
Decision Support Systems 52 (2011) 40–51

Contents lists available at ScienceDirect

Decision Support Systems

j ourna l homepage: www.e lsev ie r.com/ locate /dss
CLAP: Collaborative pattern mining for distributed information systems

Xingquan Zhu a,b,⁎, Bin Li a, Xindong Wu c,d, Dan He e, Chengqi Zhang a

a QCIS Centre, Faculty of Eng. & Info. Technology, Univ. of Technology, Sydney, Ultimo 2007, Australia
b Dept. of Computer Science & Eng., Florida Atlantic University, Boca Raton, FL 33431, USA
c Dept. of Computer Science, University of Vermont, Burlington VT 05404, USA
d School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China
e Dept. of Computer Science, Univ. of California at Los Angeles, Los Angeles, CA, 90095, USA
⁎ Corresponding author at: QCIS Centre, Faculty of En
Technology, Sydney, Ultimo 2007, Australia. Tel.: +1 61

E-mail addresses: xqzhu@cse.fau.edu, xqzhu@it.uts.e

0167-9236/$ – see front matter. Crown Copyright © 20
doi:10.1016/j.dss.2011.05.002
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 8 October 2010
Received in revised form 4 May 2011
Accepted 15 May 2011
Available online 27 May 2011

Keywords:
Distributed data mining
Distributed association rule mining
Frequent item-sets
Bloom filter
The purpose of data mining from distributed information systems is usually threefold: (1) identifying locally
significant patterns in individual databases; (2) discovering emerging significant patterns after unifying
distributed databases in a single view; and (3)finding patternswhich follow special relationships across different
data collections. While existing research has significantly advanced the techniques for mining local and global
patterns (the first two goals), very little attempt has beenmade to discover patterns across distributed databases
(the third goal).Moreover, no framework currently exists to support themining of all three types of patterns. This
paper proposes solutions to discover patterns from distributed databases. More specifically, we consider pattern
mining as a query process where the purpose is to discover patterns from distributed databases with patterns'
relationships satisfying user specified query constraints. We argue that existing self-contained mining
frameworks are neither efficient, nor feasible to fulfill the objective, mainly because their pattern pruning is
single-database oriented. To solve the problem, we advocate a cross-database pruning concept and propose a
collaborative pattern (CLAP)mining frameworkwith cross-database pruningmechanisms for distributed pattern
mining. In CLAP, distributed databases collaboratively exchange pattern information between sites so that each
site can leverage information from other sites to gain cross-database pruning. Experimental results show that
CLAP fits a niche position, and demonstrate that CLAP not only outperforms its other peers with significant
runtime performance gains, but also helps find patterns incapable of being discovered by others.
g. & Info. Technology, Univ. of
2 9514 1885.
du.au (X. Zhu).

11 Published by Elsevier B.V. All rig
Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.
1. Introduction

Many applications possess data collected from distributed sources
[42,57]. Examples include market basket transaction data from
different branches of a wholesale store, insurance claim data from
different states, patient health records from different hospitals, census
data of different states in one particular year, among many others.
Even for one single database, the temporal or spatial relationships
may also provide multiple views for the underlying data [11,21]. For
example, transaction data [6] collected in a single wholesale store
over different time periods can be regarded as multiple correlated
databases. Census data of a certain state in different years [26], and
patient records of one hospital from different time periods, can also
form a collection of multiple databases. For years, knowledge
discovery and data mining (also referred to as KDD) have demon-
strated themselves to be an effective tool to search for novel and
actionable patterns and relationships in the data [42]. Examples of
patterns of interests include, but are not limited to, classification
models (decision trees or statistical reasoning models) [3,19,45],
clusters [14,18], and association rules [2,4,24,33].

From an association rule mining perspective, past research has
made significant efforts to discover a variety of patterns, such as
frequent item-sets, temporal, spatial, and/or sequential association
rules, closed patterns or sequential patterns. Common challenges in
this area are usually twofold: (1) identifying patterns from a single
(large volume) database [55] or from data with continuous volumes
[35,58] (referred to as local patterns or L-pattern mining in this
paper); and (2) discovering new patterns by unifying multiple
databases into a single view [4,57] (referred to as global or G-pattern
mining in this paper). For distributed databases, a common goal is to
discover G-patterns, which are trivial in local databases, but
significant after multiple databases are unified into a single view.
Collective data mining [31] represents the most typical research work
in the area. A common practice is to act on local databases, and
forward promising local candidates to a central place for synthesizing
[12,50].

For distributed databases, G-patterns are important because they
contain knowledge that is hard, if not impossible, to be realized by
L-patterns [61]. In practice, there is a third type of pattern that may
help discover data relationships acrossmultiple distributed databases.
hts reserved.

http://dx.doi.org/10.1016/j.dss.2011.05.002
mailto:xqzhu@cse.fau.edu
mailto:xqzhu@it.uts.edu.au
http://dx.doi.org/10.1016/j.dss.2011.05.002
http://www.sciencedirect.com/science/journal/01679236

41X. Zhu et al. / Decision Support Systems 52 (2011) 40–51
Take a wholesale store with three branches, A, B, and C as an example
where a storemanagerwas organizing data from these three branches
for intelligent data analysis, he/she may easily raise concerns such as:

Q1: What are the patterns frequent in A, B and C? i.e., (A≥α) &
(B≥α) & (C≥α), where α is the threshold in finding frequent
patterns, and A≥α means that a pattern's support value in
database A should be no less than the value α.
Q2: What are the frequent patterns which appear more often in A
than in B, but infrequent in C? i.e., (ANB≥α) & (Cbβ)
Q3: What are the patterns whose support of differences in stores A
and B are greater or equal to the value α? i.e., |A-B|≥α.

The above concerns lead to the problem of finding pattern
relationships across a number of data collections. This problem is
essentially different from local and global pattern mining mainly
because users are interested in neither local significant patterns (i.e.,
L-patterns) nor global significant (i.e., G-patterns). In reality, when
users are exposed to the data collected from multiple databases or
multiple data sources,1 it is natural to refer to a comparative study tool
for knowledge and pattern discovery. In addition, it is often the case
that users know some basic features of the data, such as the date and
time each database was collected, or the region or entity each
database may represent. What remains unclear is the relationship of
the patterns hidden across the multiple data collections. For example,
the store managers may want to find customers' gradually increasing
shopping patterns in a certain period of time, or a microbiologist may
want to find disease patterns along an evolving order. For these
purposes, discovering pattern relationships across multiple databases
(referred to as inter-pattern or I-patternmining in this paper) can be a
very important part of the KDD process.

The above observations motivate the necessity of finding I-
patterns from multiple databases, where patterns need to be
discovered in individual databases and further compared across
different data collections. Although this problem seems easy to solve
by simply mining a “seed” database and then comparing patterns
across all databases, in practice, I-pattern discovery is severely
challenged by the following practical issues: (1) databases may be
physically distributed so that intensive data transmission across sites
should be avoided; (2) due to data privacy or other concerns, data
aggregation for mining should be discouraged; and (3) in order to find
a pattern p's relationships across multiple databases, one has to scan
each database to check p's frequencies with respect to each individual
database. This database scanning process is heavily time-consuming if
the number of patterns for comparison is large. In addition to the
above three issues, if we consider L-, G-, and I-patterns as a whole, we
have to face the challenge of devising a unified framework capable of
finding all three types of patterns in distributed data environments.
Under such circumstances, we believe that the major technique
challenges are fourfold:

• System Framework: How to design a unified data mining frame-
work capable of discovering all three types of patterns?

• Mining Procedures: How to transfer a user's mining query into
actionable mining activities, so that the mining results from
distributed sites can form legitimate answers?

• Data Transmission: What type of information should be exchanged
between distributed sites? Also, how should the information be
exchanged?

• Cross-database Pruning: How to carry out data mining activities by
leveraging information from different sites? In other words, how to
enable cross-database pattern pruning so that messages exchanged
between sites can speed up the mining process?
1 In this paper, multiple databases, multi-databases, and multiple data sources are
interchangeable terms.
This paper reports our recent progress in resolving the above
problems, from both system and algorithm design perspectives. We
consider pattern mining as a query process where the purpose is to
discover patterns satisfying user specified constraints. To achieve
distributed patternmining, we propose a collaborative patternmining
(CLAP) framework with its own unique method to enable cross-
database pruning.

The remainder of the paper is organized as follows. Section 2
reviews existing work in the literature. Section 3 formally defines the
problem and discusses pattern queries for mining. Section 4 provides
an overview of the distributed pattern mining frameworks. Section 5
articulates technical details of the proposed CLAP mining framework.
We report experimental results in Section 6, and conclude in
Section 7.

2. Related work

Mining distributed databases [22,30,38]are a practical issue and a
large amount of research work has significantly advanced the
techniques for distributed classification [3,34,45], clustering [14,18],
OLAP [11,21], frequent patternmining [2,4,12,24], stream datamining
[35,46], and database similarity assessments [32,49]. Presumably,
nearly every major data mining research area has at least one
distributed mining module or algorithm. The main themes of these
research activities share striking similarities in the sense that they all
intend to unify, and/or compare distributed data sources to achieve a
common goal.

