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Abstract Modern information networks, such as social networks, communication
networks, and citation networks, are often characterized by very large sizes and
dynamically changing structures. Common solutions to graph mining tasks (e.g.,
node classification) usually employ an unrestricted sampling-then-mining paradigm
to reduce a large network to a manageable size, followed by subsequent mining tasks.
However, real-world networks may be unaccessible at once and must be crawled pro-
gressively. This can be due to the fact that the size of the network is too large, or
some privacy/legal concerns. In this paper, we propose an Active Exploration frame-
work for large graphs, where the goal is to simultaneously carry out network sampling
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and node labeling in order to build a sampled network from which the trained clas-
sifier can have the maximum node classification accuracy. To achieve this goal, we
consider a network as a Markov chain and compute the stationary distribution of the
nodes by deriving supervised random walks. The stationary distribution helps iden-
tify specific nodes to be sampled in the next step, and the labeling process labels the
most informative node which in turn strengthens the sampling of the network. To
improve the scalability of active exploration for large graphs, we also propose a more
efficient multi-seed algorithm that simultaneously runs multiple, parallel exploration
processes, and makes joint decisions to determine which nodes are to be sampled and
labeled next. The simultaneous, mutually enhanced sampling and labeling processes
ensure that the final sampled network contains a maximum number of nodes directly
related to the underlying mining tasks. Experiments on both synthetic and real-world
networks demonstrate that our active exploration algorithms have much better chance
to include target nodes in the sampled networks than baseline methods.

Keywords Active exploration · Supervised sampling · Random walks ·
Active learning · Networked data

1 Introduction

Recent years have witnessed the growth and popularity of information networks in
all aspects of human society, such as scientific publications, business, biomedical
research, and even people’s daily lives (Wasserman and Faust 1995; Fang and Tao
2014). Typical examples include friendship networks in Facebook,1 co-author and
bibliography networks in DBLP,2 and the World Wide Web. In these applications,
a social network is represented as a large graph, in which nodes denote entities or
instances (e.g., users or publications) and edges denote relationships between nodes
(e.g., friendship, kinship or co-authorship). Such graphs can be very large in size and
contain millions of nodes and edges. For example, some recent statistics3 show that
Facebook, the largest online social network, has 1.1 billion active users as of June
2013, and there are one million links shared between friends every 20 minutes. This
is equivalent to a gigantic network with 1.1 billion nodes (i.e., users), involving one
million linkage changes every 20 minutes. Other social networks such as Flickr also
show similar trends, where their network involves 51million unique users and 1.4 mil-
lion pictures are uploaded every day.4 Even for a small scientific research domain in
Computer Science, DBLP indexes over 2,167,502 publications and their references,
which easily form a million node scale network. For all these networks, the sheer
number of nodes and edgesmakes analyzing the entire network computationally infea-
sible. Therefore, graph sampling (Gjoka et al. 2010; Hübler et al. 2008; Leskovec and
Faloutsos 2006) becomes an important approach that generates a smaller, but represen-

1 www.facebook.com.
2 www.informatik.uni-trier.de/~ley/db/.
3 www.statisticbrain.com/facebook-statistics/.
4 www.flickr.com/photos/franckmichel/6855169886/.
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tative subgraph to approximate the original large graph. Afterwards, more expensive
and complicated analyses can be subsequently performed on the sampled graphs for
various data mining tasks, such as labeling network nodes or edges to build node clas-
sification models or to classify the linkage relationships between nodes in a network.

For network sampling approaches, the existing sampling-then-mining paradigm
assumes that the entire network is available for sampling and the sampled network
retains equally useful information for all subsequent data mining tasks, such as node
classification or link classification. However, this type of approach has several funda-
mental limitations. First, without knowing the underlying network analysis objective,
the separated sampling process can hardly generate a quality network with a reduced
size, tailored to various analytical needs for succeeding mining processes. Second,
graph sampling processes typically operate on an entire static graph. However, real-
world networks are rarely immediately available until a sampling process progressively
crawls each node and its connections to form a network (Catanese et al. 2011). Thus, it
would be beneficial to design algorithms that start from some specific nodes, explore
their neighborhood, and acquire information about the network when necessary, such
as labeling a particular subset of nodes. The obtained labeling information can be fur-
ther fed to improve information collectionwhile exploring the network. Third, existing
graph sampling techniques have focused on generating a uniform random sample of
nodes in the original graph. However, it is often the case that a data mining task aims
to identify some significant nodes (i.e., positive/target instances) comprising only a
small portion of the whole network. For example, in security surveillance, agents are
more interested in identifying suspects and their relationships to other individuals. In
disease monitoring, health analysts want to discover affected individuals in a large
population. Ascertaining the information about individuals, such as their affiliations
or infection status, would incur a prohibitive cost in terms of both time and resources.
Therefore, it is highly desirable to minimize the cost of exploring the entire network
while still acquiring a number of important nodes with a particular label.

Motivated by the above observations, we introduce a new active exploration prob-
lem for large graphs, Specifically, active exploration is an iterative task in network
settings, where querying the labels of nodes is subject to a certain amount of labeling
cost. Therefore, given a fixed amount of labeling budget, active exploration needs to
explore the network and identify as many nodes with a particular label as possible. The
problem of active exploration is related to active learning for networked data (Bilgic
et al. 2010; Kuwadekar and Neville 2011) and semi-supervised classification (Belkin
et al. 2004; Zhou et al. 2004; Zhu et al. 2003a), but has distinct objectives: Active
learning intends to query the labels of nodes to improve the accuracy of a classifier,
and semi-supervised classification leverages unlabeled data to reduce the amount of
labeled data required to achieve the same level of classification accuracy. They both
assume that the graph is fully observable (i.e., all nodes and edges are known). This
differs from the active exploration problem proposed in this work, in which only a
small portion of the network is observable. Our objective is to actively explore the
unobserved portion of the network and query a small subset of nodes to maximize the
identification of nodes with a particular label, such that the classifier trained from the
obtained network can achieve the maximum classification accuracy.
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To address this new problem, our key idea is tomodel a graph as aMarkov chain and
design two interleaved processes—sampling and labeling—that closely collaborate
towards the goal of active exploration. At each iteration, the sampling process is guided
by a supervised random walk that is more likely to visit positive nodes than negative
nodes in the neighborhood. The labeling process is thereafter utilized to query a node’s
label when necessary. Only by querying, the true label of a node can be revealed. The
node label along with the node features are used to update the stationary distribution of
nodes in the explored network, so they can benefit supervised sampling at the next iter-
ation. The tight coupling between the two processes allows them to interplay with each
other and improve the exploration and retrieval of important nodes on large graphs. In
our preliminary work (Fang et al. 2013), we have proposed a single-seed active explo-
ration algorithm that starts with a single seed, and progressively samples and labels
the rest of the network. Initial experimental results have shown that this algorithm can
achieve a higher recall of identifying positive nodes while sampling a network.

In this work, we advance the single-seed active exploration to multiple seeds and
also extend our active exploration framework to cope with large-scale networks. The
single-seed algorithm is guided by a supervised random walk that computes the sta-
tionary probabilities of the nodes in the explored network and decides which node is to
be sampled and labeled next. As the size of the explored network increases, sampling
and labeling processes become computationally intensive and often infeasible; the
sampling process needs to calculate the probability score of each node in the explored
network, and more expensively, the labeling process needs to iterate over all the unla-
beled nodes to identify the most informative node to be labeled, by recomputing the
stationary distribution and comparing the difference before and after each node is
presumably labeled. Hence, network size would significantly limit the efficiency and
scalability of the single-seed active exploration algorithm on large networks. In order
to scale the single-seed algorithm, we propose a multi-seed algorithm that simulta-
neously initializes multiple active exploration processes from k different seeds. At
each iteration, each exploration process computes an independent supervised random
walk and makes its local decision to determine which node to be sampled next in its
own explored network. Furthermore, a global decision is made collectively to select
the most informative node to be labeled from multiple explored networks. By using
multiple, parallel exploration processes, our new multi-seed active exploration algo-
rithm can significantly improve the efficiency of the single-seed algorithm, and scale
well to large-size networks. To validate the effectiveness of our proposed algorithms,
we carry out extensive experiments on both synthetic and real-world networks. Our
experiments demonstrate that, first, our proposed algorithms achieve a higher recall
of identifying positive nodes while sampling large networks than baseline methods,
especially for networks with imbalanced class distributions, and second, the multi-
seed algorithm can significantly improve the efficiency of the single-seed counterpart
and scale well to large-scale networks.

The contributions of our work can be summarized as follows:

– We introduce a new active exploration problem on large graphs that iteratively
samples and labels the nodes for identifying a specific subgroup of nodes and
improving the classification accuracy;
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– We formulate a supervised random walk as an optimization problem and derive
its solution;

– Based on supervised random walks, we present a single-seed active exploration
algorithm to simultaneously perform sampling and labeling on graphs and analyze
its computational complexity;

– We further propose a multi-seed algorithm which offers great scalability of active
exploration in handling large graphs.

