hashing codes satisfy the following criteria [Weiss et al. 2009]:

.. 1
Minimize : 5 LZinj”yi —y;11? = tr(y"Ly)
1
Subjectto : (1)y € {—1, 1%, 217y = 0;(3)ﬁyTy = Ix.k.

where L is the graph Laplancian diag (Al)- A, the constraint 17y = 0 defines the bits
to be balanced, and the constraint rlL yTy = Ix.x specifies the bits to be uncorrelated.

Spectral hashing includes training and hashing three major steps: (1) building the
sparse affinity matrix A of an exact neighborhood graph on n data points, (2) computing
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and binarizing K eigenvectors of the graph Laplacian L, and (3) generalizing K eigen-
vectors to the testing data points and binarizing.

In summary, spectral hashing performs Principle Component Analysis (PCA) on
training data and fits a multidimensional rectangle. Despite its simplicity, it is in fact
effective and comparable to many advanced hashing methods. But its training process
is intractable for offline, and hashing process is infeasible for online.

In order to evaluate the spectral hashing results, the quality of the hashing is typi-
cally assessed using the following criteria [Salakhutdinov and Hinton 2009]: (1) easy
computation for a novel input, (2) need for a smaller number of bits to code the full
dataset, and (3) similar data points with similar binary codewords.

Because it is often a time-consuming process to obtain supervised information, as
a well-recognized unsupervised codeword generation method, spectral hashing mini-
mizes the codeword distances between similar points to learn short binary code words.
Although spectral hashing has shown promising performance by learning the binary
codes with a spectral graph partitioning method, its performance may become worse
as the number of bits increases, and the construction of the graph Laplacian by the
Euclidean distance may not reflect the inherent distribution of the data. Meanwhile,
although it is straightforward to do the calculation for inputs in the training data, it is
a problem to compute the hash codewords for previously unseen data.

In order to address these problems, many methods [Weiss et al. 2012; Li et al. 2013;
Bodo and Csaté 2014] exist to extend spectral hashing to solve specific challenges. For
example, Multidimensional Spectral Hashing (MSH) [Weiss et al. 2012] is proposed to
ensure the stability of performance. MSH seeks to reconstruct the affinity between data
points, rather than their distances. In order to reflect the underlying distributions of
the data, Li et al. [2013] proposed a method based on the pairwise similarities of image
labels/tags to directly optimize the graph Laplacian, and this method can automatically
determine the scale factor during the optimization. In order to compute hash codewords
for data points that are previously unseen, Bodé and Csat6 [2014] proposed to use linear
scalar products as similarity measures and use different generalization (an inductive
generative formula) to find hash codes. Due to the generalization, for a new data point,
the codeword generation method and random hyperplane-based LSH are similar.

Linear Unsupervised Hashing. Linear unsupervised hashing refers to a set of meth-
ods whose hashing functions are linear functions, although the algorithms may rely
on learning-based approaches to derive actual hash functions [Liu et al. 2011; Brandt
2010; Zhang et al. 2010a, 2010b; Gong and Lazebnik 2011; Joly and Buisson 2011,
Xu et al. 2011b; Wang et al. 2006, 2010b; Kang et al. 2012; Xu et al. 2012; Zhen and
Yeung 2012; He et al. 2013]. Most of these hashing algorithms focus on exploiting the
spectral properties of the data affinity matrix for binary coding. Among them, Anchor
Graph Hashing (AGH) [Liu et al. 2011] is a popular approach. As a graph-based hash-
ing method, AHG learns appropriate compact codes by automatically discovering the
neighborhood structure in the data.

In the following, we briefly describe the anchor graph hashing method:

AGH: In order to make hashing computationally feasible, AGH utilizes anchor
graphs to obtain tractable, nonnegative, sparse, and low-rank affinity matrices. An-
chor points can be seen as K-means clustering centers, and an anchor graph can ap-
proximate the exact neighborhood graph when the number of anchors is sufficiently
large.

AGH first computes the data-to-anchor similarity and obtains a data-to-anchor sim-
ilarity matrix Z € R™™ (n data points, m anchor points). Based on Z, the data-to-data
similarity matrix A € R™" can be obtained. The process is shown in Figure 7, where

red data points are anchor points, and A;; = Y7, ZxZjr = Z Z," . So the anchor graph
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Fig. 7. Matrix Z and matrix A: the lines between the data points represent the distances between the data
points.

affinity matrix A = ZA"1Z (A = diag(ZT1) € R™™), which is different from affinity
matrix Ain spectral hashing.

AGH seeks a K-bit Hamming embedding y € {1, —1}*%X for n data points in the
database by minimizing

max : tr(yTAy)

Subject to: (1)17y = 0;(2)y"y = nlk.x.

In summary, AGH has five major steps, including training (Steps 1, 2, and 3) and
hashing (Steps 4 and 5): (1) building an anchor graph and obtaining a data-to-anchor
similarity matrix Z on n data points, (2) computing and binarizing K eigenvectors of the
anchor graph Laplacian, (3) building the hash table, (4) generalizing K eigenvectors to
the testing data points and binarizing, and (5) inverse lookup in the hash table.

AGH is a scalable graph-based unsupervised hashing approach that considers the
underlying manifold structure of the data to search nearest neighbors. AGH ensures
linear training time and constant hashing time by extrapolating anchor graph Lapla-
cian eigenvectors to eigenfunctions. In AGH, r anchor graph Laplacian eigenvectors are
used to generate r-bit codes, and the higher eigenvectors corresponding to the higher
graph Laplacian eigenvalue are of low quality for partitioning. In order to solve this
problem, AGH uses a two-layer hashing to revisit the lower graph Laplacian eigenvec-
tors to generate multiple hash bits.

In order to improve the hashing performance, many existing methods propose to use a
large number of hash tables (long codewords), which result in significant costs in space
consumption. Some solutions [Lu et al. 2006; Kontak et al. 2012; Lin et al. 2013] have
been proposed to address this problem. Lu et al. [2006] considered a hardware-friendly
scheme for Minimal Perfect Hashing (MPH) via counting Bloom filters to reduce the
number of memory accesses to just O(1) and still remains space efficient. In order to
perform cost-effective and exact pattern matching, HashMem [Kontak et al. 2012] was
proposed to combine hashing and memories by using hashing to generate a distinct
address for each candidate pattern stored in memory. Lin et al. [2013] developed a
hashing algorithm Compressed Hashing (CH) for high-dimensional nearest-neighbor
search by combining the techniques of sparse coding and compressed sensing.