From clustering and classification perspectives, the pattern
discovery from distributed databases problem arises of how to train
global models by leveraging information from multiple databases.
This can be achieved by either aggregating data into a single view or
integratingmodels built from single databases [17,36]. Kargupta et. al.
[31] proposed a collective data mining framework with a primary key
to unify all data into a single view. Similar assumptions were also
made for privacy preserving data mining [29,43], cluster ensembling
[18], and kernel based model integration [17] for learning heteroge-
neous data. Yin et. al [53] previously proposed a CrossMiner for
classification from multiple relational databases. Wang et. al. [48]
addressed the problem of reinforcement clustering of multi-type
inter-related objects (e.g. web documents). The problem of frequent
pattern mining for distributed databases has also been well studied
[1,4,12,23,31,33,37,44,50,54,55], where count distribution, data dis-
tribution, and candidate distribution are three basic mechanisms [31].
Along with all research activities, the focus has been primarily on
mining large volume databases or continuous volume data streams
(i.e., mining L-patterns), or unifying patterns discovered from single
databases into new knowledge (i.e., mining G-patterns). Some system
architectures also exist to discover frequent patterns from terabyte-
scale data-sets running on cluster systems [9], by using compressed
data structures (similar to FP-tree [24]) and succinct encoding
methods. Such frameworks and solutions, however, typically limit
their scope to the data volumes but have no mechanism to
comparatively study multiple databases and discover their relation-
ships at pattern levels.

In short, the deficiency of the existing work for distributed
database mining is mainly threefold: (1) they lack general cross-
database pruning mechanisms; (2) they have no effective message
exchanging paradigm but mainly switch patterns in raw formats; and
(3) they are not capable of mining all three types of patterns (L-, G-,
and I-patterns). In comparison, this paper focuses on finding all types
of patterns from distributed databases under a unified mining
framework.

When data involve multiple (distributed/centralized) sources, one
of the most important tasks is to assess the similarity between
databases to discover structural information between databases for
clustering [56] or classification [59]. Parthasarathy [39] and Li [32]

42 X. Zhu et al. / Decision Support Systems 52 (2011) 40–51
have previously addressed the problem of database similarity
assessment by comparing association rules from different databases,
e.g. the identical rules discovered by different databases and the
numbers of instances covered by identical rules. The importance of
finding differences between databases has been addressed by many
researchers [5,15,49,52], andmost methods focus on comparing a pair
of databases one at a time. Webb et al. [49] proposed a rule based
method to explore a contrast set between two databases. Xu et al. [51]
proposed to discover comparative opinions between products from
customer reviews. In [52], we proposed methods to evaluate the
conceptual equivalence between two databases. Ji et al. [27] proposed
methods to explore minimal distinguishing subsequence patterns
between two data-sets, where the patterns take the form of “frequent
in database A, but significantly less frequent in database B”, i.e.
{(A≥α) & (B≤β)}. All these methods focus on finding differences (in
terms of data items or patterns) between two data-sets, but they
cannot support complex queries like the ones in the Introduction.
Therefore, this type of work is a sub-set of our framework, and our
goal is to address a broader area of problems in pattern discovery from
distributed databases.

Research in database queries has made significant efforts in
supporting data mining operations [8,28,47,60], with extensions of
the database query languages to support mining tasks, but most
research effort has focused on a single database with relatively simple
query conditions. Two works are closely related to this research: (a)
the complexmining optimization system proposed by Jin and Agrawal
[28]; and (b) our recent work on relational pattern discovery across
multiple databases [60]. In [28], Jin and Agrawal presented an SQL-
based mechanism for mining frequent patterns across multiple
databases, with the objective of optimizing users' queries to find
qualified patterns. The essential difference between work in [28] and
the proposed research is twofold: (1) the efforts in [28] only focus on
enumerating query plans and choosing the one with the least cost.
Instead of optimizing queries our research will propose a distributed
datamining framework to support users' queries to find broader types
of patterns; (2) because of the limitations of their pattern mining
framework (relying on each single database), the solution in [28] can
only answer simple queries like {(Si≥α1) & (Sj≥α2) & (Sk≤β)}, i.e.,
each element of such a query must explicitly specify one single
database and its corresponding threshold value. As a result, their
methods cannot answer complex queries like Queries 2 and 3 in the
Introduction, and therefore its applicability is limited; and (3) the
methods in [28] are only applicable for centralized databases, whereas
we intend to mine patterns from distributed databases. In [60], we
have proposed a solution to discover relational patterns (e.g., I-
patterns) acrossmultiple databases, which requires the aggregation of
all databases at a central place, which is not feasible for distributed
mining scenarios.

In short, although the distributed pattern mining problem has
been extensively addressed in the literature, no framework is
currently available for mining all three types (L-, G-, and I-) of
patterns in distributed scenarios. As the major contribution of this
work, we propose a distributed mining framework and a number of
algorithms to resolve the key challenges, such as cross-database
pruning for distributed mining.
3. Problem definition & query decomposition

Given a number of distributed databases Di, i=1,…, n, each of
which corresponds to an individual site Si, i=1,…, n, we assume that
all distributed sites are able to compute and communicate with
others, and a dedicated master site is provided for users to submit
queries/constraints. The pattern discovery from distributed databases
problem is finding patterns complying with the users' queries without
aggregating data to a central place (e.g., the master site).
A pattern, P, discussed in this paper takes the form as an item-set,
i.e. a set of items satisfying user queries/constraint(s). The support of a
pattern P in a database Di, represents the ratio between the number of
times P appears in Di and the total transactions in Di.

A user's query/constraint specifies the patterns he/she intend to
discover. For example, a user can specify {Si≥α} to indicate that he/she
intends to find patterns from site Siwith all legitimate patterns' support
larger than or equal to the threshold α. Assuming that X and Y denote
two databases, we define the following two types of relationship factors
and four operators to help users confine their queries.

Relationship and set operators:

• X≥α (XNα) indicates that a pattern's support value in X is no less
than α (X is larger than α).

• X≤α (Xbα) indicates that a pattern's support value in X is no larger
than α (X is less than α)

• X ∪ Y indicates a virtual set which is the union of the transactions of
X and Y.

Arithmetic operators:

• X+Y indicates the summation of the support in X and Y
• X−Y indicates the subtraction of the support in Y from the support
in X

• X & Y indicates the operation of X and Y
• X | Y indicates the operation of X or Y
• |X| indicates the absolute support value in X.

A user's query is a combination of the above operators for finding
patterns from distributed databases. More specifically, a query should
involve at least one database and one relationship operator, e.g., {Si≥α}.
Aquerymayalso involvemultiple relationship andarithmetic operators,
which is often the case in reality. Following this process, the mining of
the L-, G-, and I-patterns can be achieved by using different queries. For
instance, the following examples list thequeries for each typeof pattern:

• L-pattern query examples: Q={Si≥α} or Q={Sj≥α}
• G-pattern query example: Q={(Si ∪ Sj)≥α}
• I-pattern query example: Q={Si≥Sj≥α}

Due to limitations of the pattern mining process, a user's query
cannot take arbitrary forms, but has to involve at least one
relationship operator ≥ (or N) with a numerical threshold value
following this operator. For example Q={Si≥Sj≥Sk} is not a valid
query; whereas Q={Si≥Sj≥Sk≥α} is. The reason we require a valid
query is because without a threshold α, it is practically infeasible to
find all patterns satisfying Q={Si≥Sj≥Sk}.

3.1. Query decomposition

A query decomposition process is needed for the following reasons:
(1) from thedataminingperspective, it is often the case thatnot all parts
of the query complywith thedown-closure property [2], i.e., any sub-set
of a frequent item-set is also frequent. For example, the “≤” and “b”

relationship operators normally do not comply with the down closure
property. It is obvious that even if a pattern, say {abc}, in Si, does not
satisfy Si≤β, its super-set, say {abcd}, may still comply with Si≤β.
Therefore,wemust pre-process a user's query and explicitly decompose
it into a set of sub-queries complyingwith thedown closure property, so
that the mining module can use these sub-queries for candidate
pruning; and (2) from a distributed mining perspective, a site may be
involved in only a sub-set of the query. Consequently, we need to
decompose eachuser query into a number of sub-queries, each ofwhich
only involves necessary sites in the mining process. In this sub-section,
we briefly list five properties for query decomposition; other properties
[60] are also available but omitted in the paper.

Property 1. Given a sub-query which contains a relationship operator
“≥” or “N”, if the sub-query has a single database and a threshold value α

43X. Zhu et al. / Decision Support Systems 52 (2011) 40–51
listed as the antecedent and the consequent of the operator “≥” or “N”,
respectively, this sub-query complies with the down closure property.

Proof. This property is based on the Apriori rule [2] in frequent item-
set mining, which states that if a pattern P's support in a database is
less than a given threshold α, then any super-sets of P (the patterns
growing from P) will also have their support less thanα. Therefore, if a
query involves multiple databases, relationship operator “≥” or “N”,
and a single threshold value α, we may decompose this query into a
set of sub-queries with each single database and the threshold valueα
listed as the antecedent and the consequent the relationship operator,
respectively. For example, a query {A≥B≥C≥α} can be decomposed
into three sub-queries (A≥α), (B≥α), and (C≥α), each of which
strictly complies with the Apriori rule. It is obvious that if a pattern P
violates any one of these three sub-queries, there is no way for P, as
well as P's super-sets, to be a qualified pattern.

Property 2. Given a sub-query which contains a relationship operator
“≥” or “N”, if the sub-query has the sum (“+”) of multiple databases and
a threshold value α as the antecedent and the consequent of the
relationship operator “≥” or “N”, respectively, this sub-query complies
with the down closure property.

Proof. Given a pattern P and any of its sub-patterns Q, assuming P's
and Q's supports in A, B and C are p1, p2, p3 and q1, q2, q3 respectively, it
is obvious that q1≥p1, q2≥p2, q3≥p3. If (p1+p2+p3)≥α, then it is
obvious that (q1+q2+q3)≥(p1+p2+p3)≥α. Therefore, the prop-
erty 2 is true. This property states that if a sub-query sums upmultiple
databases and is followed by factors “≥” or “N” and a threshold value
α, then the sub-query strictly follows the down closure property and
can be directly used for pattern pruning.