The remainder of the paper is organized as follows. In Sect. 2, we briefly review the
related literature. In Sect. 3, we give a formal definition of our active learning problem.
In Sect. 4, we formulate a supervised random walk as an optimization problem, and
then propose two active exploration algorithms based on the solutions derived from
the optimization objective. We discuss the experimental results on both synthetic and
real-world networks in Sect. 5, and conclude the paper in Sect. 6.

2 Related work

To position our work in the literature, we briefly review existing research work related
to our active exploration problem. These include graph sampling, active learning in
the context of graphs and social networks, semi-supervised classification, as well as
multi-seed learning framework used in other different studies.

2.1 Graph sampling

In the following, we briefly review graph sampling techniques from static graph sam-
pling versus streaming graph sampling perspectives.

2.1.1 Static graph sampling

Static graph sampling techniques can be roughly classified into two categories: graph
traversals and random walks (Gjoka et al. 2010). For graph traversals, nodes are sam-
pled without replacement; once a node is visited, it is never revisited again. Depending
on the order in which nodes are visited, these methods include Breadth-First Search
(BFS), Depth-First Search (DFS), forest fire, and snowball sampling (Wasserman and
Faust 1995; Ahn et al. 2007;Mislove et al. 2007). Particularly, BFS is a popularly used
technique for sampling social networks, which has been studied extensively (Ahn et al.
2007; Mislove et al. 2007, 2008; Viswanath et al. 2009; Wilson et al. 2009). However,
some research work has shown that BFS is biased towards high degree nodes in real-
world networks (Becchetti et al. 2006; Lee et al. 2006; Ye et al. 2010). When using
graph traversals for sampling, the sampling process terminates after a pre-defined
fraction of graph nodes are collected. The pre-defined sampling parameter therefore
determines the size of the sampled network.

Random walks fall into the other category of graph sampling techniques, which are
a natural and thoroughly studied approach to randomized graph exploration. A random
walk is a stochastic process that starts at one node of a graph, and at each step moves
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from the current node to an adjacent node chosen randomly and uniformly from the
neighbors of the current node (Lovász 1993). Random walks have been widely used
for sampling theWeb (Henzinger et al. 2000), peer-to-peer networks (Gkantsidis et al.
2004; Stutzbach et al. 2009) and other large graphs (Gjoka et al. 2010; Leskovec and
Faloutsos 2006), or condensing graphs to allow for better visualization (Rafiei and
Curial 2005). Please refer to Lovász (1993) for an extensive survey. Similar to traver-
sals, randomwalks are also found to be biased towards high degree nodes in the graph.
However, the bias of random walks can be analyzed and corrected by using classical
results from Markov chains. For example, in the context of peer-to-peer sampling, re-
weighting was proposed to correct the bias of randomwalks (Rasti et al. 2009). Gjoka
et al. (2010) proposed a Metropolis-Hastings algorithm to collect an unbiased sample
of Facebook users. Likewise, Hübler et al. (2008) presented a Metropolis algorithm
for sampling a representative subgraph, requiring that the sampled graph preserves
crucial graph properties of the original graph.

Some other studies have been proposed to achieve a faster estimation of random
walks when the size of networks is large. For large graphs, a randomwalk on the graph
often requires a large number of individual user queries. Zhou et al. (2013) proposed
a method that increases the conductance of social network graphs by modifying the
graph topology on the fly. Tong et al. (2006) proposed a fast method to random walk
with restart using two important properties of graphs: linear correlations and block-
wise, community-like structure. However, these algorithms are not suited to solve our
problem because they treat all links equally important. In contrast, in our work, the
strength of edges is defined as a function of edge features andwe need to learn the para-
meters of the strength function. To handle the problem of large graphs, we alternatively
propose a multi-seed strategy which can run in parallel to speed up the efficiency.

2.1.2 Streaming graph sampling

In large-scale social networks, the network structures may continuously change and
evolve, which renders streaming networks or graphs rather than static graphs. Ahmed
et al. (2014) extended graph sampling from static graphs to streaming graphs and used
induced edge sampling to randomly sample edges from a streaming graph network,
where the edges of the network are presented as a stream to form a sampled network.
Streaming graph sampling can also be achieved by using streaming graph partition-
ing (Stanton and Kliot 2012) which uses hashing techniques to partition a large graph
into small networks. Sarma et al. (2011) proposed a streaming model to estimate the
probability distributions and PageRank scores for large-scale streaming graphs. All
these techniques have provided solutions to tackle the changes and dynamics in large
graphs for sampling.

2.1.3 Graph sampling for social network analysis

Graph sampling techniques provide an efficient, yet inexpensive solution for social
network analysis. Leskovec and Faloutsos (2006) examined different sampling meth-
ods over different social networks and found that best performing methods are random
walks and forest fires. Papagelis et al. (2013) introduced sampling-based algorithms
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that given a user in a social network efficiently obtain a near-uniform random sample
of nodes in its neighborhood. Maiya and Berger-Wolf (2010) described an online sam-
pling technique to sample large social networks so as to discover the most influential
individuals within the network.

There is a distinction between the aims of past work on graph sampling and our
work. The earlier work on network samplingmainly seeks to obtain a smaller subgraph
capturing the properties of the original graph. In other words, the sampled network can
maximally preserve the original network statistics, but it may not be directly related
to the succeeding mining tasks. In contrast, our work aims to supervise the sampling
process to explore the network by visitingmore important nodes belonging to a desired
class, so we intend to form an explored network to benefit the succeedingmining tasks.

2.2 Active learning on graphs

Active learning aims to minimize the required labeled data by selectively choosing
the most informative instances to query for their labels. Recently, graph-based active
learning has been proposed to address the problem of classifying networked data. One
line of research has focused on using graph-basedmetrics to define the informativeness
of instances and then select the instances with the highest informative scores (Bilgic
and Getoor 2008; Cesa-Bianchi et al. 2010). This is often achieved by enforcing
the linkage structure of the network into the calculation of the informative scores of
the network nodes (Fang et al. 2013). Other research has attempted to improve the
accuracy of collective classification by combining link information with node-specific
features (Bilgic et al. 2010; Kuwadekar and Neville 2011).

Prior work on active learning for networked data has focused on acquiring only
the labels of nodes to improve the accuracy of a classifier, with the assumption that
the entire network structure is directly observable. This differs from the active explo-
ration problem as proposed in this work, in which only a small portion of the network
is observable. Our goal is to actively explore and sample the unobserved portion of
the network and query the labels of a small subset of nodes to form a small net-
work comprising of as many target nodes as possible and improve the performance of
classification.

Our work is also related to active sampling (Pfeiffer et al. 2012), in which both
the instances’ labels and edges are acquired through an iterative process to update a
classifier for discovering the nodes with a specific label. This study assumes that a
node has no other known attributes aside from its own label. In contrast, in our work,
we formulate a supervised learning task by combining the network structure with rich
node and edge attributes and use it to guide a randomwalk on the graph for discovering
the nodes having a particular label while exploring the network.

2.3 Semi-supervised classification

Semi-supervised learning is a machine learning framework that learns from both
labeled and unlabeled data to help reduce the number of labeled data needed to train a
classification model with the maximum accuracy (Zhu and Ghahramani 2002). Many
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existing methods fall into graph-based semi-supervised learning (Belkin et al. 2004;
He et al. 2007; Zhu et al. 2003a, b), which regards the instance space as a weighted
graph with both labeled and unlabeled instances being considered as nodes, and the
similarities between instances are used to create weighted edges between nodes. By
following this approach, any non-relational data can be represented as a graph, and the
classification problems can thus be viewed as the estimation of a function on the graph.
In network settings, when instances are explicitly linked to each other, such as a net-
work of websites connected by hyperlinks, the edges simply correspond to the binary
presence of a link (or are weighted by the number of links between two instances).
When both local features and explicit links are available, some hybrid approaches
are also used for semi-supervised classification (Macskassy 2007). Another family of
semi-supervised classification is based on random graph walk, which relates itself to
the methods that fall under the class of graph walk-based algorithms, such as Gyongyi
et al. (2006), Lin and Cohen (2010) and Zhou et al. (2004). The theme of these
methods usually involves finding the dominant eigenvectors of some form of affinity
matrix or transition matrix of the graph and then performing within-network classifi-
cation.

Our active exploration problem has a similar setting as semi-supervised classifica-
tion in a transductive setting, which involves both labeled and unlabeled nodes over
the graphs, but has distinct goals. For semi-supervised learning methods, as men-
tioned above, the assumption is that the final graph is fully specified (i.e., all nodes
and edges are known) and that the labels of some nodes in the network are known.
Therefore, the objective is to improve the classification accuracy using unlabeled data.
In our work, we assume that a full graph is too large for its network structure to be
known as input. Thus, only a partial network can be observed. We are concerned with
actively exploring the unobserved portion of the network and querying a small subset
of nodes to maximize the identification of important nodes with a particular class
label.

