
Contents lists available at ScienceDirect
Signal Processing

Signal Processing 124 (2016) 93–102
http://d
0165-16

n Corr
E-m

Meng.Fa
xzhu3@
journal homepage: www.elsevier.com/locate/sigpro
Supervised sampling for networked data

Meng Fang a,b,n, Jie Yin b, Xingquan Zhu c

a University of Technology, Sydney, NSW, Australia
b CSIRO, Sydney, NSW, Australia
c Florida Atlantic University, FL, USA
a r t i c l e i n f o

Article history:
Received 7 May 2015
Received in revised form
29 September 2015
Accepted 29 September 2015
Available online 17 October 2015

Keywords:
Supervised sampling
Random walks
Information network
x.doi.org/10.1016/j.sigpro.2015.09.040
84/& 2015 Elsevier B.V. All rights reserved.

esponding author.
ail addresses: Meng.Fang@student.uts.edu.au
ng@csiro.au (M. Fang), Jie.Yin@csiro.au (J. Y
fau.edu (X. Zhu).
a b s t r a c t

Traditional graph sampling methods reduce the size of a large network via uniform
sampling of nodes from the original network. The sampled network can be used to esti-
mate the topological properties of the original network. However, in some application
domains (e.g., disease surveillance), the goal of sampling is also to help identify a specified
category of nodes (e.g., affected individuals) in a large network. This work therefore aims
to, given a large information network, sample a subgraph under a specific goal of
acquiring as many nodes with a particular category as possible. We refer to this problem
as supervised sampling, where we sample a large network for a specific category of nodes.
To this end, we model a network as a Markov chain and derive supervised random walks
to learn stationary distributions of the sampled network. The learned stationary dis-
tribution can help identify the best node to be sampled in the next iteration. The iterative
sampling process ensures that with new sampled nodes being acquired, supervised
sampling can be strengthened in turn. Experiments on synthetic as well as real-world
networks show that our supervised sampling algorithm outperforms existing methods in
obtaining target nodes in the sampled networks.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Many research works have been carried out on net-
worked data to study the problem of node classification at
various levels, including the Web, citation networks, and
online social networks. The large size of these networks
and other restrictions, such as privacy, make learning from
the entire network become extremely computational
expensive or even impossible. For example, discovering a
specific community in the DBLP citation network would
require searching all the HTML pages and downloading
terabyte-level data, which is most likely impractical.
,
in),
Therefore, research studies have attempted to address the
problem of acquiring a smaller, but representative, subset of
samples from a large graph [1,2] and then proceed with
subsequent network mining tasks.

Currently, most graph sampling algorithms have been
mainly focused on generating a uniform sample of nodes
and edges at random from the original graph. Assuming
that the node and edge information is readily observable,
they usually operate on an entirely, static graph. These
methods are characterized by the order in which the nodes
are visited (or traversed), for example, Bread-First Search
(DFS), Depth-First Search (DFS), forest fire, and snowball
sampling. They typically start at a seed node, and recur-
sively visit (one, some or all) its neighbors. These methods
are varied and distinct with each other because of different
ordering strategies of visiting the nodes. Although some
research works have shown that these methods are biased

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2015.09.040
http://dx.doi.org/10.1016/j.sigpro.2015.09.040
http://dx.doi.org/10.1016/j.sigpro.2015.09.040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2015.09.040&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2015.09.040&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2015.09.040&domain=pdf
mailto:Meng.Fang@student.uts.edu.au
mailto:Meng.Fang@csiro.au
mailto:Jie.Yin@csiro.au
mailto:xzhu3@fau.edu
http://dx.doi.org/10.1016/j.sigpro.2015.09.040


M. Fang et al. / Signal Processing 124 (2016) 93–10294
towards high-degree nodes [3], they are still found to be
very popular and widely used for sampling nodes in real-
world large networks.

In reality, however, real-world networks may not be
immediately accessible until each node and its connec-
tions are progressively crawled. For example, in a citation
network, papers need to be read or preprocessed so as to
find their citations, as well as categories, general terms,
keywords, and authors. Thus, collecting a paper's detailed
information or identifying a paper's research topic incurs
a cost. It would be desirable to minimize the cost by col-
lecting a small portion of the network instead of the entire
network. Similar issues may also occur in large online social
networks such as Facebook or Twitter, where one may be
interested in identifying a specific group of users with
certain professions or hobbies. In addition, real-world net-
works often have imbalanced node distributions where the
majority of nodes belong to one class and very few nodes
belong to the minority class. As a result, uniform sampling
may fail to include the nodes belonging to the minority
class because these nodes often have low degree and few
connections. For example, in disease surveillance, there may
exist very few affected individuals in a large population
network. Due to the fact that the nodes' attribute infor-
mation is not considered, as well as their bias towards high-
degree nodes, traditional sampling methods are not effec-
tive for sampling nodes of minority category in large
networks.