Other important linear unsupervised hashing methods include ANN search algo-
rithm Product Quantization (PQ) [Jegou et al. 2011] and Angular Quantization-Based
Binary Coding (AQBC) [Gong et al. 2012] for high-dimensional nonnegative data that
commonly exist in vision and text applications. Spherical Hashing [Heo et al. 2012]
maps spatially coherent data points into a binary code compared to hyperplane-based
hashing functions. Isotropic Hashing (IsoHash) [Kong and Li 2012] learns projection
functions that could generate projected dimensions with isotropic variances (equal
variances). Manhattan hashing (MH) [Kong et al. 2012] uses Manhattan distance to
deal with the destruction of the neighborhood structure in the original feature in
Hamming-distance-based hashing. Predictable Dual-View Hashing (PDH) [Rastegari
et al. 2013] embeds proximity of data samples in the original spaces, and Inductive
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Fig. 8. The core idea of kernelized LSH: the A(-) represents a hash function; the digital code represents the
hashing value of the data object.

Manifold Hashing (IMH) [Shen et al. 2013] connects manifold learning methods and
hash function learning. Most Recently, Irie et al. [2014] proposed Locally Linear Hash-
ing (LLH) to preserve the locally linear manifold structures of high-dimensional data
in a low-dimensional Hamming space. Another latest unsupervised hashing method,
Topology Preserving Hashing (TPH), was proposed in Zhang et al. [2014a] for preserv-
ing neighborhood relationships and relative neighborhood proximities.

Nonlinear Unsupervised Hashing. Instead of using linear hash functions, nonlinear
unsupervised hashing uses nonlinear functions, typically some kernel functions, for
unsupervised hashing [Kulis and Grauman 2009; Joly and Buisson 2011; He et al.
2010; Liu et al. 2012a]. Kulis and Grauman [2009] extended the accessibility of LSH
to generic kernel space and proposed Kernelized LSH (KLSH). The main idea of KLSH
is to construct a random hyperplane hash function in kernel space based on a central
limit theorem. According to the central limit theorem, under very mild conditions, the
mean of a set of data objects from some underlying distribution will largely follow
Gaussian distribution in the limit, as the number of data objects in the set increases.
Following this central limit theorem, an approximate random vector will be computed
by using data items from the database. Once the random hyperplane hash function is
constructed, KLSH computes a small set of candidates approximating nearest neigh-
bors by the method of Charikar. After that, KLLSH sorts them to produce a list of hashed
nearest neighbors by the kernel function. As a result, the nearest neighbors of a query
can be retrieved in sublinear time by using standard LSH techniques. Figure 8 shows
the main idea of kernelized LSH.

In Figure 8, the blue point represents the query data object. Hashing functions 7.
are applied to map data objects to a set of compact codes. For the same compact code,
there may be more than one data object that tend to be similar to each other. For
compact code 11110001, there are four data objects. By mapping the query data point
to the same compact code, it narrows the scope of searching down to a small range. As
a result, one can easily find the blue object represented by code 11110001.

A noticeable advantage of KLLSH is that there is no assumption about the input and
the data distributions. As a result, it makes KLLSH very suitable for image search and
other domains where underlying data distributions are unknown.

In reality, KLSH’s performance deteriorates when the number of code bits is small.
Motivated by practical requirements in large-scale problems, He et al. [2010] proposed
a general hashing algorithm that can work on general data types with any kernel
function. This method enjoys a number of key advantages, such as generating efficient
and compact codes, fast indexing and search speed, and preserving diverse types of
similarities (feature similarity and semantic similarity like label consistency).

Most state-of-the-art hashing methods only utilize a single feature type, whereas for
many domains, such as image retrieval, combining multiple features has been proved
very helpful for learning. Accordingly, Liu et al. [2012a] proposed a Multiple Feature
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Table Ill. Categorization of Semisupervised Hashing Methods

Linear Semisupervised Hashing (SSH)
Semisupervised Semisupervised Semisupervised Discriminant
Hashing Hashing Hashing (SSDH)

Semisupervised Topology-Preserving Hashing (STPH)
LAbel-regularized Max-margin
Partition (LAMP)
Bootstrap-NSPLH

Nonlinear
Semisupervised Hashing

Kernel Hashing (MFKH) method that is compatible with general data types and diverse
similarities indicated by different visual features.

Because unsupervised hashing methods do not require any labeled data, the param-
eters of those methods are typically easy to learn given a prespecified distance metric.
However, for some domains, especially vision-related problems, similarity (or distance)
between data points might not be easily defined using a simple metric. Meanwhile,
a metric similarity learned from a dataset (or a domain) might not work well for an-
other dataset and cannot preserve semantic similarity. In this case, label information
including weakly labeled data, such as pairwise instance labels, is useful for hashing.

4.2.2. Semisupervised Hashing. In semisupervised hashing, both labeled data and unla-
beled data are used to train hash models. Representative methods include Semisuper-
vised Hashing (SSH) [Wang et al. 2010a, 2012], LAbel-regularized Max-margin Par-
tition [Mu et al. 2010], Semisupervised Discriminant Hashing [Kim and Choi 2011],
Bootstrap Sequential Projection Learning for Semisupervised Nonlinear Hashing [Wu
et al. 2013], and Semisupervised Topology-Preserving Hashing [Zhang et al. 2014a].
Among these hashing methods, SSH is one of the most popular approaches.

Table III categorizes semisupervised hashing into linear hashing and nonlinear hash-
ing, depending on whether a linear or a nonlinear function is used in the hashing.

Linear Semisupervised Hashing. Due to easy availability of digital cameras and other
imaging devices, large-scale image datasets are becoming rapidly available, raising im-
mediate needs of image search from large data repositories. Unfortunately, fast and
accurate image retrieval from large databases remains a significant challenge. On one
hand, unsupervised hashing methods cannot effectively capture semantic similarity
in image search, because no labeled data are provided to help hash functions learn
semantic similarities. Although supervised hashing methods can utilize labeled infor-
mation to learn semantic similarity, they tend to overfit when the number of labeled
data is very small or labels are noisy. On the other hand, the training efficiency of super-
vised methods is rather inefficient. Motivated by these problems, SSH methods were
proposed to handle both metric and semantic similarity over labeled and unlabeled
data.

In order to handle large-scale image search and solve the constraints of unsupervised
hashing in metric and the low efficiency of training in supervised hashing, Wang et al.
[2010a, 2012] proposed SSH methods that use simple linear mapping to handle both
metric and semantic similarity and dissimilarity in the data. Such SSH methods have
been mainly used for large-scale image search.