2.4 Multi-seed learning framework

Our work is also related to multi-seed frameworks used in other different studies, such
as local graph clustering or finding connected components in graphs (Alamgir and
Von Luxburg 2010; Alon et al. 2008; Halperin and Zwick 1994; Karger et al. 1992).
Most of these studies have focused on using multiple random or pseudo-randomwalks
to identify significant subsets of networks. For example, Halperin and Zwick (1994)
addressed the problem of finding connected components of an undirected graph, in
which an optimal randomized algorithm was proposed by initializing random walks
from a suitable initial sample of nodes in the network. Alamgir and Von Luxburg
(2010) considered the problem of local graph clustering and proposed to construct a
multi-agent random walk (MARW) from all network nodes to discover local clusters
corresponding to points of interest. Alon et al. (2008) also demonstrated that using
multiple random walks in parallel yields a speed-up in the cover time of visiting every
node in a graph, which is linear in the number of parallel walks.
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Our work is different from these studies in that, they assume the whole network
already exists and has been collected for sampling at the beginning, so that multiple
random walks can be designed by taking the whole network structure into consider-
ation to optimize the sampling process. However, in our work, we only start from a
very small substructure of the whole network (i.e., a few connected nodes) and pro-
gressively choose some nodes to visit and thereafter explore their neighborhood. More
importantly, we consider that each node in the network has its own unique importance
score, which is determined by the node’s content features and link structure in the
network. Such information is modeled by a supervised random walk, which provides
guidance to visit and label more important nodes in the network during the explo-
ration process. By taking existing multi-seed learning strategies into consideration,
we propose to use multiple, parallel exploration processes to improve the scalability
of active exploration on large graphs. Our design ensures that the parallelized process
can make local or global decisions for determining the best nodes to be sampled and
labeled during the active exploration process.

3 Problem definition

Let G = (V, E) be an undirected graph where V denotes a set of nodes (or instances)
and E denotes a set of edges between nodes. Each node vi ∈ V is described by a feature
vector xi and a class label yi ∈ Y , where Y denotes a set of class labels. Each edge
(vi , v j ) ∈ E has a corresponding feature vector rvi ,v j which describes relationships
between nodes vi and v j . The neighbors of a node vi are denoted byN (vi ). We focus
on a binary classification problem, in which each node vi either belongs to a positive
class (yi = +1) or a negative class (yi = −1), and the whole network only contains
a very small number of positive nodes. We assume that a full graph is too large for its
global network structure to be known as a whole. Therefore, only a partial network
Gt = (V l

t ,Vu
t , Et ) can be observed at time t , where V l

t denotes a set of the labeled
nodes up to time t and Vu

t denotes a set of unlabeled nodes.
Given a fixed amount of labeling budget where querying the class label of each

single node is subject to a certain amount of cost, the objective of active exploration
is to obtain a sampled network with a small portion of labeled nodes, so that the
classifier trained from the obtained network has the maximum classification accuracy.
Accordingly, the active exploration problem aims to design an AE algorithm that
(1) samples a representative subgraph G

′
from the original large graph G, and (2)

selectively chooses a small set of nodes to query their labels, and acquires any new
edges and nodes in order to identify as many positive nodes as possible before the
limited labeling budget is exhausted.

We use Fig. 1 to illustrate key concepts behind the active exploration problem.
Given a partially observed subgraph Gt , which is an explored network at time step t ,
we define two types of nodes: Intra-acquired nodes Iintra and Border-acquired nodes
Iborder . In the figure, Intra-acquired nodes, denoted by double solid circles, are the
nodes that have been sampled up to time step t . Once a node is sampled, the node
itself, all of its neighboring nodes, and the edges between them are made observable.
Border-acquired nodes, denoted by single solid circles, are those directly connected
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+

+
–

–

Fig. 1 Apartially observed subgraph graphGt = (Vl
t ,Vu

t ,Et ). Intra-acquired nodes are denoted by double
solid circles and nodes directly connected to Intra-acquired nodes are border-acquired nodes. Labeled
positive and negative nodes are marked with “+” and “−”, respectively. Node A is selected from border-
acquired nodes to be sampled next because it has maximum probability of belonging to positive class. Node
B is selected to be labeled because it potentially provides a larger influence (according to our formulation)
on the partially observed network Gt

to Intra-acquired nodes. Note that, when a subgraph Gt is explored at time step t , it
means that all of its nodes, Vt = Iintra ∪ Iborder , and the edges Et between nodes
are all observed. There are unlabeled nodes Vu

t and labeled nodes V l
t in subgraph Gt ,

which can appear in both Iintra and Iborder . As shown Fig. 1, labeled positive and
negative nodes are marked with “+” and “−”, respectively.

Formally, an AE algorithm employs two interleaved processes—sampling and
labeling—that iteratively collaborate towards the objective of active exploration. Dur-
ing each iteration, the sampling process aims to determine that, for a partially observed
subgraph or explored network Gt = (V l

t ,Vu
t , Et ), which node vi from Iborder should

be sampled next. At the end of this process, subgraph Gt is expanded to include the
new node vi , its neighbors v j ∈ N (vi ), as well as new edges (vi , v j ) between nodes
vi and v j . The labeling process is, given a set of explored nodes Vt = Iintra ∪Iborder ,
to select a best node vk from the unlabeled nodes Vu

t ∈ Vt , and queries its label
yk when necessary. The set of labeled nodes is then expanded to include the newly
labeled data V l

t+1 = V l
t ∪ (vk, yk). After each iteration, we have a newly updated net-

work Gt+1 = (V l
t+1,Vu

t+1, Et+1). The two processes iterate until the limited budget
is reached. Table 1 summarizes a list of notations used throughout this paper.

4 Active exploration algorithms

The aim of active exploration is to maximize the identification of important nodes
belonging to a desired class while exploring the network under the limited budget con-
straint. Traditional graph sampling techniques can not be directly applied to achieve
this objective, because they assume that nodes are equally important during the sam-
pling process. Therefore, we propose novel algorithms to solve our active exploration
problem.
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Table 1 Table of notations
Symbol Meaning

Gt Explored network at time t , including
labeled nodes, unlabeled nodes, and edges

Vl A set of labeled nodes

Vu A set of unlabeled nodes

E A set of edges

(u, v) An edge between nodes u and v

Iintra Intra-acquired nodes

Iborder Border-acquired nodes

N (v) Neighbors of node v

pi Probability of node vi being positive

AE An active exploration algorithm

fw = (u, v) Strength function for edge (u, v)

w Parameters of strength function

DisG Stationary distribution of network G

ru,v Feature vector of edge (u, v)

L+ A set of labeled positive nodes

L− A set of labeled negative nodes

P Stationary distribution vector

Tr Transition matrix

4.1 Motivation of our new algorithms

To ensure that our proposed algorithms can indeed explore more positive nodes, our
idea is to sample the nodes which are more likely to be positive and choose to label
the nodes which have the maximum influence in the network. As an example in Fig. 1,
star node A has the maximum probability of being positive, because two of its direct
neighbors are already labeled as positive, which are marked with “+” in the figure.
Thus, node A is selected to be sampled next. Star node B is selected as the best node
to be labeled next because it would have a larger influence on the partially observed
network after its label is revealed. Therefore, one important issue is how to calculate
the probabilities of nodes being positive and how to compute the influence of nodes
in a partially observed network.

To achieve this goal, we model a graph as a Markov chain, where nodes are con-
sidered as different interior states and links are chains between states. In particular,
we consider two virtual absorbing states: one virtual positive node vs. one virtual
negative node. We assume that positive nodes are all connected to the virtual posi-
tive node, and negative nodes are all connected to the virtual negative node. Let pi
denote the probability of a node vi being positive, which is calculated as the proba-
bility for node vi to be transferred to the positive absorbing state in the Markov chain.
To capture such transition probabilities, we consider a random walk on the Markov
chain, in which a walk stops when it reaches an absorbing state. While traditional
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random walks assume that transition probabilities of all edges to be the same, our
proposed algorithms learn to assign each edge a transition probability such that the
random walk is more likely to visit positive nodes than other negative nodes in a
network.

In the following subsections, we first formulate supervised random walks as an
optimization problem and derive its solution. Based on this, we then present two
proposed algorithms to solve the active exploration problem.

4.2 Supervised random walks

Given an observed subgraph Gt , we propose a supervised random walk that naturally
combines the information from the network structure with node and edge features.
Motivated by Backstrom and Leskovec (2011), we consider biasing the random walk
by assigning each edge a randomwalk transition probability (i.e., strength). Therefore,
we aim to learn a strength function fw(v, u) for each edge (u, v), based on features
of nodes u and v, as well as the features of the edge (u, v). Intuitively, a random walk
is more likely to traverse an edge of high strength and thus the connected node via the
path of the strong edge would be more likely visited by the random walk.

Based on the above problem setting, the task is now to learn the parameters w of a
function fw(v, u) that assigns each edge a transition probability. To achieve this, we
formulate an optimization problem:

min
w

F(w) =
∑

yi∈L+,y j∈L−
h(p j − pi ) +

∑

yi y j=1

‖pi − p j‖2 + ‖w‖2, (1)

where L+ and L− is a set of labeled nodes with positive and negative labels, respec-
tively. The random walk assigns each node a probability score p, which depends on
fw(v, u) that is parameterized by w. h(·) is a loss function that assigns a non-negative
penalty according to the difference of the scores p j − pi . If p j − pi < 0, then h(·) = 0.
If p j − pi > 0, then h(·) > 0. Therefore, the first term indicates that we want the
probability scores of nodes in L+ to be greater than the scores of nodes in L−. The
second term indicates that nodes having the same class labels should have close prob-
ability scores. The third term is the norm of parameter vector w which indicates the
complexity ofw. In the following, we discuss how to solve this optimization problem.