Motivated by the above observations, in this paper, we
propose a new strategy for obtaining a biased sample of
nodes by carrying out network sampling under super-
vision. We refer to this class of problems as supervised
sampling, where we aim to identify nodes belonging to a
specific category (i.e., positive instances) that may com-
prise only a small portion of the overall network. We
provide practical implementations of supervised sampling,
where given a large graph and a specific category, the goal
is to iteratively sample a subgraph from the original graph
under the requirements related to the category. To tackle
this problem, we model a graph as a Markov chain, where
nodes are considered as interior states and edges are
chains between states. We design a supervised random
walk to compute the stationary distributions of nodes,
which indicate the probability of nodes being positive, by
using nodes’ attribute information. Unlike uniform sam-
pling, we iteratively choose the best nodes to be sampled
in the next iteration based on their probabilities of being
positive. At each iteration, the sampling process is guided
by a supervised random walk that is more likely to visit
positive nodes in the neighborhood. Once a node is visited,
the sampled network is expanded to include the node
itself, its neighboring nodes, as well as new edges between
them. After a node is sampled, the genuine label of the
node is also revealed. All such information can be used to
update the stationary distribution of the sampled network,
which will strengthen supervised sampling at the next
iteration.

The main contribution of this work is twofold: first, we
introduce a new supervised sampling problem on large
networks; second, we present a novel unified framework
to perform supervised sampling for a given task through
formulating a supervised random walk as an optimization
problem. Experiments on synthetic and real-world net-
works show that our proposed algorithm achieves a higher
recall of positive nodes while sampling large networks
than baseline methods, especially for networks having
imbalanced class distributions.
2. Related work

In recent years, there have been many research efforts
on studying information networks, such as node classifi-
cation [4], link prediction [5,6], active learning [7], transfer
learning [8,9], personalized recommendation [10,11], and
so on. These studies are different from traditional
instance-based learning problems because both instance
content and network structure information are available
for learning. Sen et al. [4] introduced a classification fra-
mework for networked data as collective classification.
Collective classification is a combined classification of a set
of interlinked objects using correlations between node
labels and node content (i.e., attributes), and information
of each node's neighborhood. Even when the instances are
not explicitly linked to form a network, the use of the
correlations between instances is also beneficial for
improving the classification performance (e.g., [12]). Link
prediction is also a fundamental problem in the network
settings [5], which aims to predict the presence of links
between network nodes. Backstrom and Leskovec [5]
proposed to combine network structure information with
rich node and edge attributes. Ye et al. [6] adopted Non-
negative Matrix Tri-Factorization (NMTF) to learn latent
topological features from network structure, and use them
to enhance nodes’ features. Bilgic et al. [7] proposed an
active learning algorithm for node classification based on
collective classification.

Sampling techniques have also been extensively stu-
died on very large scale information networks. Traditional
graph sampling techniques can be roughly classified into
two categories: graph traversals and random walks [3]. For
graph traversals, nodes are sampled without replacement;
once a node is visited, it is never revisited again.
Depending on the order in which nodes are visited, these
methods include Breadth-First Search (BFS), Depth-First
Search (DFS), forest fire, and snowball sampling [13–15].
Among others, BFS has been popularly used for sampling
social networks, which has been studied extensively [14–
18]. However, existing research has shown that BFS is
biased towards high-degree nodes in real-world networks
[19,20]. When using graph traversals for sampling, the
sampling process terminates after a fraction of graph
nodes are collected.

Random walks fall into the other category of sampling
techniques, which usually start at any specific node and
initiate a random walk by proceeding to the next node
selected at random from the neighbors of the current
node. It is found that random walks are biased towards
high degree nodes in the graph [21]. Some methods have
been proposed to correct the bias of random walks. For
example, Gjoka et al. [3] proposed a Metropolis-Hastings
algorithm to collect an unbiased sample of Facebook users.



A 

Fig. 1. A partially observed subgraph Gt ¼ ðVt ; Et Þ. Intra-acquired nodes are denoted by double solid circles and nodes directly connected to Intra-acquired
nodes are Border-acquired nodes, from which star node A is selected to be sampled next because it has maximum probability (according to our for-
mulation) belonging to positive nodes.

M. Fang et al. / Signal Processing 124 (2016) 93–102 95
Likewise, Hübler et al. [22] presented a Metropolis algo-
rithm for sampling a representative subgraph, requiring
that sampled graph preserves crucial graph properties of
the original graph.

Graph sampling techniques provide an efficient, yet
inexpensive solution for social network analysis. Leskovec
and Faloutsos [23] examined different sampling methods
on social networks and found that best performing
methods are random walks and forest fires. Papagelis et al.
[24] introduced sampling-based algorithms that given a
user in a social network efficiently obtain a near-uniform
random sample of nodes in its neighborbood. Maiya and
Berger-Wolf [25] described an online sampling technique
to sample large social networks in order to discover the
most influential individuals within the network.

The distinction between the aim of existing graph
sampling methods and our objective is fundamental: The
early works are seeking to obtain a smaller subgraph
capture the key properties of the original graph. In con-
trast, we aim to supervise the sampling process to explore
the network by visiting more important nodes belonging
to a desired class.