Property 3. Given a sub-query which contains a relationship operator
“≥” or “N”, if the sub-query has the support difference of two databases,
say (Si–Sj), and a threshold value α listed as the antecedent and the
consequent of the relationship operator “≥” or “N”, respectively, this sub-
query can be further transformed into a sub-query like Si≥α, which still
complies with the down closure property.

Proof. It is obvious that if (A−B)≥α, then A≥(B+α). Since a
pattern's support in a database cannot be negative, we have A≥α.

Property 4. Given a sub-query which contains a relationship operator
“≥” or “N”, if the sub-query has the absolute support difference of two
databases, say |Si–Sj|, and a threshold valueα listed as antecedent and the
consequent of the relationship operator “≥” or “N”, respectively, this
query can be transformed into a sub-query like {(Si≥α) | (Sj≥α)}, which
still complies with the down closure property.

Proof. It is obvious that if |A−B|≥α, then we have (A−B)≥α or (A−
B)≤−α,whichare equivalent to the inequationsA≥(B+α) orB≥(A+
α), i.e. {(A≥α) | (B≥α)}. For any pattern P, if its supports in A and B are
both less than α, there is no way for P's super-set to have a higher
support than α. Therefore, the pattern P still complies with the down
closure property.

Property 5. A sub-query containing relationship factors “≤” or
“b”complies with the down closure property.

Proof. It is obvious that even if a pattern, say P1={abc} in a database Si,
does not satisfy Si≤β, its super-set, say P2={abcd}, may still comply
with Si≤β. Therefore, any pattern that does not satisfy query Si≤β
cannot be pruned out, because it can later grow into a longer length
pattern, which eventually will satisfy the query constraint (Si≤β).

In our design, a query is decomposed at the master site based on
the above properties. The decomposed sub-queries (which comply
with the down-closure property) are placed into Down Closure (DC)
sub-sets and are further dispatched to distributed sites. The original
query is also kept to validate patterns at the final stage.

4. Pattern mining frameworks

From a system perspective, the problem of distributed mining (for
L-, G-, and I-pattern discovery) can be solved by three frameworks:
(1) SeQuentiaL Pattern mining (SQLP); (2) PAralleL Pattern mining
(PALP); and (3) CoLlAborative Pattern mining (CLAP). The conceptual
views of the three frameworks are shown in Fig. 1, where a master
node collects user queries and collects mining results from distributed
databases DB1, DB2,…, DBn.

In Fig. 1, SQLP and PALP are self-contained mining frameworks,
because mining is essentially carried out in individual sites without
involvingdata fromother sources. For SQLP, patternmining is initialized
at a seed database (i.e., DB1 in Fig. 1(a)) with results passed on to the
second database for verification. The above process repeats until
patterns are verified by all databases involved in thequery. For example,
to answer Q2={(ANB≥α) & (Cbβ)} in Section 1, SQLPmay start from
database A to find frequent patterns satisfying {ANα}, and then pass on
patterns todatabaseB tofindpatterns satisfying {ANB}. Anypatternsnot
satisfying the query will be pruned out immediately.

Instead of mining and verifying patterns in a sequential way, PALP
carries out the mining of individual databases in parallel, and collects
all patterns in a central location to find the ones satisfying the user
queries. In Fig. 1(b), the mining is initiated in all databases, and the
answers are forwarded to the master site for validity check. For
example, to answer Q2={(ANB≥α) & (Cbβ)} in Section 1, PALP
concurrently discovers patterns from each single database (A and B),
and then collects all patterns to find those that are qualified. One
should be aware that it is technically not feasible tofindpatternswhich
satisfy {Cbβ} by using database C alone, because no deterministic
pruning rules will hold and one has to list all the candidates, if he/she
intends to do so. Therefore, PALPwill concurrentlymine patterns from
A and B, and then pass on the patterns to C for verification.

For both SQLP and PALP, the pattern mining process (candidate
generation and pruning) is carried out at each single site. The inherent
disadvantage of such self-containedmining frameworks is that pattern
generation and pruning are essentially single-database-oriented and
inefficient for distributed mining. Taking a simple query like Q=
{(Si≥α)& (Sj≥α)} as an example, for smallα values, a large number of
patterns may satisfy either Si≥α or Sj≥α, but very few of them satisfy
(Si≥α) & (Sj≥α). Consequently, a pruning process utilizing informa-
tion from Si and Sj is much more efficient than mining Si and Sj alone.

Different from self-contained mining where sites are independent
of each other and the mining process is limited to the local data, joint
mining intends to let distributed databases collaborate with each
other for pattern discovery. Ideally, a joint mining framework should
meet the following three criteria for pattern discovery: (1) being able
to unify distributed databases for cross-database pattern pruning;
(2) being able to answer complex queries for mining all three types of
(L-, G-, and I-) patterns; and (3) being able to scale up to large volume
databases with limited bandwidth consumption and no source data
sharing.

Fig. 1(c) proposes a framework, CLAP, which carries out mining
activities in a “joint” manner. CLAP allows the distributed sites to
communicate with each other and exchangemessages, so themining is
carried out at distributed sites without any data integration. The cross-
database pattern pruning is achieved by using messages exchanged
between sites.

Several concerns remain regarding the efficiency of the proposed
collective and collaborative mining frameworks:

• What type of information should be exchanged between sites for
effective mining and data privacy protection?

DB 2

DB N

Master

network

⋅ ⋅ ⋅

(a) SQLP

Master

network

⋅ ⋅ ⋅

(c) CLAP

DB 1 DB 1

DB 2

DB N

Master

network

⋅ ⋅ ⋅

(b) PALP

DB 1

DB 2

DB N

Fig. 1. Conceptual views of the data and knowledge flow of different mining frameworks: solid lines indicate physical connections and dash lines show the data and knowledge flow.
Gray nodes indicate nodes actually carrying out the mining activities (candidate generation and pruning). In SQLP, patterns are discovered from one DB and sequentially passed to
others for verification; in PALP, patterns are generated in each single database and forwarded to the master site for validation; and in CLAP, the mining activities are carried out in
distributed sites with messages exchanged between sites for cross-database pruning.

44 X. Zhu et al. / Decision Support Systems 52 (2011) 40–51
• How to exchange messages between sites for effective transmission
and mining?

• How to utilize information from other sites to fulfill cross-database
pattern pruning and mining?

This paper proposes to rely on the exchanging of pattern filters
between distributed sites for cross database pruning. More specifically,
the distributed sites will exchange the complete set of length-l patterns
with other sites for cross database pruning, so each site can immediately
prune out candidates which do not satisfy the query. Because exchanging
patterns and checking pattern existences in a database are time-
consuming, we will employ bloom filters to accelerate the whole mining
process.

5. Clap: Collaborative pattern mining

Collaborative pattern mining advocates pattern discovery in a
distributed manner with each distributed site carrying out pattern
pruning in collaboration with its peers, by employing the Bloom Filter
(BF) [7,10,13,16,20] based pattern switching mechanism. In following
sub-sections,wefirst briefly introduce thebloomfilter and itspotential for
distributedmining. In Section5.2we introduceadepth-limitedFP-growth
process which utilizes bloom filters to achieve cross-database pruning.
The collaborative pattern mining framework is introduced in Section 5.3.

5.1. Bloom filters for distributed mining

A bloom filter (BF) is a space efficient data structure, which
consists of k hash functions, H1(⋅), H2(⋅), …, Hk(⋅), and an m bits
binary array. The strength of a BF tests whether a given element is a
1
0
1
1
0
0
.
.
.
1
0
1

H 1(⋅)

H 2(⋅)

H k(⋅)

…

x 1

x 2

x 3

.

.
x i

.

.

.

n m

Fig. 2. Bloom filter architecture.
member of a set in a very effective way [7,16,20]. Fig. 2 shows given
elements x1, x2,…, xn, each of which is hashed by k hash functions to k
locations of them-bits array. The m-bits array is initially set to 0, but a
bit j of the array is flipped to 1, if any hash functionmaps a pattern xi to
the jth location. Following the above procedure, one can add all n
patterns x1, x2, …, xn into the bloom filter. To check whether a pattern
xt exists in a bloom filter or not, one can use all k hash functions tomap
xt to k positions. If any of the k positions is 0, xt does not exist in the
bloom filter. If all k bits are 1, we conclude that xt exists in the bloom
filter with regard to a false positive rate (the bits may be set to 1
during the insertion of other patterns rather than xt).

Assume the size of the bloom filter array is m bits, the probability
that a certain bit is not set to one by a certain hash function h(⋅)
during the insertion of an element is

1− 1
m

ð1Þ

Given k hash functions h1(⋅), h2(⋅),..,hk(⋅), the probability that a
certain bit is not set to one by any of the k hash functions is given
below

1− 1
m

� �k

ð2Þ

Because the insertion of each element is independent, after
inserting n elements to the bloom filter, the probability that a certain
bit is set to 1 is given in Eq. (3)

1− 1− 1
m

� �nk

ð3Þ

Assume an element xwas not inserted into the bloom filter earlier,
a false positive happens only if all of the k hash positions of x are set to
1. This is equivalent to the probability shown in Eq. (4), which asserts
that the false positive rate of a bloom filter decreases as the filter size
(m value) increases, and increases as the number of inserted items (n
value) increase.

1− 1− 1
m

� �nk
 !k

≈ 1−e−kn=m
� �k ð4Þ

Assume two sites Si and Sj are carrying out pattern mining to
discover patterns frequent in both Si and Sj, bloom filters can help both
sites achieve cross-database pruning by switching their bloom filters
BFi and BFj (each contains patterns frequent at one site). The

Fig. 3. Depth-Limited FP-growth process.