As discussed before, each edge (u, v) in a graph has a corresponding feature vector
ru,v that describes nodes u and v (e.g., words in paper titles) and the interaction
attributes (e.g., the number of words shared between two paper titles). However, as
a special case, the two virtual absorbing nodes are not associated with any feature
vectors, so we need to find a way to compute the edge feature vectors rs,v , where s is
a virtual absorbing node and v a labeled node. Because two virtual absorbing nodes
are only connected to labeled nodes having the same label, we simply assume the
distances between each virtual absorbing node and its direct neighbors are the same.
Thus, for the two virtual absorbing nodes, we define the edge feature vectors rs,v = 1.

Then, we define the strength function for each edge (u, v) as Ru,v = fw(ru,v). For
example, the strength function fw can be a simple linear function of edge features,
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that is, fw(ru,v) = wT r . Function fw(·) parameterized by w takes the edge feature
vector ru,v as input and computes the corresponding edge strength Ru,v that models
the random walk transition probability. Note that, for each virtual absorbing node,
its edges connecting to its neighbors share the same edge strength Rs,v . Based on
edge strength Ru,v , we can build the random walk stochastic transition matrix Tr as
follows:

Tru,v =
{

Ru,v∑
v Ru,v

if u, v ∈ E,

0 otherwise.
(2)

To connect the node probability scores with the strength function fw(ru,v), below
we first define the stationary distribution DisG for a network G.

Definition 1 (Stationary distribution DisG) Given a network G, its pseudo station-
ary distribution DisG is defined as DisG = {pi |vi ∈ G}, where pi indicates the
probability of node vi being positive.

Let P be a stationary distribution vector of the random walk, in which each entry
pv is from the stationary distribution DisG . We have

1 =
∑

v

pv, (3)

and P can be solved by the following eigenvector equation:

PT = PT Tr. (4)

The above equation establishes the relationships between the node probability scores
pv and the parameter w of function fw(ru,v) via the random walk transition matrix
Tr .

Nowwe canminimize Eq. (1) with respect to parameter vectorw. The optimization
problem can be solved by deriving the gradient of F(w) with respect to w, and then
using a gradient basedmethod to findw that minimizes F(w). First, we have derivative
of F(w) with respect to w as

∂F(w)

∂w
=

∑

i∈L+, j∈L−

∂h(p j − pi )

∂w
+

∑

yi y j=1

∂(pi − p j )

∂w
+ 2‖w‖,

=
∑

i∈L+, j∈L−

∂h(p j − pi )

∂(p j − pi )

(
∂p j

∂w
− ∂pi

∂w

)
+ 2

∑

yi y j=1

(
∂pi
∂w

− ∂p j

∂w

)
+ 2w.

(5)

We can easily compute
∂h(p j−pi )
∂(p j−pi )

when we define a differentiable loss function for

h(.), for example squared loss. However, it is difficult to compute ∂pv

∂w
because we do

not have the exact function form of p(w). Therefore, we compute the derivative of
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p with respect to the vector w based on Eq. (4). Since Tr is a symmetric matrix, we
have

pv =
∑

i

pi T ri,v. (6)

Therefore, the derivative of pv is given as:

∂pv

∂w
=

∑

i

T ri,v
∂pv

∂w
+ pv

∂Tri,v
∂w

. (7)

Wecan calculate this equationby iteratively computing pv and
∂pv

∂w
. Firstly,we compute

pv .

– Initialization: for v ∈ V , let p(0)
v = 1

|V | .
– Iteration: at step n:

p(n)
v =

∑

i

p(n−1)
i T ri,v. (8)

Secondly, we compute ∂pv

∂w
. For each wc ∈ w, c = 1, . . . , |w|, let ∂pv

∂wc

(0) = 0 then for
v ∈ V , we have

∂pv

∂wc

(n)

=
∑

i

T ri,v
∂pv

∂wc

(n−1)

+ p(n−1)
v

∂Tri,v
∂wc

. (9)

To solve Eq. (1), we need to further calculate ∂Tri,v
∂w

as

∂Tri,v
∂w

=
∂ fw(rv,u)

∂w

(∑
u fw(rv,u)

) − fw(rv,u)
(∑

u
∂ fw(rv,u)

∂w

)

(∑
u fw(rv,u)

)2 , (10)

where fw(rv,u) is the edge strength function. We define fw to be differentiable, so
∂ fw(rv,u)

∂w
can be easily computed.

Wenowhave an iterativeway to compute the derivation ∂F(w)
∂w

. Thenwe compute the
updated parameters using a gradient descent based method to solve the optimization
problem and obtain optimal values for p and w. We summarize the procedure of
computing the stationary distribution in Algorithm 1.

4.3 Single-seed active exploration

Based on supervised random walks discussed in the previous section, we now present
a single-seed active exploration algorithm in detail. A preliminary version of this
algorithm has been discussed in Fang et al. (2013).
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Algorithm 1 StationaryDis(G, fw(·))
Input: (1) A network G = (V, E), where V = V l ∪ Vu ;

(2) Strength function: fw(·);
Output: Stationary distribution DisG of network G.
1: Initialize w = 1;
2: For v ∈ V , initialize pv ← p0v ;

For each wc ∈ w, c = 1, . . . , |w|, initialize ∂pv

∂wc
← ∂pv

∂wc

(0)
;

3: repeat
4: Iteratively compute pv and ∂pv

∂w
using Eqs. (8-10);

5: Compute the Hessian approximation B;
6: Compute quasi-Newton direction Δw ← −B−1 ∂pv

∂w
;

7: Update new parameter w′ ← w + Δw;
8: until |w′ − w| < 10−7;
9: DisG = {pv|v ∈ V};
10: Return DisG .

A

B –

–

+

+
+

Fig. 2 A small explored network with an optimal stationary distribution. Positive nodes and negative nodes
are marked with “+” and “−”, respectively. Two large dashed nodes denote two virtual absorbing states.
The sampling and labeling processes utilize the stationary distribution to select node A to be sampled and
node B to be labeled next

4.3.1 Algorithm description

After solving the optimization problem in Eq. (1), we can obtain an optimal stationary
distribution DisGt for the explored network Gt at time step t , and construct a Markov
chain with probabilities accordingly. Figure 2 illustrates a small explored network
with an optimal stationary distribution DisGt , where each node v is assigned with a
probability score pv , indicating the likelihood of the node being positive. Based on the
estimated stationary distribution DisGt , below we discuss the selection criteria used
for sampling and labeling, respectively.

Sampling The sampling process of active exploration is to bias towards discovering
more positive nodes. We select a node which is most likely to be positive and then
explore its neighbors, including the nodes and edges. For example, in Fig. 2, node A
with probability 0.714 is selected for sampling because it has themaximumprobability
of being positive in the border area. Intuitively, if a node has a higher value of pv , it
is more likely to be a positive node because it is closer to the virtual positive node.
Therefore, we choose a node v∗ from bBorder-acquired nodes to be sampled next such
that it has the highest value of pv .
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v∗ = arg max
v∈Iborder

pv. (11)

Labeling Labeling is another important process of active exploration, which aims
to obtain the labeling information of important nodes. Given a Markov chain with
probabilities, we select the most influential node in the explored network Gt and
make a query for its label only when necessary. That is, when an influential node is
labeled, the stationary probabilities of nodes in the explored network would be largely
affected. For example, in Fig. 2, center node B with probability 0.428 is selected
to be labeled because its labeling information may largely influence the stationary
probabilities of the nodes in the current network.

We measure a node’s potential informativeness in terms of its ability to influence
the network after being labeled. When we select a node for querying, its actual label is
unknown. After labeling, we have a newly labeled node, which means that we change
a node’s state for our Markov chain. Accordingly, we define this difference as the
informativeness of a node. Let DisGt denote the stationary distribution of the network
Gt , and v denote a node. Before labeling, we have

pv ∼ DisGt (State = +1|v). (12)

After labeling, we recompute the Markov chain as

p
′
v ∼ DisG ′

t
(State = +1|v). (13)

Intuitively, we assume that a node’s label is more important when there is a significant
difference in the stationary distribution before and after this node is labeled.We use the
KL-divergence to measure the difference between two stationary distributions. Thus
we have

K L(DisG ′
t
|DisGt ) =

∑

i

ln

(
p

′
v(vi )

pv(vi )

)
p

′
v(vi ). (14)

Before making the query, we do not know the true label of node v. However, we
can use an estimate of the distribution from which v’s true label would be chosen,
pv , given by the current Markov chain. Since we have two virtual states +1 and −1,
we compute the expectation by calculating the estimated KL-divergence for the two
classes. Let G

′
t : (v,+1) denote the network Gt with a newly labeled node (v,+1).