SSH aims to map n data points X = [x1, 9, ...,] € RP to a Hamming space and seeks

a K-bit Hamming embedding of X given by y € {1, —1}K. Given a vector w, € R? and
W = [wi,...,wp, ..., wg] € RP*K the k" hash function is defined as

hy (x;) = sign(wkai). (10)
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Fig. 9. (a) Comparison between good partition and bad partition: each data point represents an instance. (b)
The main idea of the Weakly-Supervised LAbel-regularized Max-margin Partition (LAMP) algorithm: each
point represents a data item. Black dotted lines in (2) and (3) represent the partition of data fields. y denotes
the partition margin.

In order to accommodate data labels, SSH allows two categories of label informa-
tion. Assume M denotes a neighbor pair and C denotes a nonneighbor pair, and
H = [hy,...,h, ..., hg] is a sequence of K hash functions. SSH defines the objective
function ¢/ (-) to measure the empirical accuracy on the labeled data for H:

JH)= Y1 > mGh(x)— D ) h(x)) g (11)

k (xi,xj)e/\/l (xi.xj)eC

Then, SSH defines a matrix S € R to incorporate pairwise labeled information X;
and express J (H):

1 :(x,%)€eM
Si,j= -1 :(x,-,xj) eC . (12)
0 :otherwise

Suppose H(X;) € RE*L maps data points in X; to K-bit codes; SSH represents J (H)
as

J(H) = %tr{H(X}) SHX) }= J (W) = %tr{sign(WT)Q) S sign(W7X)"}.  (13)

The aim of SSH is to learn optimal projections W that give the same bits for (x;, x;) €
M and different bits for (x;, x;) € C:

1
arg max — tr(WT MW),
w2

where M = X, S X7 + nXXT, X S xT represents the supervised term, and nXXT
represents the unsupervised term (7 is a positive scalar, which relatively weights the
variance-based regularization term). The M is an adjusted covariance matrix. In M,
the supervised term aims to greatly reduce the empirical error on the labeled data, and
the unsupervised term tries to maximize variance and independence of individual bits
in order to provide effective regularization. Furthermore, by relaxing the orthogonality
constraints, both orthogonal and nonorthogonal solutions are applied to generate better
hash codes at no added computational cost.

Given a large-scale unlabeled dataset with a few pairwise labeled data points, the
final goal of SSH is to learn data-dependent hash functions with compact storage and
fast retrieval, as well as a better partition of data points. Figure 9(a) demonstrates the
difference between good and bad partitioning, where a better partition allows similar
pairs to be on the same side and dissimilar pairs to be partitioned at different sides.

Although SSH is efficient and achieves a very simple eigen-decomposition-based
solution, it does not consider separability between short binary codes when learning a
compact binary code from a set of training data. In order to solve this problem, Kim
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and Choi [2011] learned discriminative binary codes based on semisupervised hashing
on linear discriminant analysis and proposed semisupervised discriminant hashing
(SSDH). SSDH uses labeled data to maximize the separability between binary codes in
different classes with unlabeled data being used for regularization. Experiments and
validations show that for short binary codes, SSDH indeed outperforms SSH.

For the aforementioned methods, hash functions are learned without considering
ranking information so their hash codes inherently ignore ranking information, which
is important for similarity search, especially for %2 nearest neighbor ANN search.
Moreover, some distance-preserving hashing methods cannot well preserve data topol-
ogy. Accordingly, Zhang et al. [2014a] proposed a Semisupervised Topology-Preserving
Hashing (STPH) method to solve the aforementioned two problems by incorporating
neighborhood ranking information with hash function learning. In addition, STPH also
leverages semantic labels in training data, so its hash results can accurately search
semantic neighbors.

Nonlinear Semisupervised Hashing. For linear semisupervised hashing, existing ap-
proaches mainly rely on linear feature representation. In reality, kernel-based feature
representation may be more efficient in gauging similarity between data items, espe-
cially for visual objects. Accordingly, Mu et al. [2010] developed the Weakly-Supervised
LAbel-regularized Max-margin Partition (LAMP) algorithm in kernel space to support
kernel-based feature representation. LAMP is specially designed for kernel space and
can generate high-quality hash functions with kernel tricks and weak supervision.
The random sampling strategy in LAMP makes this method scalable for large-scale
datasets. The main motivations and idea of LAMP are illustrated in Figure 9(b).

In Figure 9(b), (1) illustrates the side information that is more reasonable for guiding
a hashing scheme, and (2) and (3) show two different hash functions that result in a
different margin y on the same distribution. Figure 9(b) shows that (1) side information
or label information can provide useful guidance for more reasonable hashing results;
(2) larger margin y potentially implies a lower error rate in similarity search and can
lead to better generalization ability, and (3) for vision applications, if kernel-based
feature representation were used, it would be more natural and useful to measure
similarity. Similar to KLSH, LAMP can also be applied to any image databases because
it does not assume data distributions in input data.

Another nonlinear semisupervised hashing is Bootstrap projection for semisuper-
vised hashing. For SSH, one limitation is that the underlying relationship between
data points may not be effectively reflected because of the linear projection accom-
panied with mean thresholding. Meanwhile, for high-dimensional data points, SSH
tends to require high computational costs. To address this limitation, a Semisuper-
vised Nonlinear Hashing (Bootstrap-NSPLH) [Wu et al. 2013] was proposed, by using
bootstrap sequential projection learning. In Bootstrap-NSPLH, a nonlinear hash func-
tion is employed for reflecting the underlying link between data points that can be
used in semisupervised hashing. In addition, Bootstrap-NSPLH can correct the er-
rors accumulated during hashing by holistically considering previous learned bits. In
Bootstrap-NSPLH, compared with linear hash functions, the number of dimensions
in the matrix for computation is much smaller and does not relate to the number of
dimensions in the original data space.

4.2.3. Supervised Hashing. In supervised hashing, labeled data, such as labels of each
image or pairwise constraints specifying similar/dissimilar data item pairs, are avail-
able to help learn hashing models. The goal of supervised hashing is to utilize label-
based similarity or semantic similarity, in addition to the feature values of the data, to
train effective hash functions.
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Table IV. Summary of Supervised Hashing Methods

Supervised Hashing with Binary Reduction
. Boosting Similarity-Sensitive Coding (BoostSSC)
Linear - - -
. Binary Reconstructive Embedding (BRE)
Supervised — -
. . Minimal Loss Hashing (MLH)
Supervised Hashing -
Hashing Latent Factor Hashing (LFH)
Linear Discriminant Analysis-Based Hashing (LDAHash)
. Kernel-Based Supervised Hashing (KSH)
Nonlinear -
Supervised Hashing Two-Step Hashing (TSH)
p FastHash

2,097,152 bits 256 values
(a) )

Fig. 10. (a) Supervised hashing with binary reduction: the three colors “black,” “white,” and “gray” represent
different values in the gist vector and binary reduction. (b) The BoostSSC process: The three colors (black,
white, and gray) represent different values in the gist vector; the width of the red denotes the corresponding
weight value of the gist vector.