Fig. 4. Collaborative pattern mining framework.

45X. Zhu et al. / Decision Support Systems 52 (2011) 40–51
employment of the bloom filters has a number of advantages. First, a
bloom filter is fast for membership checks. Assume site Si has the
bloom filter BFj from Sj, Si can query BFj, with O(1) time complexity, to
check whether a pattern exists in Sj or not. Secondly, a bloom filter is
space efficient. Exchanging bloom filters between sites is much more
efficient than exchanging patterns between sites. Thirdly, a bloom
filter's false negative value is zero. In other words, if Si queries BFj and
finds that a pattern x does not exist in BFj, then x is indeed not frequent
in Sj. As a result, Si may safely remove x. So the cross-database pattern
pruning can be achieved.

5.2. Depth-limited pattern growth for cross-database pruning

By using bloom filters, a naive cross-database pruning approach,
following the Apriori principle [2], can be implemented as follows:

1. Given a site Si, use the Apriori mining approach to generate a
complete set of length-l patterns.

2. Use frequent length-l patterns in site Si to construct a bloom filter
(BFi-l), and broadcast BFi-l to other sites.

3. After site Si receives the bloom filters BFj-l from other sites, it can
query BFj-l and prune out length-l patterns in Si and then grow
length-(l+1) patterns.

4. Set l← l+1 and repeat Steps 2 to 4 until no more frequent patterns
can be discovered from any sites.

The main disadvantage of the above cross-database pruning
approach is that it critically relies on the Apriori principle, where
repetitive database scanning is heavily time-consuming and will
significantly slow down the mining process. In this sub-section, we
propose a new depth-limited FP-growth (DLFP-growth) which
combines the strength of the bloom filter and FP-growth for
distributed sites to achieve cross-database pruning.

Intuitively, although FP-growth is effective for patternmining, it is,
however, unsuitable for cross-database pruning. This is because FP-
growth is a depth-first recursive process which starts from an item “a”
and discovers all patterns related to “a” before it moves on to the next
item “b”. Such a depth-first approach makes the collection of the
complete set of length-l patterns unavailable until the whole
algorithm ceases. In other words, we cannot collect all length-l
patterns from site Si and distribute them to other sites until the whole
mining process at Si stops (then pattern switching between sites
becomes meaningless). Alternatively, we can forbid the recursive FP-
growth process from going deeper once the length of the pattern
reaches a limit l, then force FP-growth to turn to the next items and
continue to discover the complete set of length-l patterns (i.e., turn
the depth-first search into a depth-limited approach).

The depth-limited FP-growth (DLFP-growth), as shown in Fig. 3,
takes four parameters, an FP tree, a base set BS, a length constraint l,
and a set of bloom filters, if they exist, BF[], as input. On Step 1, DLFP-
Growth will terminate and stop growing the pattern longer if the
length of the pattern (enclosed in the BS) reaches the length l.

In Step 2, the pattern growth will be carried out for each item xi of
the given FP tree. This process utilizes the bloom filters collected from
distributed sites for cross-database pruning. Given a base set BS and
item xi, the new pattern ϑ for growth is the concatenation of BS and xi,
as shown in Step 2.a. Instead of directly building an FP tree for xi,
which is a relatively expensive process, we can query bloom filters BF
[] and prune out xi if any sub-sets ofϑ do not exist in BF[]. For example,
assume BS={abd} and xi=g, then the pattern under growth is ϑ=
{abdg}. Assume a bloom filter in BF[], denoted by BFj-3, contains
length-3 patterns from site Sj. We query any length-3 sub-sets of ϑ,
such as ϑ1={bdg}, from BFj-3. If ϑ1 does not exist in BFj-3, we can
safely prune out xi=g without growing an FP tree for xi because
pattern ϑ is not frequent in the distributed sites Sj, so there is no need
to grow it in the local site Si.
It is worth noting that the DLFP-growth process can be easily
adjusted to fit different situations through the tuning of the
parameters l and BF[]. For example, if we set l=−1 and BF[]=null,
then DLFP-growth degenerates as the traditional FP-growth. On the
other hand, setting l to any values greater than 0 with BF[]=null, one
can collect all length-l patterns without utilizing any bloom filters
from other sites. In the next sub-section, we will articulate technical
details of using DLFP-growth for collaborative pattern mining from
distributed databases.
5.3. Collaborative pattern mining with DLFP-growth

In Fig. 4, we list major steps for a site to carry out collaborative
pattern mining using length constrained FP-Growth, where cross-
database pruning is achieved through the following threemajor steps:

Table 1
A simple comparison between three distributed mining frameworks. “+” indicates that
a framework is positive with respect to the assessment criterion, “−” means negative,
“~” represents partially positive (i.e., a frameworkmay partially meet the criterion), and
“∕” means the criterion is meaningless for that particular framework.

Assessment criteria SQLP PALP CLAP

Mining L-patterns? + + +
Mining G-patterns? − − +
Mining I-patterns? ~ ~ +
Distributed mining activities? + + +
Cross-database pruning? − − +
Distributed data structure? + + +
Low memory consumption? + ~ +
Limited # of DB scanning? − + +
Data privacy concerns? + + +
Effective message switching? − ∕ +
Parallel mining activities? − + +

2 For given m and n values, the hash function number (k) that minimizes the
probability of the false positives is about k=0.7×(m/n).

46 X. Zhu et al. / Decision Support Systems 52 (2011) 40–51
• A local site Si generates the complete set of length-l frequent
patterns by calling DLFP-growth. (Step 3)

• Site Si constructs a bloom filter, BFi_l, by using length-l frequent
patterns discovered at Step 3, and sends BFi_l to distributed sites.
(Steps 4, 8, and 9)

• Site Si carries out pattern growth with cross-database pruning, by
using BF_l[] collected from other sites. (Steps 12, 13, and 14)

The framework in Fig. 4 is essentially an asynchronous distributed
mining module, which means that each distributed site can work
independently without synchronizing with any other sites. For any
site Si, a sub-query SQ is accepted from themaster site as an input, and
then the sites relevant to the sub-query SQ are determined (Step 5).
After that, Si will send a request to each of the relevant sites and ask
them to send a bloom filter containing length-l patterns to Si. The
mining process then runs into an event driving loop between Steps 7
and 17. More specifically, if site Si receives a request from site Sj, which
is asking for length-l patterns, Si will immediately send BFi_l to Sj as
shown in Steps 8 and 9. If a site Sj responds to Si's request at Step 6, Si
will collect the bloom filter from Sj and include it with the bloom filter
arrays BF[]. Under any other circumstances, Si will continuously grow
patterns by using the bloom filters collected from other sites (Steps 12
to 15).

After each site completes the mining process, the results (patterns
and their actual support values) are delivered to the master site,
which will further verify and finalize valid patterns. For example, for a
query like Q={(Si≥Sj≥α) and Sk≤β}, the master site needs to collect
patterns satisfying (Si≥Sj≥α) and then deliver the pattern to Sk to
finalize those with their support values less or equal to β.

Alert readers may have noticed that a large portion of length-l
patterns discovered at Step 3 will be re-discovered at Step 13. This
raises a concern regarding the extra cost involved at Step 3, especially
if this step takes a significant amount of system runtime. In Section 6.2,
we will show that when using small l values (e.g., l=2 or 3), Step 3
only costs 1–2% (or less) of the runtime compared to the FP-Growth
without length constraints. Given that the goal of Step 3 is to enable
the cross-database pruning, the extra cost added to this step is of little
concern.

Notice that a bloom filter cannot encode support values of the
patterns, indicating that CLAP may not directly answer a summation
based query like Q={(Si+Sj)≥α} because, without knowing the
support values of a pattern p in both Si and Sj, we cannot determine
whether p (along with its successors) can satisfy the query Q={(Si+
Sj)≥α}. In addition, even if a pattern p's support in Si is 0, it may have
the summation Si+Sj greater than α, which makes p a legitimate
pattern with regard to the query Q (but mining patterns satisfying
Q={Si≥0} are technically infeasible). CLAP solves this problem by
repetitively exchanging length-1, length-2 and length-3 item-sets
between sites to collect a reasonable set of length-3 patterns from
which the pattern growth becomes possible. More specifically, given
query Q={(Si+Sj)≥α}, we first collect length-1 item-sets and their
support values for both Si and Sj, and we exchange item-sets and their
values between Si and Sj, so each site knows exactly the support values
of each item in the other site. According to Property 2 in Section 3, any
item with its support value (Si+Sj)bα cannot grow patterns
satisfying Q={(Si+Sj)≥α}. As a result, sites Si and Sj can prune out
length-1 item-sets, and grow and exchange length-2 item-sets
between each other. The above process involves a heavy communi-
cation cost, so we repeat this process for only a limited number of
times (l=3 in our experiments), then we let Si and Sj independently
grow without further communication.

5.4. Distributed pattern mining framework comparisons

In Table 1, we briefly summarize the strength and weakness of the
three distributed mining frameworks (SQLP, PALP, and CLAP), from
system design, functionalities, and data privacy perspectives. The
detailed performance comparisons are reported in Section 6. Between
all three frameworks, CLAP is the only one with cross-database
pruning that is capable of mining all three (L-, G-, and I-) types of
patterns.

From a message exchanging perspective, CLAP and SQLP are the
only two frameworks requiring message switching between sites
(excluding the master site). Comparing CLAP and SQLP, CLAP employs
the bloom filter for message switching, whereas SQLP directly passes
on the original patterns from one database to another. As a result,
CLAP is much more efficient in terms of message switching.