According to Algorithm 1, we compute its corresponding stationary distribution and
we have DisG ′

t :(v,+1). In the same way, let G
′
t : (v,−1) denote the network Gt with

a newly labeled node (v,−1). We compute its corresponding stationary distribution
using Algorithm 1, and we have DisG ′

t :(v,−1). Because the label of node v can be +1
or−1, we compute the average difference using the weight from previously estimated
probability pv . Thus, we have

EKLv = pvK L
(
DisG ′

t :(v,+1)|DisGt

)
+ (1 − pv)K L

(
DisG ′

t :(v,−1)|DisGt

)
.(15)
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Then we select a node v∗ with the maximum expectation EKLv and query v∗’s label.

v∗ = arg max
v∈Vu

EK Lv . (16)

Algorithm 2 Single-Seed Active Exploration

Input: (1) An explored seed network Gt = (V l
t ,Vu

t , Et );
(2) Threshold of KL-divergence: Thr ;
(3) The maximum number of labeled nodes (queries): Budget.

Output: The explored network Gt = (V l
t ,Vu

t , Et ).
1: t=1 and q=1; // t : number of exploration steps; q: number of queries.
2: while q ≤ Budget do
3: DisGt ← StationaryDis(Gt , fw(·));
4: Select a node for sampling by Eq. (11) and update Vu

t ;
5: for Each node v in unlabeled node set Vu

t do
6: ŷv ← Assign a label y ∈ Y to v;
7: G

′
t ← Construct a temporary network with ŷv;

8: DisG ′
t
← StationaryDis(G

′
t , fw(·));

9: EKLv ← Expected KL-divergence between DisGt and DisG ′
t
by Eq. (15);

10: end for
11: v ← Select a node for labeling by Eq. (16);
12: if EKLv > Thr then
13: yv ← Query the label of node v;
14: (V l

t , Vu
t ) ← Update with the newly labeled node (v, yv);

15: q ← q + 1;
16: end if
17: t ← t + 1;
18: end while

Algorithm 2 lists the detailed procedure of the single-seed active exploration algo-
rithm. This algorithm starts with a single seed (i.e., a few connected nodes), and
iteratively samples and labels other nodes in the network. At each step t , we construct
a Markov chain based on the subgraph obtained so far, and compute the optimal sta-
tionary distribution DisGt (line 3). After that, the sampling process determines which
node should be sampled next using Eq. (11) (line 4). The labeling process selects
the most informative node using Eq. (16) and queries its label when necessary (lines
5–16).

Only by querying, the true label of a selected node can be observed. Therefore, if
no query is issued at step t , the label of the selected node remains unknown. Because
querying a node’s true label incurs a cost, we employ a threshold Thr to determine
whether or not to issue a query at step t (lines 12–16). Specifically, our algorithm
issues a query when the expectation EKLv is larger than a given threshold Thr . Since
EKLv indicates the influence of a selected node on the graph when its actual label is

123



528 M. Fang et al.

observed, we progressively select to label a node which has a large value of EKLv .
In Section 5.4, we empirically evaluate the impact of different Thr values on the
algorithm performance.

4.3.2 Complexity analysis

As indicated in Algorithm 2, the most computationally expensive part of the single-
seed active exploration algorithm is the labeling process, because it needs to iterate
over all unlabeled nodes to identify the best node to be labeled next. For each unlabeled
node, it requires to calculate the difference in the stationary distributions before and
after this node is presumably labeled. Therefore, its complexity is O(tn3), where t is
the number of exploration steps, and n is the size of the explored network. Clearly,
the efficiency of single-seed active exploration is asymptotically bounded by the size
of the explored network n.

4.4 Multi-seed active exploration

The above analysis shows that the complexity of single-seed active exploration is
O(n3), where n is the size of the explored network. When n continuously increases on
large graphs, the single-seed algorithm becomes computationally expensive and even
infeasible. In order to scale up the algorithm, we propose to use a multi-seed frame-
work for sampling and labeling, which simultaneously initializes multiple exploration
processes rather than a single exploration process. Within this new framework, each
exploration has its own explored network and only needs to calculate the stationary
distribution of its local network. Since the size of each exploration network is much
smaller than that of a single network, the scalability of the algorithm can be signifi-
cantly improved. Below, we detail the multi-seed active exploration algorithm.

4.4.1 Algorithm description

Multi-seed active exploration initializes from k different seeds and runs all exploration
processes in parallel. Each exploration process has its own explored network and com-
putes the corresponding stationary distribution of its local network. Because different
explored networks may overlap and share common nodes, the multi-seed algorithm
allows each exploration process to make its local decision independently about which
node should be sampled next in its own network, and also enable multiple exploration
processes to make a global decision collectively to select the most informative node
to be labeled next.

Suppose that we have k ≥ 2 exploration processes, and each exploration process
has one explored network Gi,t up to time step t , where 1 ≤ i ≤ k. For each explored
network Gi,t , we optimize the function F(w) and calculate the stationary distribution
DisGi,t independently, as defined as

fwi(t),t : v → DisGi,t , where v ∈ Gi,t , (17)
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Thus, for each exploration, we obtain the probability score pv drawn from DisGi,t

independently from the others.

Sampling For each exploration process, we make a local decision to determine which
node should be sampled next in each explored network. Similar to the single-seed algo-
rithm, we choose to label a node which is most likely to be positive, and then explore
its neighbors, including nodes and edges. Specifically, for each explored networkGi,t ,
we select a node v∗

i to be sampled next such that it has the highest probability score
pi,v:

v∗
i = arg max

v∈Ii
border

pi,v. (18)

All together, at each step, we sample k nodes {v∗
1 , v

∗
2 , . . . , v

∗
k }, one from each explo-

ration process.

Labeling Because different exploration processes may share overlapped areas in their
explored networks, we resort to selecting one optimal node v∗ to be labeled from
multiple explorations,

v∗ = arg max
v∈{v|v∈Vu

i,t ,i=1,...,k}
�Dv, (19)

where �Dv is the measure that indicates the influence of a node on the explored
network after it is labeled. For a given node v, if�Dv is large, that means once node v

is labeled, it can largely affect other nodes in the network. Otherwise, if �Dv is small,
that means node v has little impact on other nodes. Therefore, we would like to select
the most influential node among multiple explored networks and query for its label.

In order tomeasure a node’s influence on the network, we consider each exploration
network Gi,t , i = 1, . . . , k as a Markov chain with the stationary distribution DisGi,t .
If an influential node v is labeled, the status of other nodes in a Markov chain would
be largely changed. By solving the optimization problem in Eq. (1), we can have
an updated stationary distribution DisG ′

i,t
assuming node v is labeled. Given two

distributions DisGi,t and DisG ′
i,t
, we thus use the KL-divergence of two stationary

distributions to define the influence of a node

�Dv = K L

(
DisG ′

i,t
|DisGi,t

)
. (20)

When a node is selected for querying, its actual label is unknown. Therefore we
calculate the expectation of �Dv

Ev[�Dv] = Ev

(
K L

(
DisG ′

i,t
|DisGi,t

))
. (21)

Similarly, before making the query, the true label of node v is unknown. Instead,
we can use an estimate of the distribution from which v’s true label would be chosen,
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pv , given by the current Markov chain. After labeling, the label of node v is yv and
yv ∈ Y . We rewrite Eq. (21) as

Ev[�Dv] =
∑

yv∈Y
pvK L

(
DisG ′

i,t
|DisGi,t

)
. (22)

Because we have two virtual states +1 and −1, we compute the expectation by
calculating the estimated KL-divergence for the two classes and take the average
weighted by the previously estimated probability pv . As a result, we have

Ev[�Dv]= pvK L

(
DisG ′

i,t
|DisGi,t

)
|yv=+1 + (1−pv)K L

(
DisG ′

i,t
|DisGi,t

)
|yv=−1.