Our work is also related to active sampling [1], in which
both instances’ labels and edges are acquired through an
iterative process to update the classifier for discovering the
nodes with a specific label. This work assumes that a node
has no other known attributes apart from its label. In con-
trast, we formulate a supervised learning task by combining
the network structure with rich node and edge attributes
and use it to guide a random walk on the graph for dis-
covering the nodes having a particular label while sampling
the network.
3. Problem definition

Let G¼ ðV; EÞ be an undirected graph where V denotes a
set of nodes (or instances) and E denotes a set of edges
between nodes. Each node viAV is described by a feature
vector xi and a class label yiAY, where Y denotes a set of
class labels. Each edge ðvi; vjÞAE has a corresponding fea-
ture vector rðvi; vjÞ which describes relationships between
nodes vi and vj. In this work, the specific task under our
consideration is a binary classification problem, in which
each node vi belongs to a positive class (yi ¼ þ1) or a
negative class (yi ¼ �1), and positive nodes comprise a
small portion of the overall network.

Given a very small set of labeled nodes, also called
seed nodes, V lAG with V l ¼ ðvi; yiÞ

� �K
i ¼ 1, our supervised

sampling problem aims to: sample a representative,
connected subgraph G0 from the original large graph G,
under a specific task, and identify as many positive
nodes as possible through biasing the sampling process.
The generated subgraph G0 consists of the nodes, their
attributes and labels, as well as the edges connecting
the nodes. In our problem, In our problem, we assume
that a full graph is too large for its global network
structure to be known as a whole. Therefore, only a
partial network Gt can be observed at time t. In this
setting, the sampling process is, given a partially
observed subgraph Gt ¼ ðVt ; EtÞ, to decide which node v

is the best to be sampled next. After a node is sampled,
the subgraph is expanded to include a new node v, its
neighboring nodes N ðvÞ, and new edges between them.
The genuine label y of node v is also revealed.
4. Our proposed approach

The aim of supervised sampling is to obtain a max-
imum number of the nodes belonging to a desired cate-
gory while sampling the network. However, traditional
graph sampling techniques can not be directly applied to
achieve this objective, because they all assume that the
nodes are equally important for sampling. Therefore, we
propose a novel algorithm to solve our supervised sam-
pling problem.

Fig. 1 gives an example to illustrate key concepts
behind our proposed algorithm. Given a partially observed
subgraph Gt, which is a sampled network up to time t, we
define two types of nodes: Intra-acquired nodes I intra and
Border-acquired nodes Iborder . Intra-acquired nodes are the
nodes that have been sampled up to time t, and Border-
acquired are those directly connected to Intra-acquired
nodes. Our proposed algorithm is to determine which
node from Border-acquired nodes Iborder should be sam-
pled next and perform sampling iteratively. For example,
in Fig. 1, star node A is selected from Border-acquired
nodes to be sampled next, because it has the maximum
probability of being positive.



M. Fang et al. / Signal Processing 124 (2016) 93–10296
To enable our proposed algorithm to sample more
positive nodes, one important issue is how to calculate the
probability of nodes being positive. To this end, we model
a graph as a Markov chain, where nodes are considered as
different interior states and edges are chains between
states. In particular, we consider two virtual absorbing
states: one virtual positive node, and one virtual negative
node. We assume that positive nodes are all connected to
the virtual positive node, and negative nodes are all con-
nected to the virtual negative node. Let p denote the
probability of a node being positive, which is calculated as
the probability for a node to transfer to the positive
absorbing state. To capture such transition probabilities,
we consider a randomwalk on the Markov chain, in which
a walk is stopped when it reaches an absorbing state.
Whereas traditional random walks assume that transition
probabilities of all edges to be the same, we learn how to
assign each edge a transition probability so that the ran-
dom walk is more likely to visit positive nodes than other
negative nodes in a network.

Below, we first formulate supervised random walks as
an optimization problem and derive its solution. Based on
this, we then discuss selection criteria used for sampling.
Finally, we present our proposed algorithm for sampling
networks.

4.1. Supervised random walks

Given an observed subgraph Gt, we propose a super-
vised random walk that naturally combines information
from network topology structure with node and edge
features. One way to bias the random walk is to assign
each edge a random walk transition probability (i.e.,
strength). Therefore, we aim to learn a strength function
f wðv;uÞ for each edge ðu; vÞ, based on features of nodes u
and v, as well as the features of the edge ðu; vÞ. Intuitively,
a randomwalk is more likely to traverse an edge with high
strength, and thus the connected node via the path of the
strong edge would be more likely visited by the
random walk.

Now the task is to learn parameters w of function
f wðv;uÞ that assigns each edge a transition probability. To
achieve this, we formulate an optimization problem

min
w

FðwÞ ¼
X

iALþ ;jA L�
hðpj�piÞþ

X
yiyj ¼ 1

Jpi�pj J
2þλJwJ2

ð1Þ
where Lþ and L� is a set of labeled nodes with the
positive label, and the negative label, respectively. The
stationary distribution DisG of the random walk assigns
each node a probability score p, which depends on f wðv;uÞ
that is parameterized by w. Parameter λ controls the trade-
off between the model complexity, i.e., norm of parameter
vector w, and two constraints. hð�Þ is a loss function that
assigns a non-negative penalty according to the difference
of the scores pj�pi. If pj�pio0, then hð�Þ ¼ 0. If pj�pi40,
then hð�Þ40. Therefore, the first term of the objective
function indicates that we want the probability scores of
nodes in Lþ to be greater than the scores of nodes in L� .
The second term indicates that nodes having the same class
label should have close probability scores. In the following,
we discuss solutions to solve this optimization problem.