Representative supervised hashing methods include Boosting Similarity-
Sensitive Coding [Shakhnarovich et al. 2003], Boltzmann machine-based hashing
[Salakhutdinov and Hinton 2007], Binary Reconstructive Embedding [Kulis and Dar-
rell 2009], Minimal Loss Hashing [Norouzi and Blei 2011], Kernel-based Supervised
Hashing [Liu et al. 2012b], and Linear Discriminant Analysis-based Hashing [Strecha
et al. 2012]. Most recently, some new supervised methods have been proposed, includ-
ing Similarity-Preserving Hashing [Breitinger and Baier 2012], Two-Step Hashing
[Lin et al. 2013], Multimodal Similarity-Preserving Hashing [Masci et al. 2014],
Semantic Correlation Maximization [Zhang and Li 2014], Latent Factor Hashing
[Zhang et al. 2014b], and FastHash [Lin et al. 2014].

According to the actual form of hashing functions used in each method, we also
divide supervised hashing into linear hashing and nonlinear hashing. The category
and corresponding important hashing algorithms are listed in Table IV.

Linear Supervised Hashing. In order to save data storage space, binary reduction
technology is often used in hashing. Figure 10(a) demonstrates the binary reduction.

Figure 10(a) demonstrates that using binary reduction results in significant stor-
age reduction. In the figure, the gist is defined as an abstract representation of the
scene that spontaneously activates memory representation of scene categories [Oliva
and Torralba 2001]. The original image has 2,097,152 bits. By using the gist vector,
the image is converted to a gist vector with 256 values (i.e., represented using only
16 bits).

As a boosting method, labeled images (positive and negative image pairs) are used to
train the discovery of the binary reduction. In order to learn a series of weighted hashing
functions from labeled data, Shakhnarovich et al. [2003] proposed a Boosting Similarity
Sensitive Coding (BoostSSC) technique, which uses a weighted Hamming distance to
compute distances between images and learns an embedding of the original input space
into a new space, as shown in Figure 10(b). During the beginning of BoostSSC, weights
are uniform for each value (the red cells in Figure 10(b)) in gist vector of an image). For
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each bit in binary reduction (hashing function H(X)), BoostSSC chooses the index that
causes a least weighted error across the training set and then updates the weights for
the next calculation. At last, each bit in binary reduction has a corresponding index
and a weight threshold (in the far right dotted box in Figure 10(b)).

Deep neural network has also been used to learn compact binary codes
from high-dimensional inputs, by using stacked Restricted Boltzmann Machines
(RBMs) [Salakhutdinov and Hinton 2007]. In order to explicitly preserve input dis-
tances after mapping to the Hamming space, Kulis and Darrell [2009] developed an
efficient coordinate-descent algorithm, Binary Reconstructive Embedding (BRE), by
minimizing a squared loss over the error between the input distances and the re-
constructed Hamming distances. BRE is a supervised algorithm for learning hash
functions for fast and accurate nearest neighbor search.

In BRE, data-dependent bit-correlated hashing is defined as follows:

hp(x) = sign | Y Wyk(xpg. 2) | . (14)

q=1

In Equation (14), {x,,, ¢ = 1, ..., s} is the training data for learning 5, k() is a kernel
function, and W is a weight matrix. Hash functions aim to explicitly preserve the input
distances when mapping to the Hamming space by minimizing the reconstruction
error between original distances and reconstructed Hamming distances. The original
Euclidean distance dy,; and the reconstructed Hamming distance d are defined as

K
1 1
dulsi, x) = Sl —x1% drlwi, 2) = 2 > (i) — ()’ (15)
k=1
The goal is to derive optimal W by minimizing the following reconstruction error:
* . 2
w =argm“17n(z):N A, xj) — drlx;, 217, (16)
i, j)e

where the set of sample pairs N represents the training data that can be chosen
based on the application. Because of the nondifferentiability of sign(.), it is difficult
to optimize the previous objective function. Accordingly, BRE iteratively updates the
hash functions to a local optimum by applying a coordinate-descent algorithm.

By setting a zero distance for each same-label pair, and a sufficiently large distance
for each different-label pair, it is much easier to extend BRE to a supervised scenario.

For large-scale datasets, the training of BRE is inefficient, and it is almost im-
practical for BRE to train on a large-scale dataset because of expensive storage cost.
In order to address this limitation, Norouzi and Blei [2011] proposed Minimal Loss
Hashing (MLH) based on the latent structural SVM framework under a general class
of loss functions that is suitable for training using Euclidean distance or using sets of
labeled data points. In order to further improve the training efficiency, Latent Factor
Hashing (LFH) was proposed in Zhang et al. [2014b] to learn similarity-preserving
binary codes. In order to train LFH on large-scale datasets, the authors employed a
stochastic linear-time variant learning approach. Meanwhile, for large-scale datasets,
there exists retrieval and matching problems. In order to store and retrieve descriptor
data, Strecha et al. [2012] proposed Linear Discriminant Analysis-based Hashing
(LDAHash) to map descriptor vectors to Hamming space and reduce the size of the
descriptors by representing them as short binary strings.

Nonlinear Supervised Hashing. Representative nonlinear supervised hashing meth-
ods include Kernel-based Supervised Hashing (KSH) [Liu et al. 2012b], Two-Step
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Fig. 11. The core process of Kernel-based Supervised Hashing (KSH): the different colors of circles represent
different data. The green grids in the “Hash code matrix” represent adjusted parts in the hash code.

Hashing (TSH) [Lin et al. 2013], and FastHash [Lin et al. 2014]. Among these methods,
KSH and T'SH both use a kernel function as the nonlinear hash function, and FastHash
uses boosted decision trees to achieve nonlinearity in hashing.

Currently, hashing methods are mainly used to solve large-scale data problems. By
leveraging supervised information into hash function learning, the hashing quality
could be improved. In order to further improve the hashing performance and solve
the lengthy model training problem, Liu et al. [2012b] proposed a KSH model. When
mapping data to compact binary codes, this model minimizes the Hamming distances
between similar data pairs and maximizes the Hamming distances between dissimilar
data pairs. While optimizing the code inner products and adjusting the Hamming
distances, in order to obtain short and discriminative codes, the hash functions are
sequentially trained 1 bit at a time by using equivalence. Figure 11 demonstrates the
main process of KSH.