(23)
In the multi-seed setting, if node v only belongs to one explored network, we can

directly compute Ev[�Dv]. In practice, it is possible that node v is sampled bymultiple
explored networks, Mv = {Gi,t |∃v ∈ Gi,t , i = 1, 2, . . . , k}. We can compute the
difference by two ways. One way is to calculate the average difference over different
explorations. Given a set of explorations Mv , we have

Êv[�Dv] = 1

|Mv|
∑

Mv

{
pvK L

(
DisG ′

i,t
|DisGi,t

)
|yv=+1

+ (1 − pv)K L

(
DisG ′

i,t
|DisGi,t

)
|yv=−1

}
. (24)

Another way is to compute the maximum difference from different explorations.
Therefore, we have

Êv[�Dv] = max
Mv

{
pvK L

(
DisG ′

i,t
|DisGi,t

)
|yv=+1

+ (1 − pv)K L

(
DisG ′

i,t
|DisGi,t

)
|yv=−1

}
. (25)

In our design, we use Eq. (25) to compute the expectation of �Dv among multiple
explorations. This is mainly because a node could have a large impact only on one
exploration process, whereas using the average can smooth out its significance across
multiple explorations. By doing so, we assume that if a node has a large impact on
one exploration, it should be labeled accordingly. In order to find the best node to
be labeled, we use the following equation which is calculated over all the explored
networks

v∗ = arg max
v∈{v|v∈Vu

i,t ,i=1,...,k}
Êv[�Dv]. (26)

Following the above process, we select a node v∗ that has the maximum expectation
Êv[�Dv] among all explorations and query its label. If node v∗ is shared by multi-
ple explorations, adding its new label will subsequently influence the sampling and
labeling of these explorations at the next step.
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The detailed procedure of multi-seed active exploration is given in Algorithm 3,
where k parallel exploration processes run simultaneously. For each exploration, the
stationary distribution is computed independently, a best node is selected to be sampled
next (lines 4–7). A joint decision is made amongmultiple explorations to decide which
node should be labeled next and query its label when necessary (lines 8–21). Similar
to single-seed active exploration, the multi-seed algorithm also uses a threshold Thr
to control whether or not to issue a query at step t (lines 17–21). For a selected node v,
if the expectation Êv[�Dv] is larger than a given threshold Thr , the algorithm issues
a query and obtains node v’s label. Otherwise, the label of node v remains unknown.
Because Êv[�Dv] indicates the influence of a selected node on the graph when its
actual label is observed, we progressively select to label a node which has a large value
of Êv[�Dv].

Algorithm 3Multiple-Seed Active Exploration

Input: (1) k explored seed networks Gi,t = (V l
t ,Vu

t , Et ), i = 1, · · · , k;
(2) Threshold of KL-divergence: Thr ;
(3) The maximum number of labeled nodes (queries): Budget.

Output: The explored network Gt = (V l
t ,Vu

t , Et ).
1: Initialize k seeds for k exploration;
2: t=1 and q=1; // t : number of exploration steps; q: number of queries.
3: while q ≤ Budget do
4: for Each exploration k do
5: DisGk,t ← StationaryDis(Gk,t , fw(.));
6: Select a node for sampling by Eq. (18);
7: end for
8: for Each exploration k do
9: for Each node v in unlabeled node set Vu

k,t do
10: ŷv ← Assign a label y ∈ Y to node v;
11: G

′
t ← Construct a temporary network with ŷv;

12: DisG ′
k,t

← StationaryDis(G
′
k,t , fw(.));

13: Êv[ΔDv] ← Expected KL-divergence between DisGk,t and DisG ′
k,t

by

Eq. (25);
14: end for
15: end for
16: Select a node v for labeling by Eq. (26);
17: if Êv[ΔDv] > Thr then
18: yv ← Query the label of v;
19: (V l

t , Vu
t ) ← Update with the newly labeled node (v, yv);

20: q ← q + 1;
21: end if
22: t ← t + 1;
23: end while
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4.4.2 Complexity analysis

Nowwe analyze the complexity of the multi-seed active exploration algorithm, which
runs k explorations in parallel. For each exploration, the complexity of computing
the stationary distribution is O(tn′2), where t is the number of exploration steps,
and n′ is the size of each explored network. The labeling process uses a pool-based
active learning strategy to examine each unlabeled node in the pool iteratively, and
thus its complexity is O(tkn′3). Comparing with one-seed active exploration, we have
n′ ∼ n/k and k 
 n′. Thus, the time complexity of multi-seed active exploration
can be reduced significantly, especially for a large number of exploration processes k.
The multi-seed algorithm runs k2 faster than a single-seed exploration. For example,
when n = 10,000 and k = 10, multi-seed active exploration is 100 times faster than
a single-seed active exploration.

5 Experiments

In this section, we empirically validate the effectiveness of our proposed active explo-
ration algorithms. In Sect. 5.1, we first discuss general settings of our experiments,
including datasets, performance metrics, and baseline methods. In Sect. 5.2 and Sect.
5.3, we evaluate the performance of single-seed active exploration on synthetic and
real-world networks, respectively. Then, we investigate the impact of different Thr
values on single-seed active exploration in Sect. 5.4. The comparison between single-
seed active exploration and multi-seed active exploration is reported in Sect. 5.5.

5.1 Experimental settings

In our experiments, we use both synthetic networks and real-world networks to val-
idate the performance of our proposed algorithms and compare with several baseline
methods.

5.1.1 Benchmark networks

To study the algorithm performance with respect to different network features, we
generate scale-free graphs with 400 nodes and 4000–6000 edges to simulate networks,
including label information and features for the network nodes. Because real-world
networks usually have community structures, we use a random graph to create network
components, each containing a number of nodes, and then connect these components
by randomly creating edges between different components (Erdős andRényi 1959). To
generate a class label for each node, we simply assign all nodes within one component
as one class (we focus on binary classification problems so each node is labeled as
either +1 or −1). Details about synthetic networks are described in Sect. 5.2.

In addition to synthetic networks, we also validate our proposed algorithms on
three real-world networks, including PubMed, CiteSeer and Core citation networks.5

Detailed information about the three citation networks is reported in Sect. 5.3.

5 http://www.cs.umd.edu/projects/linqs/projects/lbc.
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5.1.2 Baseline methods

In the experiments, our two proposed algorithms, single-seed active exploration and
multi-seed active exploration, are referred to as Single-Seed AEGraph and Multi-
SeedAEGraph, respectively. To the best of our knowledge, there is no existingmethod
which addresses active exploration on graphs. To study the empirical performance of
our proposed algorithms, we use four baseline methods for comparison:

– Random This method carries out network sampling and labeling in a uniform
random manner. At each iteration, it simply samples a node chosen uniformly at
random from the neighbors of already sampled nodes, and then selects an unlabeled
node to label at random.

– Degree This method uses node degree as the measure to guide the sampling and
labeling processes because many static graph sampling methods such as BFS are
found biased towards high degree nodes in the graph. At each iteration, it samples
a node with the maximum node degree and explores the neighbors of the selected
node. The unlabeled node with the maximum degree is also labeled during the
labeling process.

– Unweighted This is a variant of our proposedAEGraph algorithm by removing the
weight optimization module. In other words, this method does not consider node
features and there is no strength function for each edge. At each step, this method
computes the standard stationary distribution of a random walk. It samples a node
with the maximum probability score and also selects an unlabeled node with the
maximum probability to be labeled.

– Fixed Instead of learning the weights for edge features as our propose AEGraph
algorithm, this method simply computes the edge strength using a linear combi-
nation of the features with fixed weights and the weight of each feature is set to
be one.

5.1.3 Performance metrics

We evaluate the performance of active exploration algorithms by using the following
three metrics.

(1) Recall Because the goal of active exploration is to maximize the identification
of positive nodes in the sampled subgraph, we use recall to compare different
methods with respect to different sizes of explored networks. In our experiments,
because we know genuine labels of all nodes in the network, we first withhold the
labeling information of all nodes to carry out the sampling and labeling processes
(i.e., without using the labels of nodes). Only after a node is selected for labeling,
we assign its genuine label back to the node. We can thus compute recall as
the number of positive nodes that have been explored divided by the number of
genuine positive nodes. Because we always assign the genuine label (rather than
the predicted label) to the node selected for querying, there is no need to use
precision as a metric here.

(2) Classification accuracy To evaluate the quality of the explored network, we also
assess the performance of the classifier trained from the obtained explored net-
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work. We can collect different explored networks, including unlabeled nodes,
labeled nodes and links, using different exploration strategies. After that, we train
a classifier based on these networks solely using labeled nodes in the network,
and then compare their performance. In our work, we choose the collective clas-
sification (Sen et al. 2008) as our classifier and predict the labels of unlabeled
nodes in the explored network.

(3) Processing time To study the scalability of our proposed algorithms, we also
compare the efficiency of Single-Seed AEGraph and Multi-Seed AEGraph with
respect to their processing time.

5.1.4 General parameter settings

For active exploration, we need to select several initial nodes as a seed to start each
exploration process. In our experiments, we started with a small connected network
(with 5% nodes) containing positive or negative nodes and unlabeled nodes which
are randomly selected. After that, the algorithm iteratively explores the network by
carrying out sampling and labeling simultaneously.

In the following, we detail the parameter settings of our proposed active exploration
algorithms.

– Edge strength function We employ a linear function fw(·) to calculate the edge
strength. Let r denote the feature vector of the edge connecting nodes u and v,
fw(·) is defined as:

fw(ru,v) = wT r. (27)

– Loss function To define the penalty for the optimization function in Eq. (1), we
use a common squared loss with margin b as:

h(x) = max{x + b, 0}2. (28)

– Parameter T hr The proposed active exploration algorithms contain the iterative
sampling and labeling processes. In practice, labeling is considered much more
expensive than sampling, so the algorithm does not need to query and label a node
at each iteration. In our algorithms, the threshold Thr is used to control whether
a selected node needs to be labeled or not. For synthetic networks, we empirically
set Thr = 0.1 because we find this threshold value achieves a good balanced
recall for positive nodes, with respect to the number of queries. For real-world
networks, we use Thr = 0.001 and report the results in Sect. 5.3. In Sect. 5.4, we
evaluate the impact of different Thr values on the algorithm performance.