As discussed before, each edge ðu; vÞ in a graph has a
corresponding feature vector ruv that describes nodes u
and v (e.g., words in paper titles) and the interaction
attributes (e.g., the time that the edge occurs, or howmany
words in their titles are shared). Thus, for edge (u,v) we
define the strength function as Ru;v ¼ f wðru;vÞ. Function fw
parameterized by w takes the edge feature vector ru;v as
input and computes the corresponding edge strength Ru;v

that models the random walk transition probability. We
then build the random walk stochastic transition matrix
Tr:

Tru;v ¼
Ru;vP
vRu;v

if u; vAE;
0 otherwise:

8<
: ð2Þ

Here, since two virtual absorbing states are only connected
with labeled nodes having the same label, we can define
the edge strength for virtual absorbing states R̂s;v. Let fw be
a linear function, R̂s;v can be computed as

R̂s;v ¼
X

iAN ðvÞ
Rv;i; ð3Þ

where R̂s;v has the same linear form of fw. Intuitively, R̂ can
be considered as the sum of the information flow origi-
nating from virtual absorbing states to node v's neighbors
via node v on the Markov chain.

The vector P is the stationary distribution DisG of the
random walk, and it is the solution to the following
eigenvector equation

PT ¼ PTTr: ð4Þ

The above equation establishes relationships between the
node probability scores pvAP and the parameter w of
function f wðru;vÞ via the random walk transition matrix Tr.

Now we can minimize Eq. (1) with respect to para-
meter vector w. The optimization problem can be solved
by deriving the gradient of F(w) with respect to w, and
then using a gradient based method to find w that mini-
mizes F(w). First, we have derivative of F(w) with respect
to w as

∂FðwÞ
∂w

¼
X

iALþ ;jA L�

∂hðpj�piÞ
∂w

þ
X

yiyj ¼ 1

∂ðpi�pjÞ
∂w

þ2λJwJ ;

¼
X

iALþ ;jA L�

∂hðpj�piÞ
∂ðpj�piÞ

∂pj
∂w

�∂pi
∂w

� �

þ2
X

yiyj ¼ 1

∂pi
∂w

�∂pj
∂w

� �
þ2λw: ð5Þ

We can easily compute ∂hðpj �piÞ
∂ðpj �piÞ for any differentiable

loss function hð:Þ, for example squared loss. However, it is
difficult to compute ∂pv

∂w because we do not have the exact
function form of p(w). Therefore, we compute the deriva-
tive of p with respect to the vector w based on Eq. (4).
Since Tr is a symmetric matrix, we have

pv ¼
X
i

piTri;v: ð6Þ



1 http://www.cs.umd.edu/projects/linqs/projects/lbc/Pubmed-Dia
betes.tgz

M. Fang et al. / Signal Processing 124 (2016) 93–102 97
Therefore, the derivative of pv is given as:

∂pv
∂w

¼
X
i

Tri;v
∂pv
∂w

þpv
∂Tri;v
∂w

: ð7Þ

We can calculate this equation by iteratively computing pv
and ∂pv

∂w. Firstly, we compute pv.

� Initialization: for vAV , let pð0Þv ¼ 1
jV j.� Iteration: step n:

pðnÞv ¼
X
i

pðn�1Þ
i Tri;v: ð8Þ

Secondly, we compute ∂pv
∂w. For each wcAw; c¼ 1;…; jwj, let

∂pv
∂wc

ð0Þ ¼ 0 then for vAV , we have

∂pv
∂wc

ðnÞ
¼
X
i

Tri;v
∂pv
∂wc

ðn�1Þ
þpðn�1Þ

v
∂Tri;v
∂wc

ð9Þ

To solve Eq. (1), we need to further calculate ∂Tri;v
∂w as

∂Tri;v
∂w

¼
∂f wðrv;uÞ

∂w
P

uf w rv;u
� �� �� f w rv;u

� � P
u
∂f wðrv;uÞ

∂w

� �

ðPuf wðrv;uÞÞ2
ð10Þ

where f wðrv;uÞ is the edge strength function. We define fw
to be differentiable, so ∂f wðrv;uÞ

∂w can be easily computed.
We now have an iterative way to calculate the deriva-

tion ∂FðwÞ
∂w . After that, we can iteratively update parameters

by using a gradient descent based method to solve the
optimization problem and obtain optimal solutions for p
and w.

4.2. Supervised sampling algorithm

One important objective of supervised sampling is to
identify as many positive nodes as possible from the
original network. We thus choose to sample the node
which is most likely to be positive, and then acquire its
neighbors, including neighboring nodes and edges.
Based on supervised random walks, we can construct a
Markov chain with probabilities, in which DisG is the
optimal stationary distribution of the network. Each
node vi in the network Gt is assigned with a probability
score pi, indicating the probability of node vi being
positive. The probability score is used to guide the
sampling process to more likely visit a positive node.
Intuitively, if a node has a larger value of pi, it is more
likely to be a positive node because it is closer to the
virtual positive node. Therefore, we choose a node vn

from Border-acquired nodes to be sampled next, such
that it has the largest value of pv,

v� ¼ arg max
vAIborder

pv: ð11Þ

The detailed procedure of our supervised sampling
algorithm is given in Algorithm 1. This algorithm starts
from some seed nodes (i.e., a few connected, labeled
nodes), and iteratively samples other nodes in the net-
work. At each step t, we construct a Markov chain based
on the sampled network Gt obtained so far, and compute
the stationary distribution DisG (lines 2–3). After that,
the sampling process determines the best node v to be
sampled using Eq. (11) (line 4). After node v is sampled,
we obtain the information of its neighborhood, and the
sampled network Gt is expanded to include the node v

together with its genuine label, its neighboring nodes,
and new edges between them. All such information is
used to update the stationary distribution of the sam-
pled network, which will guide the sampling at the next
step.