In Figure 11, labeled data have similar pairs and dissimilar pairs, respectively. Each
data point has a corresponding hash code. KSH first optimizes the Hamming distances
by trying to minimize the Hamming distance between similar pairs and maximize the
Hamming distance between dissimilar pairs (see the dotted box named “Hamming
distance optimization”), and then combines these hash codes as a matrix. By using
matrix multiplication (see the dotted box named “Code Inner products optimization”),
KSH further adjusts the Hamming distances by the final hash code matrix in the dotted
box named “Hash code matrix.”

In practice, the optimization process of KSH is coupled to a specified hash function,
which restricts the application range of the optimization. Taking into consideration
accommodating different loss functions and hash functions, a new Two-Step Hashing
(TSH) [Lin et al. 2013] proposed a flexible and simple framework, which is built on
the fact that hash function learning processes and the code generation may be seen
as separated steps, and that the former can be achieved by training standard binary
classifiers. As a result, hashing learning is divided into two stages: hash bit learning
and hash function learning with the help of the learned bits.

The two-step hashing approach has also been applied to large-scale datasets with
high-dimensional features, where training and testing costs for kernel hash functions
are extremely expensive. In order to solve this issue, FastHash [Lin et al. 2014] first uses
decision trees as nonlinear hash functions to deal with large-scale training and testing
data with high dimensionality. A two-step learning strategy is further applied where
the binary code inference and the simple binary classification training are combined to
form the learning process.

Due to the powerful generalization capability, nonlinear hash functions normally
outperform linear hash functions in terms of the overall performance.

In summary, compared to unsupervised hashing methods, the main advantages of
supervised hashing methods are the flexibility and adaptability for different real-world
applications. Nevertheless, the training efficiency still remains a big challenge.
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Table V. Summary of Cryptographic Hashing Methods

VMAC; UMAC; PMAC; OMAC; HMAC
Poly1305-AES; MD6; BLAKE2
MD2/4/5/6

Cryptographic Hashing SHA-1/3/224/256/384/512
Unkeyed Cryptographic Hashing HAVAL; GOST; FSB; JH; ECOH
RIPEMD/-128/-160/-320

Keyed Cryptographic Hashing

4.3. Cryptographically Secure Hashing

For cryptographically secure hashing (or cryptographic hashing), the hash function
not only compresses an arbitrary length input into a fixed length output but also is
designed to be one-way and has three major properties: preimage resistance, second
preimage resistance, and collision resistance. These attributes can guarantee that (1)
the input data is difficult to be generated by a given hash value, and (2) it is difficult
to find the two different inputs with the same hash value.

With the increasing popularity of authentication and digital verification in applica-
tions, such as digital signature and public key cryptography, cryptographic hashing has
gained significant attention recently. For example, in digital signature, cryptographic
hashing can be used to generate a digest for a message, and the encrypted digest, using
a secret key, can be regarded as the digital signature of the message.

Depending on whether a secret key is used by the hashing function, the cryptographic
hashing can be divided into two categories: unkeyed cryptographic hashing and keyed
cryptographic hashing.

4.3.1. Unkeyed Cryptographic Hashing. Unkeyed cryptographic hashing refers to methods
whose hash process does not require a secure key to be used to provably guarantee the
hash security, and the hash function is particularly designed for hashing. Although no
secret key is involved in the unkeyed cryptographic hashing, it still meets the basic
security policies required by general cryptographic hashing.

Many unkeyed cryptographic hash methods exist. Among them, MD5 and SHA are
relatively more popular in applications. In the following, we briefly introduce the his-
tory of MD-family and then review other relevant methods.

“MD?” (the abbreviation for “Message Digest”) represents a series of hash functions
designed by R. Rivest of RSA Data Security Inc. Among the MD-family, MD1 is a
proprietary method, and MD2 [Kaliski 1992] was designed to generate a simple 16-
byte message digest for an arbitrary length of message, with two claimed properties:
(1) given a message digest, the difficulty of finding the message is in the order of 2128
operations and (2) given the same message digest, the difficulty of finding two different
messages is in the order of 264 operations. However, several works have revealed some
weaknesses of MD2, such as the collisions from MD2’s hash function [Rogier and
Chauvaud 1997]. As a result, in 2004, MD2 was defined as an insecure one-way hash
function. MD4 [Rivest 1992] was proposed by Ronald Rivest in 1992, with a 128-byte
digest message in length. The claims for the difficulty of finding collisions are the same
as MD2’s, but an attack on the last two rounds of MD4 was found in Den Boer and
Bosselaers [1991]. In order to strengthen MD4, MD5 [Rivest 1992] was proposed to add
one extra round. Even though MD5 is one of the most promising hashing methods and
there is not yet any successful attack on the full MD5, the current big data environment
requires a much faster hashing method. MD6 [Rivest et al. 2008] was proposed to better
meet hash demand where the length of a message digest can be flexibly set from 1 to
512 bits. MD6 has good efficiency and can support multiple processors.

Another important unkeyed cryptographic hashing is SHA [FIPS 1995], which is an
updated version of MD4 with two major differences: (1) the length of the message digest
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Fig. 12. Keyed cryptographic hashing scheme: One-way cryptographic hash function processes arbitrary-
length input message and produces a fixed-length hash value to be combined with a private key to generate
keyed hash value.

is 160 bytes, and (2) the step number in each round is 20 steps, which is longer than the
16 steps in MD4. HAVAL [Zheng et al. 1992] is also a popular unkeyed cryptographic
hashing similar to MD5, but it is much more flexible because the hash length can
include multiple byte options (128 or 256) and the number of rounds can be specified
by users.

Many other unkeyed cryptographic hash functions, such as BLAKE-family, RIPEMD-
family, ECOH [Brown et al. 2008], FSB-family [Augot et al. 2005], and GOST [Mendel
et al. 2008], also exist for security-oriented applications.

4.3.2. Keyed Cryptographic Hashing. Although unkeyed cryptographic hashing, like MD5
or SHA, is very popular, it is, nevertheless, not provably secure. In keyed cryptographic
hashing, a secret key is used to enhance the security as shown in Figure 12. In order to
protect the information authenticity, most commonly, a form of Message Authentication
Code (MAC) is employed by the hashing mechanism to compute a value called authen-
tication tag, which can be regarded as the secret key and appended to the message.
Without knowledge of this secret key, it is difficult to retrieve the message even though
the hash function is known. The key is often shared between parties, so this kind of
cryptography scheme can only avoid outsider attacks. Many applications, such as mes-
sage authentication, password checking, and encryption, need the technical guarantee
from keyed cryptographic hashing.