6. Experiments

6.1. Experimental settings

6.1.1. Methods
For comparison purposes, we implement all three frameworks

discussed in Section 4. All programs are written in C++ (Borland C++
Builder 6.0). For CLAP, we use open bloom filter [40] as the basis and
implement our own bloom filter. In the experiments, the size of the
bloom filter (m) is selected so that the ratio between the filter size (m)
and the itemnumber (n) is 8, and the number of hash functions is set to
k=5,2 which gives a theoretical false positive rate of about 2.14%. For
SQLP and PALP, each site uses an FP tree to achieve maximal mining
speeds (we implement the FP tree using an STL-like C++ tree class
[41]).

6.1.2. Data
Our test-bed, listed in Table 1, consists of two groups of synthetic

data-sets generated from an IBM quest data generator [25]. The
explanation of the data description used in Table 2 is as follows.
T1000k.N10kS1kL20 means a database with one million transactions,
10,000 unique items (N), and 1000 significant patterns (S), where the
average length of the maximum length pattern is 20 (L) (L20+19
means the combinations of setting L to 20 and 19;more details follow).

The two groups in Table 2 simulate “strong dense (SD)” and “weak
sparse (WS)” distributed databases. More specifically, “dense vs.
sparse” means the number of unique items in the database, and a
dense database has a smaller number of unique items compared to a
sparse database; “strong vs. weak” indicates the similarity or
correlations between databases, where “strong” means that distrib-
uted databases have high similarities and strong correlations with
each other. In Table 3, we report the pair-wise similarities of the WS
and SD databases, where each similarity value between row (Dr) and
column databases (Dc) is given in Eq. (5). In short, for a specific

Table 4
Query plan description.

Query Query constraints

Q1 (L-pattern) {(S1| S2| S3| S4)≥α|}
Q2 (G-pattern) {(S1∪ S2∪ S3)≥α}
Q3 (I-pattern) {(S1+S2)≥α & (S3≤S4≤β)}
Q4 (I-pattern) {S1≥S2≥S3≥S4≥α}

0.38

0.53

0.68

0.79

0.89
0.95

0.98 0.99

0.51

0.66

0.78

0.87

0.94
0.98 0.99

0.4

0.6

0.8

1

e
Pe

rc
en

ta
ge

SD1 WS1

Table 2
Benchmark database characteristics.

Database Database description

Strong dense databases SD1 T1000k.N1kS1000L20
SD2 T500k.N1kS1000L20
SD3 T250k.N1kS1000 L20
SD4 T125k.N1kS1000 L20

Weak sparse databases WS1 T1000k.N10kS1000 L20+20
WS2 T500k.N10kS1000 L20+19
WS3 T250k.N10kS1000 L20+18
WS4 T125k.N10kS1000 L20+17

47X. Zhu et al. / Decision Support Systems 52 (2011) 40–51
support value α, the pair-wise similarity between Dr and Dc in Eq. (5)
is calculated as the percentage of the number of rules discovered
by both Dc and Dr, in comparison with the total number of
rules discovered by Dr. The pair-wise similarity is asymmetric so
DBα(r,c)≠DBα(c,r). For the IBM quest data generator, the L value will
determine the pattern distributions. Varying the L valueswill generate
databases with very little correlation (whereas fixing the L value will
output strongly correlated databases). Therefore, in our experiments,
the WS databases are generated by a mixture of two L values.

The values in Tables 3 show that SD databases have very high
similarity, e.g., almost all rules discovered in SD4 are discovered by SD1

as well, whereas a very small percentage of rules in the WS databases
are identical to each other.

DBα r; cð Þ = jDr∩Dc j
jDr j

ð5Þ

6.1.3. Measures
The experiments select a number of queries (listed in Table 4) as

benchmarks which are provided to a dedicated master site. The
queries are further decomposed into a number of sub-queries and are
dispatched to corresponding sites if necessary. Although it is possible
to re-use previously discovered results to answer a query (e.g., results
from {Si≥0.5%} can be re-used by query {Si≥0.8%}), for fairness of the
comparison, all queries are answered by reinitializing the whole
mining process. All algorithms are compared based on their runtime
performances and/or the size of messages exchanged between sites.
The runtime of the systems crucially relies on the underlying queries.
For an objective assessment, we define four queries, as shown in
Table 4, and will demonstrate the average system runtime perfor-
mances to answer these queries.

The performance of CLAP relies on two important factors: (1) depth-
limited pattern growth for cross-database pruning; and (2) bloom filter
based message exchanging between sites. The following sections study
CLAP in detail. A comparative study across all three frameworks
(including SQLP and PALP) is reported in Sections 6.4.

6.2. Depth limited pattern growth results

As shown in Fig. 4, the cross-database pruning of CLAP relies on the
exchange of the length-l patterns between sites. This raises an
important issue of finding the proper l value for DLFP-growth to find
the complete set of length-l patterns (Step 3 in Fig. 4). Practically,
Table 3
Pair-wise database similarities (α=0.5%).

(a) Strong dense databases (b) Weak sparse databases

DB SD1 SD2 SD3 SD4 DB WS1 WS2 WS3 WS4

SD1 1.0 0.91 0.98 0.22 WS1 1.0 0.04 0.04 0.03
SD2 0.97 1.0 0.96 0.21 WS2 0.02 1.0 0.02 0.02
SD3 0.91 0.84 1.0 0.19 WS3 0.01 0.01 1.0 0.01
SD4 0.99 0.92 0.90 1.0 WS4 0.02 0.02 0.02 1.0
although exchanging length-l patterns between sites can enable
cross-database pruning, the process of finding the complete set of
length-l patterns adds extra cost to individual sites. So l values must
be properly determined to ensure balanced performance gains.

In Fig. 5, we report the ratios between the runtimes of DLFP-
growth with different l values and DLFP-growth without any length
constraint, as defined in Eq. (6), which shows the extra cost of CLAP in
finding the complete set of length-l patterns (compared to the total
mining cost for each individual site).

r = DLFP FP tree;null; l;nullð Þ=DLFP FP tree; null;−1;nullð Þ ð6Þ

The results in Fig. 5 indicate that for both databases (SD1,WS1), the
major cost of the FP-growth is the discovery of medium size patterns.
For example, for SD1 the cost of finding all length-3 (and length-2)
patterns by DLFP is only 3.7% of the cost of finding all frequent
patterns, whereas finding all length-10 (and shorter) patterns takes
about 53% of system runtime. This is easy to understand because
when l is small, the number of length-l item-sets is only a small
portion of the candidate patterns evaluated by the system. Similarly,
only a very small portion of patterns in the database have a long
length, and the majority of patterns (or candidates) are medium
length, which explains why two curves in Fig. 5 are sigmoid in shape.

In order to study the impact of the length-l patterns for cross-
database pruning, we choose databases WS1 and WS2 and run CLAP
mining at WS1 by using bloom filters from WS2 with different lengths
of patterns, i.e. BF2_l (l=2,3,..6). If mining were carried out on WS1
alone without using any bloom filters from WS2, it takes WS1 21.31 s
for tree pruning and eventually outputs 49,660 patterns. The pruning
efficiency in this case is 0%. By including bloom filters from WS2 to
assist cross-database pruning, as shown in Fig. 6, we can find that
CLAP significantly improves its mining efficiency. For example, when
including a length-2 pattern bloom filter (BF2_2), the tree pruning
time for WS1 is reduced to 2.47 s, and the total runtime (including
bloom filter construction) is about 21% of the stand-alone pruning
time of WS1. As pattern length l grows, the time percentage will
gradually increase, mainly because mining of the complete set of
length-l patterns demands more time (Fig. 6) and the cross-database
pruning at WS1 will have to validate more candidates.
0.03 0.04 0.04 0.06
0.10

0.17

0.26

0.00 0.00
0.01 0.03

0.06
0.11

0.20

0.32

0

0.2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pattern length

R
un

tim

Fig. 5. System runtime for finding different length-l patterns. The x-axis denotes the
pattern length l, and the y-axis denotes the percentages of the system runtimes
between finding all patterns with length less or equal to l and finding all patterns
(α=0.7%).

2.47 2.29

3.39

5.23

9.14

2.18 2.34
2.73

3.39

5.17

0.22 0.22

0.29

0.40

0.67

0.999053564 0.992468788 0.979842932
0.947805075

0.877607733

0
1
2
3
4
5
6
7
8
9

10

2 3 4 5 6

BF pattern length

Sy
st

em
 p

ru
ni

ng
 ti

m
e

(s
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
un

in
g

ef
fi

ci
en

cy

WS1 Pruning Time BF Construction Time
Time Percentage Pruning Efficiency

Fig. 6. The CLAP mining results on WS1 by using bloom filters with different pattern
lengths BF2_l (l=2,3,..6) from WS2. “WS1 Pruning Time” denotes CLAP pruning time
(Steps 12 to 16 in Fig. 4) on WS1w.r.t. different bloom filter pattern lengths. “BF
Construction Time” is the bloom filter construction time at WS2. “Time Percentage”
denotes the ratio between the summation of “WS1 Pruning Time”, “BF Construction
Time”, and “WS1 Pruning Time”, and the runtime of CLAP on WS1 without using any
bloom filters from WS2 (21.31 s). “Pruning Efficiency” is the ratio between the number
of pruned patterns (due to the inclusion of the bloom filters) and the number of
patterns without including any bloom filters (49660). The support value is α=0.5%,
and solid lines correspond to the left y-axis and dash lines correspond to the right y-
axis.

10

100

1000

10000

100000

Support Threshold (%)

R
un

tim
e

(s
ec

on
ds

)

SQLP PALP CLAP

SQLP

PA LP

CLAP

209788.7 10717.26 125.78 28.56

69944.75 28761.56 5283.39 389.56 47.57 29.34

6973.24 3034.53 1233.45 499.51 112.47 38.45 30.43

0.2 0.3 0.4 0.5 0.75 1 1.5

Fig. 7. Query runtime comparison on Q4 in Table 4 (SD databases).