Algorithm 1. Supervised sampling for networked data.

Input: (1) A network Gt ¼ ðVt ; Et Þ with seed nodes Vl
t ;

(2) The maximum number of sampled nodes: Budget.
Output The sampled network Gt.
1: while tr Budget do
2: Construct a Markov chain for Gt;
3: Compute the stationary distribution DisG using our optimiza-

tion problem Eq. (1);
4: Select a node v to be sampled using Eq. (11);
5: Update Gt with node v and edges between v and N ðvÞ;
6: t ¼ tþ1.
7: end while
5. Experiments

In this section, the effectiveness of the proposed algo-
rithm is evaluated on both synthetic and real-world
networks.

5.1. Experimental settings

5.1.1. Benchmark data
To study the algorithm performance with respect to dif-

ferent network features, we generate scale-free graphs with
400 nodes and 4000–6000 edges to simulate networks,
including labeling information and features for the network
nodes. Because real-world networks usually have community
structures, we use random graph to create network compo-
nents, each containing a number of nodes, and then connect
these components by randomly creating edges between dif-
ferent components [26]. To generate a class label for each
node, we simply assign all nodes within one component as
one class (we focus on binary classification problems so each
node is labeled as either þ1 or �1). Details about synthetic
networks are described in Section 5.2.

Besides synthetic networks, we also validate our pro-
posed algorithm on PubMed citation network.1 Detailed
information is introduced in Section 5.3.
5.1.2. Baseline methods
To study the empirical performance of our proposed

algorithm, referred to as Supervised Sampling for NETwork
data (SSNET), we use four baseline methods for
comparison:

http://www.cs.umd.edu/projects/linqs/projects/lbc/Pubmed-Diabetes.tgz
http://www.cs.umd.edu/projects/linqs/projects/lbc/Pubmed-Diabetes.tgz


M. Fang et al. / Signal Processing 124 (2016) 93–10298
� USNET: This is a variant of our proposed SSNET algo-
rithm by removing the weight optimization module. In
other words, USNET does not consider node features
and there is no strength function for each edge. At each
step, USNET computes the stationary distribution of a
standard randomwalk. It chooses to sample a node with
the maximum probability score.

� Degree: This method uses node degree as the measure
to guide the sampling process. At each iteration, it
samples the node with the maximum node degree and
continuously outreaches to the neighbors of the
selected node.

� BFS: This is the original BFS strategy for sampling the
nodes from a network.

� Random: This method carries out network sampling in a
completely random manner. At each iteration, it ran-
domly selects a node to be sampled.

5.1.3. Performance metrics
Recall: Because the goal of supervised sampling is to

obtain a sampled network that includes a maximum
number of positive nodes and their structures. To this end,
we use recall to compare different methods with respect to
different sizes of sampled networks. In our experiments,
although we know genuine class labels of each node, we
carry out sampling without using class labels of the nodes
(i.e., we pretend that we do not know node class labels
during the sampling process). Once a node is sampled, we
assign its genuine label to the node. By doing so, we can
compute recall as the number of sampled positive nodes
divided by the number of genuine positive nodes.

Network centrality: To evaluate the quality of the sam-
pled network, in comparison with the original network,
we focus on network structure, and compare the sampled
network and the original network with respect to two
popular measures: betweenness centrality and closeness
centrality.

Betweenness measures the degree of brokerage [27,28]
for nodes in a network. It measures howmuch information
is propagated through each node. It is defined as

CB vð Þ ¼
X
s;tAV

σðs; tjvÞ
σðs; tÞ ; ð12Þ

where σðs; tÞ is the number of shortest paths between
Fig. 2. A snapshot of two synthetic networks with different levels o
nodes s and t in the graph, and σðs; tjvÞ is the number of
ðs; tÞ-paths that go through node v.

Closeness is another popular measure of centrality [29].
It measures how close a node is to all other nodes in the
network as defined by the shortest path from the source
node to the destination node

CC vð Þ ¼ 1P
tAVdðv; tÞ

; ð13Þ

where dðv; tÞ is the (weighted, directed) distance from
node v to node t in the graph.

5.1.4. General parameter settings
Setup: For supervised sampling, we need to set up

several initial nodes to start the sampling process. In our
experiments, we randomly choose three connected nodes
as the initial network, which contains both positive and
negative nodes, e.g. we start with two positive nodes and
one negative node, and they are connected with each
other. After that, the algorithm samples other nodes from
the network in an iterative manner.