There are different types of MACs, such as message authentication code based on
universal hashing (UMAC) [Black et al. 1999], block-cipher-based message authentica-
tion code algorithm using a universal hash (VMAC), One-key MAC (OMAC) [Iwata and
Kurosawa 2003], Parallelizable MAC (PMAC), and keyed-hash message authentication
code (HMAC) [Krawczyk et al. 1997]. All of these MACs enjoy provable cryptographic
strength. Among of these, UMAC and VMAC are both based on the universal hashing,
with UMAC being designed for 32-bit architectures and VMAC supporting both 32-bit
and 64-bit architectures. Compared with other MACs, UMAC is much more compu-
tationally efficient. VMAC is specially designed for 64-bit CPU architectures, which
can achieve an exceptional performance. PMAC makes use of a block cipher to create
an efficient message authentication code, which is provably reducible in security to
the underlying block cipher. OMAC is similar to PMAC in its functionality, with its
message authentication code constructed from a block cipher. HMAC is a specific type
of MAC, which considers not only a secret cryptographic key but also a cryptographic
hash function. Furthermore, as with any MAC, HMAC can simultaneously verify both
the data integrity and the authentication of a message. And any cryptographic hash
function may be involved in the calculation of an HMAC. Many elements can be used to
determine the cryptographic strength of HMAC, such as the output size, the underlying
hash function, and the key’s size and quality.

Our previous descriptions mainly focused on MAC-family hashing methods. Some
other keyed cryptographic hash functions, such as Poly1305-AES [Bernstein 2005],
SipHash [Aumasson and Bernstein 2012], and BLAKE2 [Aumasson et al. 2013], also
exist but cannot be addressed in detail due to page limitations.
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Fig. 13. General noncryptographic hashing scheme: An input message is divided into multiple pieces with
a fixed length, with each piece being processed by a mixing hash function. Combining the initial value and
the hash value of each piece generates a fixed size of hash value.

4.4. Cryptographically Insecure Hashing

Cryptographically insecure hashing, also referred to as noncryptographic hashing,
shares a similar objective as cryptographic hashing, that is, taking a variable size
of messages as input and returning a constant-size hash value smaller than the input
message. However, the hashing process does not need to consider cryptography, and
the basic goal is to reduce collision and improve the hashing speed as much as possible.
For this kind of hash function, the secret information for the hashing operation is not
required and the description of hash functions is known publicly.

For example, in security and forensic analysis, it is common to discover and find sim-
ilar or homologous objects. While cryptographic hashing normally provides a yes/no or
1/0 answer to compare and find identical objects, it cannot be directly and efficiently
applied to such applications that require a range of outcomes [0, 1], with the result
being interpreted as a measure of similarity. Accordingly, cryptographically insecure
hashing techniques, such as approximate matching [Breitinger et al. 2014], can be
used to provide an approximate matching value (a measure of similarity) for finding
similar or identical objects. Before the approximate matching method was proposed,
there were several relevant approaches for different applications. The earlier one is
Context-Triggered Piecewise Hashing (CTPH) [Kornblum 2006], which is used to iden-
tify homologous files (not identical files) by creating associations between files to help
investigators quickly find relevant files or pieces of materials. CTPH advanced the
traditional use of cryptographic hashing to computer forensics. For data fingerprint-
ing, a similar idea with similarity digests was proposed in Roussev [2010] to generate
data fingerprints. All these approximate matching approaches are more adaptable to
general security and forensic analysis. For image identification applications, because
of the fragility of the current hash methods to image processing operations, an efficient
robust image hashing, leveraging the advantages of cryptographic hashing and image
identification methods, was proposed [Steinebach et al. 2012] to support fast and stable
image processing.

Compared to cryptographic hashing, noncryptographic hashing does not have secret
information for the hashing operation. Methods in this category share four important
features: (1) fast hashing speed, (2) low collision probability, (3) high probability of
error detection, and (4) easy collision detection. As a result, they are popularly used
in applications having big-size input data and requiring fast searches or processing,
such as using MurmurHash3 hashing (a noncryptographic hash function) for feature
hashing in Twitter sentiment analysis [Silva et al. 2014].

For almost all noncryptographic hash functions, the basic scheme is the same, which
is called Merkle-Damgard construction as shown in the Figure 13, where the input mes-
sage is divided into multiple pieces with each piece being processed by a corresponding
mixing function. At last, all processed pieces are combined together to generate hash
output.

Many noncryptographic hash functions have been proposed, and in this survey we
focus on the most common ones. The Fowler-Noll-Vo (FNV) hash function [Fowler
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Table VI. Noncryptographic Hashing Categorization
FNV Hash; xxHash; SuperFastHash
Noncryptographic Hashing MurmurHash2; lookup3; Pearson Hashing; BuzHash

Approximate Matching
DEK; BKDR; APartow; DJBX33A

1991] is an early noncryptographic hashing method proposed for a fast hash table and
checksum. The most obvious advantage of the FNV is the simplicity of implementation.
Another one worthy of mentioning is lookup3,! which mainly produces 32-bit hashes
for hash table lookup. Lookup3 is one of the most important noncryptographic hashing
methods and has been used in many products, such as Oracle and Google. Inspired
by the ideas in the FNV and lookup3, SuperFastHash [Hsieh 2004] was proposed to
achieve extremely high speed and provide an avalanche effect for the software industry.
For the Open Source projects, another hashing method, MurmurHash2 [Appleby 2008],
was very popular for a short period of time because of its extraordinary avalanche
property. For hashing strings, DJBX33A was designed and popularly used in many
programming languages and application servers, such as Python, PHP 5, and Tomcat.
For general uses, BuzHash was designed by Robert Uzgalis in 1992. In BuzHash, a
substitution table is used to replace each input piece by a randomized alias, and this
design can fit almost all input distributions. In addition, in the “General Hash Function
Library” [Partow 2013], there are three popular noncryptographic hash functions, the
DEK [Knuth 1998], BKDR [Ritchie et al. 1988], and APartow [Partow 2013]. Among
these three, the multiplicative hashing DEK is regarded as one of the earliest and
simplest hashing methods and is still popular now. Most recently, a new hash function
called xxHash? is very popular because of its extremely fast processing speed, running
at RAM limits. xxHash can support both of 32 and 64 bits, and has been commonly
used in databases and the gaming industry.