48 X. Zhu et al. / Decision Support Systems 52 (2011) 40–51
Interestingly, the results in Fig. 6 show that, although CLAP's cross-
database pruning efficiency remains relatively stable for different l
values, overall the larger the l values, the less effectively CLAP prunes
out irrelevant patterns.We believe that this is mainly because length-l
patterns can only help prune length-(l+1) patterns, but not length-
(l-1) patterns. As the length l grows, patterns with length less than l
become a significant portion of the pattern space, but they are not
pruned by CLAP. Considering the above factors we set length l to 3 in
our experiments.
6.3. Bloom filters based inter-sites message exchanging results

Table 5 reports the results of bloom filters built from SD1 with
respect to different threshold values α (the results from other
databases are more or less similar to the results in Table 5), where the
actual False Positive (FP) rate (the last column) was collected by an
average of 10,000 random queries. The results in Table 4 assert that
the construction and query of the bloom filters are very efficient, and
the bloom filter construction time is only a tiny portion of the tree
pruning time. The query time of the bloom filters, which is
independent of the filter size, is also efficient and can be achieved in
0.05 s for 10,000 queries. The sizes of the bloom filters are typically
several hundred kilo-bytes or less, even for a very small support value
(e.g., α≤0.1%). Consequently, the exchanging (delivering) of the
bloom filters between sites incurs very little extra cost.

In short, the observations in this sub-section conclude that the
collection of the complete set of length-l patterns and the construc-
tion of the bloom filters add little extra cost to the system. As a result,
the employment of the depth-limited pattern growth and bloom
Table 5
The results of bloom filters for message exchanging between sites (l=3) (SD1

database).

Support
α (%)

of
patterns

BF size
(K bytes)

BF const.
time (s)

BF query time
(s/10,000)

Actual FP
rate (%)

0.5 23,668 24 0.20 0.051 2.13
0.4 51,955 51 0.48 0.050 2.30
0.3 97,094 95 0.89 0.039 2.34
0.2 175,433 172 1.64 0.040 2.10
0.1 419,898 410 3.98 0.047 2.09
filters ensures CLAP can effectively carry out cross-database pruning
in a distributed manner.

6.4. Comparative studies

Figs. 7 and 8 report the system runtime comparisons across all
three frameworks (SQLP, PALP, and CLAP) in answering an I-pattern
(query Q4) listed in Table 4. The results are collected with respect to
different support values (α). The general setting of the experiments
are as follows. For SQLP, mining is invoked at site S1, with the results
sequentially passed on to sites S2, S3, and S4 for validation. For PALP,
mining is invoked at all sites simultaneously, and the master site
collects and finalizes the patterns satisfying the query (both SQLP and
PALP use an FP tree to gain maximum speed). For CLAP, each site uses
l=3, m/n=8, and k=5 for depth-limited pattern growth and bloom
filter construction. For comparison purposes, we decompose the
system runtime of each framework into a number of major
components, and report the decomposed runtime in Tables 6.1 to
6.3 to enable the detailed study and comparison of the three
frameworks

Between the three frameworks SQLP has the smallest overhead for
large support values (e.g., α≥1%) because it initiates mining at a seed
site and sequentially passes on the mining results to other databases
for verification. For large α values, only a very limited number of
patterns are discovered from the seed site, so SQLP is quite efficient in
answering this type of query. The results in Figs. 7 and 8 support the
hypothesis and show that when the value of α is around 1.0%, the
runtime performance of all three frameworks are close to each other.

For self-contained mining frameworks, when support values α
decrease, the performance of both SQLP and PALP deteriorates
dramatically for two reasons. First, the mining activities of SQLP and
PALP are single database oriented and as the support value decreases,
pruning of the individual FP tree becomes ineffective and time
consuming. Secondly, as the support value decreases, the number of
patterns satisfying Si≥α for each site Si increases exponentially. For
SQLP, each pattern needs to be forwarded to other databases for
verification. Increasing of the pattern numbers adds significant
complexity for database scanning, even if we ignore the FP tree
pruning cost. Taking the result in Table 6.2 as an example, when
α=0.5%, the number of patterns generated fromWS1 is 49,660 are all
needed for forwarding and verification by WS2 (with over 1700 s
scanning cost3). In the same setting, the dense database DS1 generate
more than six million rules requiring verification by DS2 (this analysis
explains why SQLP runs forever on DS databases for α≤0.5%). For
PALP, all sites forward their patterns to themaster site for verification,
3 Database scanning is an expensive procedure. Our current implementation (using
hash functions) can check about 30 patterns' frequencies over a 500 k transaction
database in one second (the actual performance varies depending on pattern and
transaction lengths).

10

100

1000

10000

100000

Support Threshold (%)

R
un

tim
e

(s
ec

on
ds

)
SQLP PALP CLAP

SQLP

PA LP

CLAP

74786.67 6327.34 2209.7 180.55 105.39 20.16

34798.51 1746.37 531.83 182.34 106.77 20.98

1957.38 1014.23 648.35 411.78 184.06 108.56 21.94

0.2 0.3 0.4 0.5 0.6 0.75 1

Fig. 8. Query runtime comparison on Q4 in Table 4 (WS databases).

Table 6.2
System runtime decomposition for SQLP, PALP, and CLAP to answer query Q4=
{S1≥S2≥S3≥S4≥0.5%} in Table 4.
Runtime decomposition for PALP. The system runtime mainly consists of: (1) the
maximum FP tree mining from S1, S2, S3, and S4; and (2) pattern comparison at the
master site.

Databases S1 S2 S3 S4 Master System runtime

WS Seconds 431.43 194.81 190.35 39.92 100.40 531.83
Rules 49,660 75,651 225,415 17,819 368,545

SD Seconds 3528.3 1356.4 719.6 393.8 1744.0 5283.39
Rules 5582 k 6230 k 6137 k 4836 k 22785 k

49X. Zhu et al. / Decision Support Systems 52 (2011) 40–51
creating a huge burden for the master site to compare and verify the
patterns. In our implementation, the master site builds a bloom filter
for patterns discovered from each site, so PALP avoids clause-level
rule comparison and saves a tremendous amount of runtime, but it is
still time consuming when the number of patterns is large.

Because of these reasons, the performance of both SQLP and PALP
are inefficient when the support value α is 0.5% or smaller.

CLAP, although it is subject to overheads for pattern switching
between sites, provides significantly better overall performance of the
joint mining framework than self-contained mining frameworks. For
relatively smallα values (e.g., 0.5%≤α≤1.0%), CLAP linearly responds
to the support value when answering the query.

CLAP's system runtimemainly consists of two parts: (1) the FP tree
and bloom filter construction for each local site; and (2) CLAP cross-
database pruning and pattern growth. As shown in Table 6.3, by
switching bloom filters across sites, CLAP receives very significant
performance gains for both SD and WS databases. Intuitively, CLAP is
superior to PALP because it does not need to build a centralized data
structure for cross-database pruning. In addition, because the mining
activities of the distributed sites are collaboratively carried out in
parallel, CLAP is superior to PALP on SD databases. Altogether, CLAP
provides the best performance for both SD and WS databases.

Table 7 reports the system runtime for answering the first three
queries of Table 4, confirming that CLAP provides the best perfor-
mance for mining all three types (L-, G-, and I-) of patterns. One
interesting finding is that CLAP is not only effective for I-pattern
discovery, but is also effective for L-pattern mining (e.g. Q1). This is
because the bloom filter (which contains length-l patterns) built for
each local site can be re-used during the local pattern growing
process. For example, assumewe have a bloom filter BF_3 for the local
site S1 and a base set BS={abd}. When growing a pattern ϑ=BS∪g=
{abdg} by using DLFP-Growth in Fig. 3, we can query and check
whether a length-3 sub-set of ϑ, say {bdg}, exists in the BF_3 or not.
According to the Apriori rule, we can stop growing ϑ if {bdg} does not
Table 6.1
System runtime decomposition for SQLP, PALP, and CLAP to answer query Q4=
{S1≥S2≥S3≥S4≥0.5%} in Table 4.
Runtime decomposition for SQLP. The system runtime mainly consists of: (1) FP tree
mining at the seed site S1; and (2) database scanning for S2, S3, and S4.

Databases S1 S2 S3 S4 System runtime

WS Seconds 431.43 1758.32 8.79 5.36 2209.7
Rules 49,660 378 37 36

SD Seconds 3528.3 185687§ 19542.2 1031.1 209788.8
Rules 5582 k 1097 k 106 k 32881

§Time estimated based on the average pattern search speed.
exist in BF_3 and, therefore, speed up the pruning process. Traditional
FP-Growth, however, does not have all length-3 patterns (due to its
recursive pruning nature), and has to continuously grow ϑ. In our
experiment, when α=0.7% the tree pruning time for FP1 is 694.15 s
(SD1 database), whereas, by using a local BF_3 bloom filter, CLAP's
pruning time is 271.46 s (in addition to 6 s for length-3 pattern
discovery and BF_3 bloom filter construction), which is about a 40%
runtime reduction!