Edge strength function: According to Eq. (3), we employ
a linear function f wð�Þ to calculate the edge strength. Let r
denote the feature vector of the edge connecting nodes u
and v, f wð�Þ is defined as

f wðru;vÞ ¼wTr: ð14Þ
Loss function: To define the penalty for the optimization

function in Eq. (1), we use a common squared loss with
margin b as:

hðxÞ ¼maxfxþb;0g2: ð15Þ
Parameter λ: λ is used as a regularization term for

avoiding overfitting. However in our experiment, we find
that vector w is relatively small and λ has little impact in
our problem. Empirically, we set λ¼1 because it can give
good performance.

5.2. Results on synthetic data

5.2.1. Synthetic networks
In our experiments, we build two synthetic networks,

and nodes in the networks have two labels: positive and
negative. The two networks have different network
f biased node distributions. (a) P100-N300. (b) P50n2-N300.



Fig. 3. Recall of positive nodes with respect to different sampling sizes. (a) P100-N300. (b) P50n2-N300.

Fig. 4. Percentage (y-axis) of nodes with the Top-10 maximum betweenness scores (upper panel) and Top-10 maximum closeness scores (lower panel) in
the original network discovered in the sampled network. The x-axis defines the ratio of the size of the sampled network compared to the original network.
SSNET shows much better performance in preserving nodes with larger betweenness and closeness scores. (a) P100-N300. (b) P50n2-N300.

M. Fang et al. / Signal Processing 124 (2016) 93–102 99
features with different levels of biased node distributions.
Snapshots of these two networks are shown in Fig. 2.

P100-N300: The P100-N300 network contains two
components, which have 100 and 300 nodes, respectively.
The component with 100 nodes belongs to the positive
class, and the second component belongs to the negative
class. Each node in the network has six random edges on
average. After that, we randomly create 480 edges
between two components. This network is used to simu-
late real-world situation with moderately biased node
distributions.

P50n2-N300: The P50n2-N300 network contains three
components, where the largest one contains 300 nodes,
belonging to the negative class, and the other two com-
ponents both contain 50 nodes, belonging to the positive
class. Meanwhile, each node has six randomly connected
edges within its component. After that, we create 480
edges to randomly connect the three components. This
network is used to simulate real-world situation with
severely biased node distributions.
For each node in the networks, we create two node
features: (1) the first feature is a random variable which
follows a zero mean (variance σ¼1) Gaussian distribution.
It acts as a noisy feature without any specific meaning; and
(2) the second feature is a also a random variable with
Gaussian distribution but subject to different means.
Specifically, if a node belongs to positive class, it would
follow a Gaussian distribution with N ð0;1Þ. If it belongs to
negative class, it would follow a Gaussian distribution with
N ð1;1Þ. In addition, given an edge (v,u) with two nodes u
and v, we define the edge feature as

riv;u ¼ jxiv�xiuj; i¼ 1;2: ð16Þ

5.2.2. Results
The results in Fig. 3 show that biased sampling can help

acquire more positive nodes. SSNET and USNET are both
biased towards sampling positive nodes using the prob-
ability scores of nodes, leading to higher recall values than
other baselines with respect to the same sampling size.



M. Fang et al. / Signal Processing 124 (2016) 93–102100
SSNET outperforms USNET. It makes sense because the
nodes belonging to the same class label in synthetic net-
works are correlated in the feature space. SSNET leverages
the correlations, whereas USNET discards the edge
strength that captures the node correlations. The recall
achieved by Degree, BFS and Random are all very low, and
significantly worse than SSNET. Degree, BFS and Random
select the next node to be sampled solely based on the
structure of the network. They all tend to sample nodes
with high degree. In practice, positive nodes do not
necessarily have a high degree, which explains why these
methods fail in achieving good performance.

To evaluate the quality of sampled networks in preser-
ving the major structure of the original network, we find
the nodes with Top-k (k¼10) betweenness and closeness
scores in the original network and calculate the percentage
of those nodes collected in the sampled network. We
compare results of two different sampling sizes of networks
in Fig. 4, which represents 50% and 25% size of the original
network. The results show that SSNET achieves much better
performance than BFS in preserving major network struc-
tures (i.e. including nodes with Top-k betweenness and
closeness scores in the sampled network), especially when
positive nodes are significantly infrequent in the networks.
Fig. 5. Recall of positive nodes with respect to different sizes of sampled netw
(c) Diabetes Mellitus Type 2.
This indicates that SSNET is helpful not only in acquiring
positive nodes, but also in preserving important network
structures for positive nodes.

5.3. Results on real-world data

For real-world networks, we use an existing PubMed
citation network, which includes 19,717 (i.e. nodes) sci-
entific publications from the PubMed database pertaining
to diabetes, and classifies each of them into one of three
classes: “Diabetes Mellitus, Experimental” (7739), “Dia-
betes Mellitus Type 1” (7875), and “Diabetes Mellitus Type
2” (4103) (The number in the bracket denotes the number
of papers in each class). The citation network consists of
44,338 links. We use the PubMed network to construct
three network sampling problems for its three classes,
respectively:

� Problem 1: we define “Diabetes Mellitus, Experimental”
as positive and others as negative, and sample a net-
work for “Diabetes Mellitus, Experimental”.

� Problem 2: we define “Diabetes Mellitus Type 1” as
positive and others as negative, and sample a network
for “Diabetes Mellitus Type 1”.
orks. (a) Diabetes Mellitus, Experimental. (b) Diabetes Mellitus Type 1.