For noncryptographic hashing, its quality criteria include collision resistance, dis-
tribution of outputs, avalanche effect, and speed. For collision resistance, noncrypto-
graphic hashing tries to reduce the collisions, but because they do not follow the three
security properties used by cryptographic hashing, collisions are still observable. For
the distribution of outputs, it is very important for noncryptographic hashing to keep
hash outputs in a uniform distribution because the uneven distribution may result in
clustering issues and affect the performance of hash functions. For the avalanche effect,
it will be very helpful to avoid clustering issues if a big change in the output can be
observed for a very tiny change in the input. For the speed, noncryptographic hashing
should perform as fast as possible to improve the hashing efficiency. According to the
experimental analysis in Estébanez et al. [2014], MurmurHash2, SuperFastHash, and
lookup3 have the best avalanche effect, and the lookup3, MurmurHash2, and Super-
FastHash are more suitable for general uses.

4.5. Computational Complexity

We briefly review the computational complexity of hashing methods in terms of their
computational efficiency and memory consumption. In our analysis, we define a Ham-
ming space as the set of all 2V binary strings of length N.

In summary, data-dependent hashing often uses training data to learn the hashing
function with best compact codes for all data records. As a result, it can achieve much
faster query time and less memory consumption than the data-independent hashing.

Thttp://burtleburtle.net/bob/c/lookup3.c.
2https://code.google.com/archive/p/xxhash/.
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Table VII. Runtime Complexity w.r.t. the Number of Input ltems

Data-Independent Hashing:
(1) Random Projection Hashing; (2) Universal Hashing;
(3) LSH; (4) MinHash
Linear Time Data-Dependent Hashing:
On) (1) Anchor Graph Hashing (AGH); (2) Locally Linear hashing (LLH);
(3) Kernelized LSH (KLSH); (4) Semisupervised Hashing (SSH)
Cryptographically Insecure Hashing:
Most Common Methods
Data-Independent Hashing:
Binary Reconstructive Embedding (BRE)
Data-Dependent Hashing:
Spectral Hashing
Cryptographically Secure Hashing:
Almost All Methods Are at Least in This Level

Linearithmic Time O(nlogn)

Polynomial Time O(n*)

Exponential Time O(x")

Table VIII. The Summary of Space Complexity

Constant Data-Independent Hashing:
Space (1) Random Projection Hashing
Data-Independent Hashing:
(1) Universal Hashing; (2) LSH; (3) MinHash
Linear Cryptographically Secure Hashing:
Space Almost All
Cryptographically Insecure Hashing:
Almost All (Generally Smaller Than the Secure Hashing)
Data-Dependent Hashing:
Almost All Methods Are in This Level

Hamming Space

However, because the data-dependent hashing needs extra training time, the overall
time performance difference cannot be arbitrarily determined. Security-oriented hash-
ing is mainly more concerned about the security properties and has longer hashing
codes than the data-oriented hashing codes. Therefore, security-oriented hashing meth-
ods are often more computationally expensive and are less efficient than data-oriented
hashing methods. Compared with cryptographically secure hashing, cryptographically
insecure hashing does not have to consider cryptography and only needs to reduce
collision, which improves the hashing speed as much as possible. So cryptographically
insecure hashing is often much more efficient than cryptographically secure hashing.

In Tables VII and VIII, we summarize the runtime complexity and space consumption
of methods in different categories.

(1) For data-independent hashing, random projection hashing is a computationally
efficient method, which randomly projects high-dimensional (d) data into a lower-
dimensional (b) subspace. For n input items, the space consumption is d x lgb bits,
and the time complexity is linear O(dbn). An improved hashing method, universal
hashing, randomly chooses some hashing functions from a particular function set (not
from all functions), so its space complexity is n x lgd and the time complexity is O(n).
For another commonly known hashing LSH, assume the hash table size is %, the width
parameter of a function is w, the space is O(nk), and the processing time complexity is
O(nkw). The next hashing method worthy to mention is MinHash, which requires O(nk)
time and O(n) bits for each single permutation. In summary, most data-independent
hashing methods require linear time complexity.

(2) For data-dependent hashing, its time complexity can be divided into two parts:
(1) training complexity and (2) codeword calculation complexity. For spectral hashing,
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its training time is O(n3) and codeword calculation time is O(rn), where r is the di-
mensionality of the Hamming space. Comparably, AGH, a popular linear unsupervised
hashing, can build a resulting graph in O(n) time. Another similar kind of hashing,
LLH, uses a subset of size m as sample training data. The training time complexity
is O(m?) and the coding time complexity is O(m), with space complexity O(m). For a
nonlinear unsupervised hashing, KLLSH, the training time complexity for building the
matrix is O(p?), and coding computational complexity is O(p?) for each hash function,
where the p is the sample size of database objects. When p = O(\/n), KLSH approaches
to sublinear search time. SSH relaxes the orthogonality constraints of PCA and has
been experimentally verified that it has the same running time as LSH. For supervised
hashing, each iteration needs to update the hash function, and the time complexity
of the BRE is O(nb(k + logn)) (where k represents the number of nearest neighbors of
each input data and b represents the bit size of a hash table). In summary, while some
data-dependent hashing has linear time complexity, a handful of methods do require
polynomial-time complexity.

(3) Cryptographically secure hashing must meet preimage resistance, second preim-
age resistance, and collision resistance. For a message with size n, the computational
complexity of the hash value is O(n). In order to be preimage resistant, 2"~ ! messages
have to be created and the complexity is O(2"). Meanwhile, for being second preimage
resistant, the time complexity is also O(2"). For being collision resistant, because of the
randomness, if an attacker wants to find two messages with the same hash value, al-
most 22 hashing operations need to be performed. Therefore, in summary, the overall
complexity of cryptographically secure hashing is O(2").

(4) For cryptographically insecure hashing, the hash functions mainly aim for a fast
hash table and checksum use. Ideally, regardless of data size, it is possible for cryp-
tographically insecure hashing to search data within a constant time O(1) [Estébanez
et al. 2014]. Especially for some extremely fast hashing, such as xxHash, the speed is
almost close to the RAM limits. For other common noncryptographic hash functions, as
shown in the experimental studies in Estébanez et al. [2014], the speed greatly depends
on the size of the hashed keys. SuperFastHash and MurmurHash2 perform the best for
long keys. Similarly with the cryptographically insecure hashing, the space complexity
also depends on the output size of each message. But differently, the output size in
cryptographically insecure hashing is generally shorter than that in cryptographically
secure hashing, which emphasizes the security properties.