5.2 Performance of single-seed active exploration on synthetic data

In this section, we focus on evaluating the performance of single-seed active explo-
ration on three synthetic networks with different network characteristics.
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5.2.1 Synthetic networks

In our experiments, we build three synthetic networks, each containing two labels:
positive andnegative. The three networks have different network featureswith different
levels of biased node distributions. The details are summarized as follows:

– P200-N200 The P200-N200 network contains two components, each having 200
nodes. Each node has six random edges on average. The two components each
belongs to one class. We define one component as positive, and select 30% of
positive nodes to be connected with four nodes randomly selected from the other
component.

– P100-N300 The P100-N300 network contains two components, which have 100
and 300 nodes, respectively. The component with 100 nodes belongs to the positive
class, and the second component belongs to the negative class. Each node in the
network has six randomedges on average.After that,we randomly create 480 edges
between two components. This network is used to simulate real-world situation
with moderately biased node distributions.

– P50*2-N300 The P50*2-N300 network contains three components, where the
largest one contains 300 nodes, belonging to the negative class, and the other two
components each contains 50 nodes, belonging to the positive class. Meanwhile,
each node has six randomly connected edges within its component. After that,
we create 480 edges to randomly connect the three components. This network is
used to simulate real-world situation with severely biased node distributions. A
snapshot of the three networks is shown in Fig. 3.

For each node in the networks, we create two node features: (1) the first feature is
a random variable which follows a zero mean (variance σ = 1) Gaussian distribution.
It acts as a noisy feature without any specific meaning; and (2) the second feature is
also a random variable with Gaussian distribution but is subject to different means.
Specifically, if a node belongs to the positive class, it follows a Gaussian distribution
withN (0, 1). If the node belongs to the negative class, it follows a Gaussian distribu-
tion withN (1, 1). In addition, given an edge (v, u) with two nodes u and v, we define
the edge feature as:

rv,u = |xv − xu |, (29)

where | · | is 1-norm and rv,u indicates the difference between the node features of v

and u. If the nodes have similar features, their difference is small, and vice versa.

(a) (b) (c)

Fig. 3 A snapshot of three synthetic networks with different levels of biased node distributions. a P200-
N200. b P100-N300. c P50*2-N300
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(a) (b)

(c)

Fig. 4 Recall of positive nodes with respect to different sizes of explored networks. a P200-N200.
b P100-N300. c P50*2-N300

5.2.2 Results

Figures 4 and 5 report the recall of positive nodes with respect to different sizes of
explored networks (Fig. 4) and different numbers of labeled nodes (Fig. 5).

The results in Fig. 4 show that biased sampling can help acquiremore positive nodes.
Single-Seed AEGraph, fixed and unweighted all actively sample positive nodes by uti-
lizing the probability score of each node, leading to higher recall values than others
for the same size of explored network. Meanwhile, Single-Seed AEGraph performs
better than fixed and unweighted. This is because nodes with the same class label in
synthetic networks are correlated in the feature space. Single-SeedAEGraph leverages
the correlations, whereas Unweighted discards the edge strength (which captures the
node correlations) and fixed ignores different contributions of edge features to com-
puting the edge strength. The recall achieved by degree and random are very close to
each other, and are significantly inferior to Single-Seed AEGraph. Both degree and
random select next node solely based on the structure of the explored network (without
any active sampling strategy). While random completely follows a random approach
to sample the network, the sampling process of degree is biased to favor nodes with
a higher degree. In practice, positive nodes does not necessarily have a high degree,
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(a) (b)

(c)

Fig. 5 Recall of positive nodes in explored networks with respect to different numbers of labeled nodes.
a P200-N200. b P100-N300. c P50*2-N300

which explains whyDegree fails in achieving good performance. Expectedly, Random
is not effective in acquiring positive nodes.

Figure 4 also shows that the recall value achieved by Single-Seed AEGraph
increases with a larger slope at the early exploration stage (compared to the later
stages). This is because in our experiments we assume that the total number of positive
nodes is given and fixed. As the exploration process continuously discovers positive
nodes, the number of remaining undiscovered positive nodes would decrease, which
makes it more difficult to identify them.

The recall of positive nodes with respect to different numbers of labeled nodes
is shown in Fig. 5. The results show that our active exploration method has good
performance in labeling positive nodes. Because Single-Seed AEGraph has better
performance in finding positive nodes during the active exploration process, there are
more discovered positive nodes in the pool to be evaluated in order to find and label
the most important positive nodes, which in turn strengthens the chance of finding
positive nodes in the future.

To evaluate the quality of explored networks, we compare the classification accu-
racies of the classifiers trained from the explored networks which are collected by
different exploration strategies, such as Single-SeedAEGraph, fixed, weighted, degree
and random. In Fig. 6, the results show that Single-SeedAEGraph achievesmuch better
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(a) (b)

(c)

Fig. 6 Classification accuracies based on explored networks using different exploration strategies. a P200-
N200. b P100-N300. c P50*2-N300

performance than others. Unweighted is worse because it compute a standard random
walk without considering node/edge features. Although fixed takes the features into
account, it lacks a learning module to optimize the weights. Thus, its performance is
worse than that of Single-Seed AEGraph. Degree and random have the worst perfor-
mance. These strategies can not collect sufficient positive nodes to train an accurate
classifier. Single-Seed AEGraph has the ability to label more positive data than other
methods, which helps greatly enhance the classification performance.

5.3 Performance of single-seed active exploration on real-world data

For real-world networks, we used three datasets: PubMed, CiteSeer, and Cora. The
general information about these networks is given in Table 2 and their detailed descrip-
tions are discussed as follows.

– CiteSeer The CiteSeer network consists of 3312 scientific publications and 4732
citation links. Each node is represented by a 0/1-valued word vector indicating
absence/presence of the corresponding word from a dictionary of 3703 words, and
is labeled as one of six classes: Databases (DB), Machine Learning (ML), Infor-
mation Retrieval (IR), Artificial Intelligence (AI), Human Computer Interaction
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Table 2 Summary of the three real-world networks: CiteSeer, Cora and PubMed

Data set CiteSeer Cora PubMed

# of instances 3312 2708 19,717

# of links 4732 5429 44,338

# of instances of the largest class 701 818 7875

# of instances of the smallest class 249 180 4103

(HCI), andAgents. For our active exploration problem, we define the smallest class
“AI” as the positive and the rest as negative, and explore a network for “AI”.

– Cora The Cora network contains 2,708 scientific publications classified into one
of seven classes: Probabilistic Methods, Neural Networks, Case Based, Rule
Learning, Reinforcement Learning, Genetic Algorithms, and Theory. The cita-
tion network contains 5429 links. We consider the smallest class “Rule Learning”
as positive and others as negative, and explore a network for “Rule Learning”.

– PubMed The PubMed network consists of 19,717 scientific publications from
the PubMed database pertaining to diabetes, and each of them belongs to one of
three classes: “Diabetes Mellitus, Experimental” (7739), “Diabetes Mellitus Type
1” (7875), and “Diabetes Mellitus Type 2” (4103) (The number in the bracket
denotes the number of papers in each class). The citation network consists of
44,338 links. We used the PubMed network as a case study to construct three
exploration problems for its three classes, respectively:
– Problem 1we define “Diabetes Mellitus, Experimental” as positive and others
as negative, and explore a network for “Diabetes Mellitus, Experimental”;

– Problem 2 we define “Diabetes Mellitus Type 1” as positive and others as
negative, and explore a network for “Diabetes Mellitus Type 1”;

– Problem 3 we define “Diabetes Mellitus Type 2” as positive and others as
negative, and explore a network for “Diabetes Mellitus Type 2”.

In our experiments, we use node features to construct edge features. For each edge
between two nodes, each representing a paper, the first edge feature is the number of
shared words between two papers, defined as:

r1u,v = k, k =
∣∣∣{w|w ∈ Wu

⋂
Wv}

∣∣∣ , (30)

where W denotes the words that a paper contains. The second edge feature is defined
as the cosine similarity between two papers,

r2u,v = cos(wu,wv), (31)

wherew is the bag-of-word vector to represent each paper using the occurrence of the
words in the paper (Namata et al. 2009). The edge strength function and loss function
are the same as the one used for synthetic networks.

Figure 7 reports the recall of positive nodeswith respect to different sizes of explored
networks. It shows that Single-Seed AEGraph, Fixed and Unweighted work better
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(a) (b)

(c) (d)

(e)

Fig. 7 Recall of positive nodes with respect to different sizes of explored networks. a CiteSeer. b Cora. c
PubMed: diabetes mellitus, experimental. d PubMed: diabetes mellitus type 1. e PubMed: diabetes mellitus
type 2

than degree and random, which do not use active sampling strategy for identifying
positive nodes. In addition, Single-Seed AEGraph consistently outperforms fixed and
unweighted in the fivefigures. This is because papers in the same class often share com-
mon keywords, which is captured by the edge strength function defined in Single-Seed
AEGraph. In contrast, Fixed treats each edge feature equally important without con-
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sidering their distinct contributions to calculating the edge strength, while Unweighted
discards edge strength and therefore ignores the degree of correlations between papers
during the sampling process.