Fig. 6. Percentage (y-axis) of nodes with the Top-10 maximum betweenness scores (upper panel) and Top-10 maximum closeness scores (lower panel) in
the original network discovered in the sampled network. The x-axis defines the ratio of the size of the sampled network compared to the original network.
SSNET shows much better performance in preserving nodes with large betweenness and closeness scores. (a) Diabetes Mellitus, Experimental. (b) Diabetes
Mellitus Type 1. (c) Diabetes Mellitus Type 2.

M. Fang et al. / Signal Processing 124 (2016) 93–102 101
� Problem 3: we define “Diabetes Mellitus Type 2” as
positive and others as negative, and sample a network
for “Diabetes Mellitus Type 2”.

In our experiments, we use node features to construct
edge features. For each edge between two nodes, each
representing a paper, the first edge feature is defined as
the number of shared words between two papers

r1u;v ¼ k; k¼ fwjwAWu⋂Wvg
�� ��; ð17Þ

where W denotes the words of a paper. The second edge
feature is defined as the cosine similarity between two
papers

r2u;v ¼ cos ðwu;wvÞ; ð18Þ

wherew is the bag-of-word vector to represent each paper
using the occurrence of the words in the paper [30]. The
edge strength function and loss function are the same as
the ones used for synthetic networks.
Fig. 5 reports the recall of positive nodes with respect
to different sampling sizes of networks. It shows that
SSNET and USNET outperform the three baselines, Degree,
BFS and Random, which do not use supervised sampling
strategy for identifying positive nodes. In addition, SSNET
works better than USNET. This is because the papers in the
same class often share common keywords, which is cap-
tured by the edge strength function defined in SSNET. In
comparison, USNET discards edge strength and therefore
ignores the degree of correlations between papers during
the sampling process.

The results in Figs. 5 also show SSNET has a larger slope
of improvement at the beginning of the sampling process.
After 4500 iterations, the recall values become relatively
stable. This demonstrates that SSNET has good perfor-
mance when the supervised sampling process starts. It can
thus potentially find useful positive nodes with very little
cost. The decreasing slope of performance improvement,
at the latter stage of the sampling process, is mainly



M. Fang et al. / Signal Processing 124 (2016) 93–102102
because the number of undiscovered positive nodes
decreases so it becomes more difficult to find them.

Fig. 6 reports the quality of the sampled networks in
preserving major structure of the original PubMed net-
work. The x-axis in the figure denotes the ratio of the size
of the sampled network compared to the original network.
The y-axis shows that out of the Top-k (k¼10) nodes with
the largest betweenness centrality and closeness centrality
scores in the original network, how many of them (the
percentage) actually appear in the sampled networks. The
results clearly show that SSNET outperforms other meth-
ods in preserving important network structures.
6. Conclusion

In this paper, we introduced the problem of supervised
sampling, which samples a large network to generate a
small subset of nodes to represent the original network.
Unlike most graph sampling algorithms which focused on
generating a uniform random sample of the original graph,
supervised sampling aims to sample a network under a
specific goal of acquiring a maximum number of positive
nodes. We proposed to model a network as a Markov
chain, and derived a supervised random walk to learn a
stationary distribution of the sampled network. We
showed that the learned stationary distribution can help
guide the sampling process to visit the nodes that are
more likely to be positive. Experiments on both synthetic
and real-world networks demonstrated that our super-
vised sampling can indeed identify more positive nodes
than other methods, particularly for networks with
imbalanced class distributions.
References

[1] J. Pfeiffer III, J. Neville, P. Bennett, Active sampling of networks, in:
Proceedings of the ICML Workshop on Mining and Learning with
Graphs, Edinburgh, Scotland, 2012.

[2] M. Fang, J. Yin, X. Zhu, C. Zhang, Active class discovery and learning
for networked data, in: Proceedings of the 2013 SIAM International
Conference on Data Mining, SIAM, Austin, TX, USA, 2013, pp. 315–
323.

[3] M. Gjoka, M. Kurant, C. Butts, A. Markopoulou, Walking in facebook:
a case study of unbiased sampling of osns, in: Proceedings of the
2010 IEEE Conference on Computer Communications, IEEE, San
Diego, CA, USA, 2010, pp. 1–9.

[4] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, T. Eliassi-Rad,
Collective classification in network data, AI Mag. 29 (3) (2008) 93.

[5] L. Backstrom, J. Leskovec, Supervised random walks: predicting and
recommending links in social networks, in: Proceedings of the 4th
International Conference on Web Search and Data Mining, ACM,
Hong Kong, 2011, pp. 635–644.

[6] J. Ye, H. Cheng, Z. Zhu, M. Chen, Predicting positive and negative
links in signed social networks by transfer learning, in: Proceedings
of the 22nd International Conference on World Wide Web, ACM, Rio
de Janeiro, Brazil, 2013, pp. 1477–1488.

[7] M. Bilgic, L. Mihalkova, L. Getoor, Active learning for networked data,
in: Proceedings of the 27th International Conference on Machine
Learning, Haifa, Israel, 2010, pp. 79–86.
[8] M. Fang, J. Yin, X. Zhu, Transfer learning across networks for col-
lective classification, in: Proceedings of the 13th IEEE International
Conference on Data Mining, IEEE, Dallas, TX, USA, 2013, pp. 161–170.