5. APPLICATIONS OF HASHING METHODS
5.1. Data-Oriented Applications

From the data domain perspective, hashing has been widely applied to a variety of
applications, such as images, network, graphs and texts, and digital signature.
Because of the popularity of image data and the large volumes and high dimension-
ality involved in these applications, majority hashing methods are designed for the
image domain. The main target of image application is the image retrieval [Kulis et al.
2009; Poullot et al. 2007; Jegou et al. 2008; Kulis and Grauman 2009; Xu et al. 2011b;
Kong et al. 2012; Wang et al. 2010a; Fu et al. 2013; Korman and Avidan 2011; Yu
et al. 2013]. When searching images related to a query image, it is computationally
expensive and time-consuming to directly compare the similarity between images in
the original feature space. In order to achieve fast similarity calculation, many hashing
methods are proposed. Among these methods, Kulis et al. [2009] constructed random
hash functions for fast approximate similarity search with learned metric, and Kulis
and Grauman [2009] generalized locality-sensitive hashing to accommodate the arbi-
trary kernel function, especially for image retrieval tasks. Wang et al. [2010a] designed

ACM Computing Surveys, Vol. 50, No. 1, Article 11, Publication date: April 2017.



Hashing Techniques: A Survey and Taxonomy 11:29

a semisupervised hashing method to learn efficient hash codes to handle metric and
semantic similarity among images. Another method [Fu et al. 2013] proposed to use
boosting iterative quantization hashing with query-adaptive reranking for large-scale
image retrieval. Yu et al. [2013] used unsupervised PCA hashing for large-scale med-
ical image search, which is a unique way to find similar clinical cases for doctors. In
other image applications, Wang et al. [2006] designed an AnnoSearch to annotate im-
ages, and Chum et al. [2008] and Li et al. [2013] used MinHash and Spectral hashing,
respectively, for fast image indexing.

On the Internet, hashing technologies have been used to solve many challenges. For
example, IP address lookup is time sensitive and its speed largely affects the overall
network performance. Motivated by the hashing idea, Martinez et al. [2005], Martinez
and Lin [2006], and Martinez et al. [2009] proposed different hashing methods for IP
address lookup in computer networks. More specifically, Martinez et al. [2005] proposed
an optimal XOR hashing to facilitate a linearly distributed address lookup. In order to
further adapt to different distributions, Martinez and Lin [2006] proposed an adaptive
hashing for all practical databases, especially for the nonuniformly distributed IP
address lookup. Martinez et al. [2009] proposed a preprocessing method to extract
certain regularity based on XOR operations.

For other network-related applications, Lu et al. [2006] designed a hardware-friendly
scheme for minimal perfect hashing, which can be used for route lookups, packet clas-
sification, and monitoring. Choi et al. [2009] and Yoshioka et al. [2008], in order to
improve the packet classification in network intrusion detection, respectively used
maximum entropy hashing and rule hashing.

Graph-structured data are common in biology, chemistry, health informatics, and
communication networks. For all these applications, supporting efficient access to
graph-structured data is crucial. Ou et al. [2013] applied a heterogeneous hashing
for heterogeneous networks such as Facebook, Flickr, and Twitter. Weiss et al. [2009]
and Liu et al. [2011], studied theoretical hashing algorithm design for graph databases
and proposed spectral hashing and anchor graph hashing, respectively, for graph par-
titioning. Meanwhile, hashing techniques can also be used to support fast graph clas-
sification. In Li et al. [2012], we introduced a NSH for structured data and also pro-
posed a fast graph stream classification method using DIscriminative Clique Hashing
(DICH) [Chi et al. 2013].

For text applications, Chi et al. [2014] and Xu et al. [2011a] used context-preserving
hashing, which is based on Recursive Min-wise Hashing (RMH) and multidimensional
progressive perfect hashing, for fast text classification and string matching. Jin and Yoo
[2009], Mu et al. [2012], Zhu et al. [2013a, 2013b], and Song [2015] designed different
hashing methods for efficient large-scale multimedia search, and Yue et al. [2011, 2013]
used hashing-based fast palm-print identification for large-scale palm-print databases.

5.2. Security-Oriented Applications

Security-oriented hashing is commonly used in information security-related applica-
tions, such as the verification of the integrity and source of data, digital signatures
[Kaur and Kaur 2012], data authentication, message authentication codes [Black Jr
2000], and encryption.

(1) Digital signature: Keyed cryptographic hash functions are commonly used in
digital signature [Halevi and Krawczyk 2006], where the signature is a cryptographic
value generated from the message and a secret key, which is only known to the signer.
For the message recipients, they only need to make sure that the message is truly
from the sender by using a public key for verification, so the private key is used for
message signing and the public key is only for message verification. During the signing
process, the private key works with the hash value (from cryptographic hashing) of the
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signature algorithm to generate digital signature, which is appended to the message
and sent to the recipients. During the verification process, the recipients verify the
signature using the public key to obtain an output. Meanwhile, the recipients can hash
the received data using the same hash function used by the sender to obtain a hash
value. By comparing this hash value and the output from the verification algorithm, the
recipient can determine whether the digital signature originates from the sender. Such
a digital signature framework can be extended to data authentication and verification
of data integrity, such as image authentication [Schneider and Chang 1996].

(2) Message authentication codes: In security applications, a forgery user may mas-
querade as another user to send a message, and message authentication codes are
used to prevent this kind of attack, where the message authentication codes can only
be created by the original sender. When multiple parties need to communicate, keyed
cryptographic hash functions can produce a shared secret key for all involved parties
for message authentication, which would verify the originality of data and avoid out-
sider attacks. The UMAC [Black et al. 1999], VMAC, OMAC [Iwata and Kurosawa
2003], PMAC, and HMAC [Krawczyk et al. 1997] are all specially designed for fast and
secure message authentication.

6. CONCLUSION

In this survey, we categorized existing hashing techniques as a hierarchical taxonomy
with two major groups, data-oriented hashing versus security-oriented hashing. The
former aims to speed up the data access by developing efficient hashing mechanisms,
and the latter focuses on using hashing to generate message digests (or signatures) for
verification. Data-oriented hashing includes two subgroups: data-independent hash-
ing and data-dependent hashing. For data-independent hashing, hashing functions
are defined independently of the data to be processed without involving a training
process from the data. Data-dependent hashing, on the other hand, defines and learns
the hashing function family with respect to a given training dataset. For security-
oriented hashing, we categorized its methods into cryptographically secure hashing
and cryptographically insecure hashing. We further summarized computational com-
plexity and applications of hashing methods in each group. Our survey reviewed the
uniqueness and methodologies of mainstream hashing techniques in each category and
summarized major domain applications involving hashing. The combined review, from
technique and application perspectives, provided practical reference for real-world im-
plementations, as well as in-depth research guidance for future development.
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