The results in Fig. 7c, d show that Single-Seed AEGraph has a larger slope of
improvement at the beginning of the sampling process. After 4000 exploration itera-
tions, the recall values become relatively stable. This demonstrates that Single-Seed
AEGraph has good performance when the exploration process starts. It can thus
potentially find useful positive nodes with very little cost. The decreasing slope of per-
formance improvement, at the latter stage of the sampling process, is mainly because
the number of undiscovered positive nodes decreases so it becomes more difficult to
find them.

In Fig. 8, we report the recall of positive nodes with respect to different numbers
of labeled nodes. We can see that, the recall values of Single-Seed AEGraph increase
quickly during the beginning and middle stage. This is mainly because there are many
positive nodeswith high clustering coefficients (i.e.,manypositive nodes are connected
to each other). The dense network structures allow each labeled positive node to help
discover more positive nodes in the next iteration. So our proposed algorithm shows
a high recall improvement slope.

Figure 9 reports the node classification accuracies of the classifiers trained from
different explored networks. The x-axis in the figures denotes the size of the explored
network and the y-axis shows the classification accuracy based on the explored net-
works obtained byusing different strategies. The results in Fig. 9 show that Single-Seed
AEGraph outperforms other approaches. This is, in fact, understandable because the
previous results have already demonstrated that our proposed algorithm can collect
and label more positive data than other methods. As a result, it can effectively balance
the positive and negative nodes in the explored network. This is especially helpful
when positive nodes in the whole network are rather few, which is normally the case
for real-world networks where the positive nodes (or events/nodes satisfying certain
criteria) are only a small portion of the entire network. Although Fixed is the baseline
method considering the features, it does not have a learning component to optimize
the weights for the edge strength function. Consequently, its performance is inferior to
that of our proposed algorithm. Unweighted performs even worse because it ignores
the features while computing the standard random walk. Degree and Random have
the worst performance because they never consider the roles of positive nodes in the
exploration process.

Overall, the results in Fig. 9 demonstrate that our proposed algorithm can indeed
advance the process of active exploration over large graphs. One can start from a
very small set of labeled nodes to actively expand and explore the network, with
the explored network covering as many positive nodes as possible. During the active
exploration process, we can also provide the most promising nodes for the experts to
label, with the labeled nodes being integrated into the active exploration process to
further improve the exploration performance in the round.
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(a) (b)

(c) (d)

(e)

Fig. 8 Recall of positive nodes in explored networks with respect to different numbers of labeled nodes.
a CiteSeer. b Cora. c PubMed: diabetes mellitus, experimental. d PubMed: diabetes mellitus type 1. e
PubMed: diabetes mellitus type 2

5.4 Impact of threshold Thr

In our proposed Single-Seed AEGraph algorithm, threshold Thr controls whether a
node with themaximumKL divergence EKL should be labeled or not at each iteration.
A smaller Thr value would result in a better chance for a node to be labeled, whereas
a larger Thr value would allow the nodes to be less frequently labeled (and therefore
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(a) (b)

(c) (d)

(e)

Fig. 9 Classification accuracies based on explored networks using different exploration strategies. a Cite-
Seer. b Cora. c PubMed: diabetes mellitus, experimental. d PubMed: diabetes mellitus type 1. e PubMed:
diabetes mellitus type 2

reduce the labeling cost). Note that labeled nodes can provide valuable information to
guide the active exploration process, so we empirically evaluate the impact of different
Thr values on the algorithm performance in Figs. 10 and 11.

We use two networks as our case study to investigate the impact of Thr on our
proposed Single-Seed AEGraph algorithm: The first one is P100-N300, with three
threshold values 0.05, 0.1 and 0.2; and the second one is “PubMed: Diabetes Mellitus,
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(a) (b)

Fig. 10 Recall of positive nodes with respect to different sizes of explored networks. a P100-N300. b
PubMed: diabetes mellitus, experimental

(a) (b)

Fig. 11 Number of queries required in the y-axis in order to produce an explored network with the size
indicated in the x-axis. The results are reportedwith respect to different Thr threshold values. a P100-N300.
b PubMed: diabetes mellitus, experimental

Experimental”, with three threshold values 0.0001, 0.001 and 0.01. The results in
Fig. 10 show that the smaller the Thr value is, the higher recall the algorithm can
achieve. This is because, a smaller Thr value would likely increases the chance of
labeling more nodes at each iteration (In an extreme case, if Thr = 0, there is one
node to be labeled at each iteration). Because includingmore labeled nodes can provide
important knowledge to guide the future active exploration process, we can always
observe better performance when lowering the Thr threshold value. A smaller Thr
value, on the other hand, also implies a higher labeling cost (because more nodes need
to be labeled in the explored network). Our results in Figs. 10 and 11 show that there
is very little difference for small Thr values (such as 0.1 vs. 0.05 in Fig. 10). As a
result, one can specify a relatively small Thr value to compromise the labeling cost
and the overall active exploration performance.
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(a) (b)

(c)

Fig. 12 Comparison of single-seed andmulti-seed active exploration on the synthetic network P100-N300.
a Sampled nodes. b Labeled nodes. c Processing time (Color figure online)

5.5 Comparison of single-seed versus multi-seed active exploration

We now perform experiments to compare the performance of single-seed active explo-
ration and multi-seed active exploration. The aim of our experiments is to answer two
questions: (1) Towhat extent themulti-seed algorithm can improve the efficiency of the
single-seed algorithm? (2) Can the two algorithms achieve comparable active explo-
ration performance? Considering the single-seed algorithm is a special case of the
multi-seed algorithm with k = 1, we compare the performance of the two algorithms
by increasing the number of exploration processes k. Again, we use two networks as
our case study because similar observations can be made from other networks. The
first one is the synthetic network P100-N300, with four k values: 2, 3, 4, and 5; and the
other one is the PubMed network for exploring “Diabetes Mellitus, Experimental”,
with four k values 2, 5, 10 and 20.

Figures 12 and 13 report the comparison of the results on the synthetic network and
the PubMed network, respectively. The results from Fig. 12 show that Single-Seed
AEGraph and Multi-Seed AEGraph achieve comparable recall values with respect
to different numbers of sampled and labeled nodes in the explored network. Similar
observations can also be made on the PubMed network in Fig. 13. Interestingly, as
the number of seeds increases, Multi-Seed AEGraph (i.e., k = 20) demonstrates
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(a) (b)

(c)

Fig. 13 Comparison of single-seed andmulti-seed active exploration on the PubMed network for exploring
“Diabetes Mellitus, Experimental”. a Sampled nodes. b Labeled nodes. c Processing time (Color figure
online)

increasing capabilities of yielding a higher recall of positive nodes in the explored
network than Single-SeedAEGraph. This further asserts the effectiveness of themulti-
seed algorithm by jointly exploring the nodes and querying the labels of nodes among
all exploration processes.

On the other hand, Multi-Seed AEGraph can significantly improve the efficiency
of Single-Seed AEGraph on both networks. In Fig. 12c, Multi-Seed AEGraph (k = 5)
takes about 20 times less processing time than Single-Seed AEGraph. Similarly, in
Fig. 13c, we can also observe that the processing time of Single-Seed AEGraph can
be significantly reduced by using multiple, parallel exploration processes.

Based on our experiments, we can conclude that, Multi-Seed AEGraph can sig-
nificantly enhance the efficiency and scalability of Singe-Seed AEGraph over large
graphs, with comparable active exploration performance.

6 Conclusion

In this paper, we formulated a new active exploration framework which combines
network sampling and active labeling to generate a small explored network from the
original large graph. We argued that, existing network sampling approaches often
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assume that the entire network is immediately available for sampling. However, the
dynamic changes of the networks as well as the privacy and policy settings often forbid
the entire network to be collected at once for sampling.Meanwhile, the separated sam-
pling and labeling processes often produce inferior explored networks, especiallywhen
the networks contain very few nodes directly related to specific graph mining tasks.
The proposed active exploration framework intends to combine network sampling and
node labeling as a mutual, beneficial process to explore a network best suitable for
the underlying mining tasks. To achieve this goal, we consider the network structure
and node features to guide a supervised sampling and labeling process. A Markov
chain with the stationary probability distribution is learned to assign proper probabil-
ity scores to the nodes in the explored network. The sampling and labeling processes
can utilize the probability scores of the nodes to explore future candidates for sampling
and label important nodes for improving classification. To improve the scalability of
active exploration over large graphs, we also proposed a multi-seed strategy which
simultaneously runs multiple, parallel exploration processes, and makes local/global
decisions about which node should be sampled and labeled next from multiple explo-
ration processes. Experiments on both synthetic and real-world networks confirmed
that our active exploration algorithms significantly outperform baseline approaches,
especially for networks containing very few positive nodes. The main contributions of
this paper, in comparison with existing work, are three-fold: (1) a supervised random
walkwith a clear optimization objective; (2) a seamless network sampling and labeling
framework for maximum performance gain; and (3) a multi-seed algorithm for active
exploration over large graphs.
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