[9] M. Fang, J. Yin, X. Zhu, C. Zhang, TrGraph: Cross-network transfer
learning via common signature subgraphs, IEEE Trans. Knowl. Data
Eng. 27 (9) (2015) 2536–2549.

[10] J. He, W.W. Chu, A social network-based recommender system
(SNRS), Data Min. Social Netw. Data, Springer, 2010, 47–74.

[11] M. Fang, D. Tao, Networked bandits with disjoint linear payoffs, in:
Proceedings of SIGKDD, ACM, 2014, pp. 1106–1115.

[12] J. Yu, Y. Rui, D. Tao, Click prediction for web image reranking using
multimodal sparse coding, IEEE Trans. Image Proc. 23 (5) (2014)
2019–2032.

[13] S. Wasserman, K. Faust, Social Network Analysis, Cambridge Uni-
versity Press, 1995.

[14] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, H. Jeong, Analysis of topological
characteristics of huge online social networking services, in: Pro-
ceedings of the 16th International Conference on World Wide Web,
ACM, Banff, Alberta, Canada, 2007, pp. 835–844.

[15] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, B. Bhattacharjee,
Measurement and analysis of online social networks, in: Proceed-
ings of the 7th ACM SIGCOMM Conference on Internet Measure-
ment, ACM, San Diego, CA, USA, 2007, pp. 29–42.

[16] A. Mislove, H. Koppula, K. Gummadi, P. Druschel, B. Bhattacharjee,
Growth of the flickr social network, in: Proceedings of the 1st
Workshop on Online Social Networks, ACM, Seattle, WA, USA, 2008,
pp. 25–30.

[17] B. Viswanath, A. Mislove, M. Cha, K. Gummadi, On the evolution of
user interaction in facebook, in: Proceedings of the 2nd ACM SIG-
COMMWorkshop on Online Social Networks, ACM, Barcelona, Spain,
2009, pp. 37–42.

[18] C. Wilson, B. Boe, A. Sala, K. Puttaswamy, B. Zhao, User interactions
in social networks and their implications, in: Proceedings of the 4th
ACM European Conference on Computer Systems, ACM, Nuremberg,
Germany, 2009, pp. 205–218.

[19] L. Becchetti, C. Castillo, D. Donato, A. Fazzone, A comparison of
sampling techniques for web graph characterization, in: Proceedings
of the 2006 Workshop on Link Analysis: Dynamics and Static of
Large Networks, Philadelphia, PA, 2006.

[20] S. Ye, J. Lang, F. Wu, Crawling online social graphs, in: Proceedings of
the 12th International Asia-Pacific Conference on Web Conference,
IEEE, Busan, South Korea, 2010, pp. 236–242.

[21] L. Lovász, Random walks on graphs: a survey, combinatorics, Paul
erdos is eighty 2 (1) (1993) 1–46.

[22] C. Hübler, H.-P. Kriegel, K. Borgwardt, Z. Ghahramani, Metropolis
algorithms for representative subgraph sampling, in: Proceedings of
the 8th IEEE International Conference on Data Mining, IEEE, Pisa,
Italy, 2008, pp. 283–292.

[23] J. Leskovec, C. Faloutsos, Sampling from large graphs, in: Proceed-
ings of the 12th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, ACM, Philadelphia, PA, USA, 2006,
pp. 631–636.

[24] M. Papagelis, G. Das, N. Koudas, Sampling online social networks,
IEEE Trans. Knowl. Data Eng. 25 (2013) 662–676.

[25] A. Maiya, T. Berger-Wolf, Online sampling of high centrality indivi-
duals in social networks, in: Proceedings of the 14th Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Hyderabad,
India, 2010, pp. 91–98.

[26] P. Erdős, A. Rényi, On random graphs I, Publ. Math.-Debr. 6 (1959)
290–297.

[27] S.P. Borgatti, M.G. Everett, A graph-theoretic perspective on cen-
trality, Soc. Netw. 28 (4) (2006) 466–484.

[28] G. Sabidussi, The centrality index of a graph, Psychometrika 31 (4)
(1966) 581–603.

[29] M.A. Beauchamp, An improved index of centrality, Behav. Sci. 10 (2)
(1965) 161–163.

[30] G. Namata, P. Sen, M. Bilgic, L. Getoor, M. Sahami, A. Srivastava,
Collective classification for text classification, in: Text Mining:
Classification, Clustering, and Applications, Taylor and Francis
Group, 2009.

http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref4
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref4
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref741
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref741
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref741
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref741
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref10
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref10
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref10
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref13
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref13
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref21
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref21
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref21
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref24
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref24
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref24
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref26
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref26
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref26
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref27
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref27
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref27
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref28
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref28
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref28
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref29
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref29
http://refhub.elsevier.com/S0165-1684(15)00346-1/sbref29

	Supervised sampling for networked data
	Introduction
	Related work
	Problem definition
	Our proposed approach
	Supervised random walks
	Supervised sampling algorithm

	Experiments
	Experimental settings
	Benchmark data
	Baseline methods
	Performance metrics
	General parameter settings

	Results on synthetic data
	Synthetic networks
	Results

	Results on real-world data

	Conclusion
	References