Table 8 summarizes the overall performance of three frameworks
for different databases and threshold values. The simple summary
concludes that CLAP is suitable for any types of data and parameter
settings. PALP is mostly effective if the support values are large, but
deteriorates significantly for small support values (due to its self-
contained mining nature). SQLP is the least attractive choice for
mining distributed databases,
7. Conclusions

In this paper, we advocated that the essential goal for distributed
pattern mining, from an association rule mining perspective, is to
discover local, global, and inter patterns (namely L-, G-, and I-
patterns). We argued that existing research mainly focuses on L- and
G-pattern discovery, and has left I-pattern mining inadequately
addressed, where single database oriented pattern pruning is
essentially ineffective. More importantly, no existing framework is
able to support the mining of all three types of patterns. We therefore
proposed a distributed mining framework, namely collaborative
pattern mining (CLAP), which is fully distributed with capability for
cross-database pruning. The CLAP distributed mining framework has
very little privacy concerns and requires low computational costs and
memory consumption. Experimental comparisons demonstrated that
CLAP significantly outperforms other simple methods.

The problem addressed in this paper mainly focuses on frequent
item-set mining. However, the distributed mining framework and the
cross-database pruning principles can be extended to handle other
patterns, such as constrained frequent item-sets, closed frequent
patterns, and sequential patterns.
Table 6.3
System runtime decomposition for SQLP, PALP, and CLAP to answer query Q4=
{S1≥S2≥S3≥S4≥0.5%} in Table 4.
Runtime decomposition for CLAP. The system runtime mainly consists of: (1)
constructing bloom filters containing length-l patterns for each site; and (2) the
maximum collaborative mining time on a site. (l=3).

Databases BF1_l BF2_l BF3_l BF4_l CLAP(S1) System
runtime

WS Seconds 405.94 164.29 87.84 30.93 5.84 411.78
Rules 958 2308 2829 1831 141

SD Seconds 51.08 26.21 14.28 7.95 448.43 499.51
Rules 30181 29493 30147 30301 40721

Table 7
Query runtime comparison on Q1, Q2, and Q3 in Table 4 (α=0.5%, β=0.01%), a dash line
indicates that a specific method is not capable of answering the query.

Frameworks WS SD

Q1 Q2 Q3 Q1 Q2 Q3

SQLP 859.52 – – 6030.17 – –

PALP 435.21 – – 3531.30 – –

CLAP 407.24 478.53 778.69 706.32 3604.02 4339.11

Table 8
The niche of the three mining frameworks. “+”, “−”, and “~” denotes that the
framework in a specific row is effective, ineffective, or partially effective for conditions
listed in the corresponding column.

Frameworks Strong dense databases Weak sparse databases

Small α Large α Small α Large α

SQLP − ~ − ~
PALP − + − +
CLAP + + + +

50 X. Zhu et al. / Decision Support Systems 52 (2011) 40–51
Acknowledgments

This research is supported in part by Australian Research Council
(ARC) Future Fellowship under grant No. FT100100971, ARC Discov-
ery Project under grant No. DP1093762, National Science Foundation
of China Innovative Grant (70921061), and by the CAS/SAFEA
International Partnership Program for Creative Research Teams.
References

[1] R. Agrawal, J.C. Shafer, Parallel mining of association rules, IEEE Transactions on
Knowledge and Data Engineering 8 (6) (December 1996) 962–969.

[2] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, Proc. of VLDB
Conference, 1994.

[3] M. Aounallah, G. Mineau, Distributed data mining: why do more than aggregating
models, Proc. of IJCAI Conference, 2007, pp. 2645–2650.

[4] M. Ashrafi, D. Taniar, K. Smith, ODAM: an optimized distributed association rule
mining algorithm, IEEE Distributed Systems Online 5 (3) (2004).

[5] S. Bay, M. Pazzani, Detecting group differences: mining Contrast sets, Data Mining
and Knowledge Discovery 5 (3) (2001) 213–246.

[6] S. Bhattacharyya, S. Jha, K. Tharakunnel, J. Westland, Data mining for credit card
fraud: a comparative study, Decision Support Systems 59 (3) (2011) 602–613.

[7] A. Border, M. Mitzenmacher, Network applications of bloom filters: a survey, Proc.
of the 40th Annual Allerton Conf. on Communication, Control, and Computing,
Urbana-Champaign, Illinois, 2002, pp. 636–646.

[8] C. Bucila, J. Gehrke, D. Kifer, W. Whote, DualMiner: a dual-pruning algorithm for
itemsets with constraint, Proc. of ACM SIGKDD Conference, 2002.

[9] G. Buehrer, S. Parthasarathy, S. Tatikonda, T. Kurc, J. Saltz, Toward terabyte pattern
mining: an architecture-conscious solution, Proc. of the 12th ACM SIGPLAN
symposium on Principles and practice of parallel programming, 2007.

[10] B. Chazelle, J. Kilian, R. Rubinfeld, A. Tal, The Bloomier filter: an efficient data
structure for static support lookup tables, Proc. of the 5th ACM-SIAM Symposium
on Discrete Algorithms, 2004, pp. 30–39.

[11] B. Chen, L. Chen, Y. Lin, R. Ramakrishnan, Prediction cubes, Proc. of the 31st VLDB
Conference, Norway, 2005.

[12] D. Cheung, V. Ng, A. Fu, Y. Fu, Efficient mining of association rules in distributed
databases, IEEE Trans. on Knowledge and Data Engineering 8 (1996).

[13] S. Cohen, Y. Matias, Spectral bloom filters, Proc. of SIGMOD Conference, 2003,
pp. 241–252.

[14] S. Datta, C. Giannella, H. Kargupta, K-means clustering over a large, dynamic
network, Proc. of 2006 SIAM Conference on Data Mining, April 2006.

[15] G. Dong, J. Li, Efficient mining of emerging patterns: discovering trends and
differences, Proc. of the 5th ACM SIGKDD Conference, 1999.

[16] L. Fan, P. Cao, J. Almeida, A. Broder, Summary cache: a scalable wide-area web
cache sharing protocol, IEEE/ACM Trans. on Networking 8 (3) (2000) 281–293.

[17] W. Fujibuchi, T. Kato, Classification of heterogeneous microarray data by
maximum entropy kernel, BMC:Bioinformatics (267) (2007) 8.

[18] A. Gionis, H. Mannila, P. Tsaparas, Clustering aggregation, Proc. of the 21st ICDE
Conference, 2005.

[19] A. D'Costa, V. Ramachandran, A. Sayeed, Distributed classification of Gaussian
space-time sources in wireless sensor networks, IEEE Journal on Selected Areas in
Communications 22 (6) (2004) 1026–1036.

[20] X. Gong, W. Qian, Y. Yan, A. Zhou, Bloom filter-based XML packets filtering for
millions of path queries, Proc. of ICDE Conference, 2005, pp. 890–901.
[21] J. Gray, A. Bosworth, A. Layman, H. Pirahesh, Data cube: a relational aggregation
operator generalizing group-by, cross-tab, and sub-total, Proc. of the 12th ICDE
Conference, 1996, pp. 152–159.

[22] R. Grossman, A top-ten list for data mining, SIAM News 34 (5) (2001).
[23] E. Han, G. Karypis, V. Kumar, Scalable parallel data mining for association rules,

Proc. of ACM SIGMOD Conference, 1997.
[24] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidates generation, Proc.

of ACM SIGMOD Conf., 2000.
[25] [25] IBM Quest Data Mining Project. Quest synthetic data generation code, http://

www.cs.loyola.edu/~cgiannel/assoc_gen.html.
[26] [26] IPUMS: Integrated Public Use Microdata Series, http://www.ipums.umn.edu/

usa/index.html.
[27] X. Ji, J. Bailey, G. Dong, Mining minimal distinguishing subsequence patterns with

gap constraints, Proc. of ICDM Conference, 2005.
[28] R. Jin, G. Agrawal, A systematic approach for optimizing complex mining tasks on

multiple databases, Proc. of ICDE Conference, 2006.
[29] M. Kantarcioglu, C. Clifton, Privacy-preserving distributed mining of associa-

tion rules on horizontally partitioned data, Proc. of ACM SIGMOD Workshop on
Research Issues on Data Mining and Knowledge Discovery (DMKD'02), June
2002.

[30] [31] H. Kargupta et al., Distributed association rule mining bibliography, http://
www.cs.umbc.edu/~hillol/DDMBIB/ddmbib_html/DistAss.html.

[31] H. Kargupta, B.H. Park, D. Hershberger, E. Johnson, Collective data mining: a new
perspective toward distributed data mining, Advances in Distributed and Parallel
Knowledge Discovery, MIT/AAAI Press, Cambridge, MA, 1999.

[32] T. Li, M. Ogihara, S. Zhu, Association-based similarity testing and its applications,
Intelligent Data Analysis 7 (3) (2003) 209–232.

[33] S. Li, T. Wu, W. Pottenger, Distributed higher order association rule mining
using information extracted from textual data, ACM SIGKDD Explorations 7 (1)
(2005).

[34] P. Luo, H. Xiong, K. Lü, Z. Shi, Distributed classification in peer-to-peer networks,
Proc. Of ACM KDD, 2007, pp. 968–976.

[35] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, C. Olston, Finding (recently) frequent
items in distributed data streams, Proc. of ICDE Conference, 2005.

[36] S. Merugu, J. Ghosh, A distributed learning framework for heterogeneous data
sources, Proc. of the 11th ACM KDD Conference, 2005.

[37] M. Otey, A. Veloso, C. Wang, S. Parthasarathy, W. Meira, Mining frequent itemsets
in distributed and dynamic databases, Proc. of ICDM Conference, 2003.

[38] B. Park, H. Kargupta, Distributed data mining: algorithms, systems, and
applications, in: Y. Nong (Ed.), Data Mining Handbook, 2002.

[39] S. Parthasarathy, M. Ogihara, Exploiting dataset similarity for distributed mining,
Proc. of High Performance Data Mining Workshop, 2000.

[40] A. Partow, Open Bloom FilterSource code download:, http://bloom.googlecode.
com/svn-history/r5/trunk/bloom_filter.h 2000.

[41] [41] K. Peeters, Tree.hh: an STL-like C++ tree class, http://www.aei.mpg.de/
~peekas/tree/ September 2009.

[42] [42] F. Provost, Distributed data mining: scaling up and beyond. In Kargupta, H.,
Chan, P., eds.: Advances in Distributed and Parallel Knowledge Discovery, MIT/
AAAI Press, 2000.

[43] L. Qiu, Y. Li, X. Wu, Preserving privacy in association rule mining with bloom
filters, Journal of Intelligent Information Systems 29 (3) (2007) 253–278.

[44] A. Schuster, R. Wolff, Communication-efficient distributed mining of association
rules, Data Mining and Knowledge Discovery 8 (2) (2004) 171–196.

[45] S. Stolfo, A. Prodromidis, S. Tselepis, W. Lee, D. Fan, P. Chan, JAM: Java agents for
meta-learning over distributed databases, Proc. of KDD Conf., 1997, pp. 74–81.

[46] J. Sun, S. Papadimitriou, C. Faloutsos, Distributed pattern discovery in multiple
streams, Proc. of PAKDD Conference, 2006, pp. 713–718.

[47] D. Tsur, J.D. Ullman, S. Abitboul, C. Clifton, R. Motwani, S. Nestorov, Query flocks: a
generalization of association-rule mining, Proc. of ACM-SIGMOD Conference,
1998.

[48] J. Wang, H. Zeng, Z. Chen, H. Lu, L. Tao, W. Ma, ReCoM: reinforcement clustering of
multi-type interrelated data objects, Proc. of SIGIR Conference, 2003, pp. 274–281.

[49] G.Webb, S. Butler, D. Newlands, On detecting differences between groups, Proc. of
the 9th ACM SIGKDD Conference, 2003.

[50] X. Wu, S. Zhang, Synthesizing high-frequency rules from different data
sources, IEEE Transactions on Knowledge and Data Engineering 15 (2)
(2003) 353–367.

[51] K. Xu, S. Liao, J. Li, Y. Song, Mining comparative opinions from customer
reviews for competitive intelligence, Decision Support Systems 50 (4) (2011)
743–754.

[52] Y. Yang, X.D. Wu, X. Zhu, Conceptual equivalence for contrast mining in
classification learning, Data and Knowledge Engineering 67 (3) (2008) 413–429.

[53] X. Yin, J. Han, P. Yu, Crossminer: efficient classification across multiple database
relations, Proc. of ICDE Conference, 2004.

[54] M. Zaki, Parallel and distributed association mining: a survey, IEEE Concurrency
7 (4) (1999).

[55] S. Zhang, M. Zaki, Mining multiple data sources: local pattern analysis, Data
Mining and Knowledge Discovery 12 (2–3) (2006) 121–125.

[56] T. Zhang, R. Ramakrishnan, M. Linvy, BIRCH: an efficient data clustering method
for very large databases, Proc. of ACM SIGMOD Conference, 1996.

[57] S. Zhang, C. Zhang, X. Wu, Knowledge discovery in multiple database, Springer,
2004.

[58] P. Zhang, X. Zhu, Y. Shi, L. Guo, X. Wu, Robust ensemble learning for mining noisy
data streams, Decision Support Systems 50 (2) (2011) 469–479.

[59] X. Zhu, R. Jin, Multiple information source cooperative learning, Proc. of 21st
International Joint Conference on Artificial Intelligence, 2009, pp. 1369–1376.

http://www.cs.loyola.edu/~cgiannel/assoc_gen.html
http://www.cs.loyola.edu/~cgiannel/assoc_gen.html
http://www.ipums.umn.edu/usa/index.html
http://www.ipums.umn.edu/usa/index.html
http://www.cs.umbc.edu/~hillol/DDMBIB/ddmbib_html/DistAss.html
http://www.cs.umbc.edu/~hillol/DDMBIB/ddmbib_html/DistAss.html
http://bloom.googlecode.com/svn-history/r5/trunk/bloom_filter.h
http://bloom.googlecode.com/svn-history/r5/trunk/bloom_filter.h
http://www.aei.mpg.de/~peekas/tree/
http://www.aei.mpg.de/~peekas/tree/

51X. Zhu et al. / Decision Support Systems 52 (2011) 40–51
[60] X. Zhu, X. Wu, Discovering relational patterns across multiple databases, Proc. of
ICDE Conference, 2007.

[61] X. Zhu, R. Jin, Y. Breitbart, G. Agrawal, MMIS-07, 08: mining multiple information
sources workshop report, ACM SIGKDD Explorations 10 (2) (2008) 61–65.

Xingquan Zhu received his Ph.D degree in Computer Science from Fudan University,
Shanghai China, in 2001. He is a recipient of the Australia ARC Future Fellowship and a
Professor of the Centre for Quantum Computation & Intelligent Systems, Faculty of
Engineering and Information Technology, University of Technology, Sydney (UTS),
Australia. Before joining the UTS, he was a tenure track Assistant Professor in the
Department of Computer Science & Engineering, Florida Atlantic University, Boca Raton
FL, USA (2006–2009), a Research Assistant Professor in the Department of Computer
Science, University of Vermont, Burlington VT, USA (2002–2006), and a Postdoctoral
Associate in the Department of Computer Science, Purdue University, West Lafayette
IN, USA (2001–2002). Dr. Zhu's research mainly focuses on data mining, machine
learning, andmultimedia systems. Since 2000, he has publishedmore than 110 referred
journal and conference proceedings papers in these areas. Dr. Zhu is an Associate Editor
of the IEEE Transactions on Knowledge and Data Engineering (2009-), a Program
Committee Co-Chair for the 23rd IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2011), and a Program Committee Co-Chair for the 9th International
Conference on Machine Learning and Applications (ICMLA 2010).

Bin Li received his PhD degree in Computer Science from Fudan University, Shanghai
China, in 2009. He is a Postdoctoral Research Fellow at the Faculty of Engineering and
Information Technology, University of Technology, Sydney (UTS), Australia. Before
joining the UTS, he worked as a research fellow at the Institut TELECOM SudParis,
France. Dr Bin Li's research interests include Machine Learning and Data Mining as well
as their applications to Web and Knowledge-based Information Systems and Social
Media Mining.

Xindong Wu is a Professor of Computer Science at the University of Vermont (USA),
and a Fellow of the IEEE. He holds a PhD in Artificial Intelligence from the University of
Edinburgh, Britain. His research interests include data mining, knowledge-based
systems, and Web information exploration. He has published over 200 refereed papers
as well as 25 books and conference proceedings in these areas. His research has been
supported by the U.S. National Science Foundation (NSF), the U.S. Department of
Defense (DOD), the National Natural Science Foundation of China (NSFC), and the
Chinese Academy of Sciences, as well as industrial companies including Microsoft
Research, U.S. West Advanced Technologies and Empact Solutions.
Dr. Wu is the founder and current Steering Committee Chair of the IEEE International
Conference on Data Mining (ICDM), the founder and current Editor-in-Chief of
Knowledge and Information Systems (KAIS, by Springer), the Founding Chair (2002-
2006) of the IEEE Computer Society Technical Committee on Intelligent Informatics
(TCII), and a Series Editor of the Springer Book Series on Advanced Information and
Knowledge Processing (AI&KP). He was the Editor-in-Chief of the IEEE Transactions on
Knowledge and Data Engineering. He served as Program Committee Chair/Co-Chair for
the 2003 IEEE International Conference on Data Mining, the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, and the 19th ACM
Conference on Information and Knowledge Management.
Dan He is a Ph.D student in the Computer Science Department, University of California,
Los Angles. He received his Master's degree from the University of Vermont in 2005. His
research mainly focuses on pattern mining from sequence databases and Bioinfor-
matics.

Chengqi Zhang received the PhD degree from Queensland University in 1991, followed
by a Doctor of Science (DSc-Higher Doctorate) from Deakin University in 2002. He has
been a research professor in information technology at The University of Technology,
Sydney (UTS) since December 2001. He is currently the director of the UTS Research
Centre for Quantum Computation and Intelligent Systems. In addition, he is the leader
of the data mining program at the Australian Capital Market Cooperative Research
Centre. Dr. Zhang's research interests mainly focus on data mining and its applications,
especially domain driven data mining, negative association rule mining, and multi-
database mining. He has published more than 200 research papers, including several in
first-class international journals, such as Artificial Intelligence and IEEE and ACM
Transactions. He has delivered 12 keynote/invited speeches at international confer-
ences over the last six years. He has been chairman of the Australian Computer Society
National Committee for Artificial Intelligence since November 2005. He is a fellow of
the Australian Computer Society (ACS) and a senior member of the IEEE Computer
Society. His personal web page can be found at: http://www-staff.it.uts.edu.au/
~chengqi/.

http://www-staff.it.uts.edu.au/~chengqi/
http://www-staff.it.uts.edu.au/~chengqi/

	CLAP: Collaborative pattern mining for distributed information systems
	1. Introduction
	2. Related work
	3. Problem definition & query decomposition
	3.1. Query decomposition

	4. Pattern mining frameworks
	5. Clap: Collaborative pattern mining
	5.1. Bloom filters for distributed mining
	5.2. Depth-limited pattern growth for cross-database pruning
	5.3. Collaborative pattern mining with DLFP-growth
	5.4. Distributed pattern mining framework comparisons

	6. Experiments
	6.1. Experimental settings
	6.1.1. Methods
	6.1.2. Data
	6.1.3. Measures

	6.2. Depth limited pattern growth results
	6.3. Bloom filters based inter-sites message exchanging results
	6.4. Comparative studies

	7. Conclusions
	Acknowledgments
	References

