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NOSEP: Non-Overlapping Sequence Pattern Mining
with Gap Constraints

Youxi Wu, Yao Tong, Xingquan Zhu, Senior, IEEE, and Xindong Wu, Fellow, IEEE

Abstract—Sequence pattern mining aims to discover frequent
subsequences as patterns in a single sequence or a sequence
database. By combining gap constraints (or flexible wildcard-
s), users can specify special characteristics of the patterns
and discover meaningful subsequences suitable for their own
application domains, such as finding gene transcription sites
from DNA sequences or discovering patterns for time series
data classification. However, due to the inherent complexity of
sequence patterns, including the exponential candidate space with
respect to pattern letters and gap constraints, to date, existing
sequence pattern mining methods are either incomplete or do not
support the Apriori property since the support or support ratio
of a pattern may be greater than that of its sub-patterns. Most
importantly, patterns discovered by these methods are either
too restrictive or too general and cannot represent underlying
meaningful knowledge in the sequences. In this paper, we focus
on a non-overlapping sequence pattern mining task with gap
constraints, where a non-overlapping sequence pattern allows
sequence letters to be flexible, yet maximally, utilized for pattern
discovery. A new non-overlapping sequence pattern mining algo-
rithm (NOSEP), which is an Apriori-based and complete mining
algorithm, is proposed by using Nettree, a specially designed
data structure, to calculate the exact occurrence of a pattern
in the sequence. Experimental results and comparisons with
biology DNA sequences, time series data, and Gazelle Datasets
demonstrate the efficiency of the proposed algorithms and the
uniqueness of non-overlapping sequence patterns compared to
other methods.

I. INTRODUCTION

Sequence pattern mining aims to discover frequent subse-
quences as patterns in a sequence or a sequence database [1].
Such patterns are strongly correlated to meaningful events or
knowledge within the data and are therefore commonly applied
to numerous fields, such as mining customer purchase patterns
[2], mining tree-structure information [3], travel-landscape
recommendations [4], time-series analysis and prediction [5],
[6], [7], bug repositories [8], sequence classification [9], [10],
and biological sequence data analysis [11], [12]. Because a
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sequence pattern consists of multiple pattern letters occurring
in a sequence order, it is possible that when pattern occurring
in the sequence, two pattern letters may appear in the required
sequence order but with different numbers of letters between
them. Formally, a frequent sequence pattern with gap con-
straints (or flexible wildcards or wildcard gaps) is defined as
P = p1[min1,max1]p2...[minm−1,maxm−1]pm[13], [14],
[15], [16], [17], [18], [19], [20]. If min1 = min2 = ... =
minm−1 = a, and max1 = max2 = ... = maxm−1 = b, it
can be called pattern with periodic gap constraints (or periodic
wildcard gaps) [14], [16] and P can be written as p1p2...pm
with gap = [a, b]. According to [16], pattern P=C[0,2]G[1,3]C
is not a pattern with periodic gap constraints, although the
size of the second gap 3-1+1=3 is the same as that of the first
2-0+1=3. The number of letters between two pattern letters,
say p1 and p2, therefore forms a gap [min1,max1] which
has strong implications for the actual usage of the sequence
patterns. A small gap between pattern letters is too restrictive
to find valid patterns whereas a large gap makes the pattern too
general to represent meaningful knowledge within the data.

Because gap constraints allow users to set gap flexibility to
meet their special needs, sequence pattern mining with gap
constraints has been applied to many fields, including medical
emergency identification [21], mining biological characteris-
tics [22], mining customer purchase patterns [23], feature
extraction [1], and so on. During the mining process, all
existing methods rely on two major steps, generating candidate
patterns and counting pattern occurrences, to discover frequent
subsequences. However, in a sequence data environment, the
occurrence of a pattern in the sequence is inherently compli-
cated because a letter in the sequence may match multiple
pattern letters and different matching may result in different
frequency-counting results. To tackle this challenge, the state-
of-the-art mining methods [1], [11], [14], [16], [24], [25],
[26] mainly rely on three different conditions to count the
pattern frequency: no condition [1], [14], [16], [24], the one-off
condition [11], [25], and the non-overlapping condition [26].
Compared with the one-off condition and the non-overlapping
condition, some researches do not employ any other condition,
to make it easy to understand. In this paper, we therefore call
them no condition (or without condition) which allows a se-
quence letter to match and rematch any pattern letter. The one-
off condition allows a sequence letter being used only once
to match a pattern letter and the non-overlapping condition
allows a sequence letter to match and rematch pattern letter
as long as the matched patterns letters are different (i.e., non-
overlapping). Therefore, the non-overlapping condition is less
restrictive than the one-off condition and more specific than
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no condition for pattern mining. As a result, it is possible to
find more meaningful patterns from the sequences.

In addition to the above benefits, to the best of our
knowledge, existing sequence pattern mining with gaps cannot
achieve a balance of the Apriori property and completeness.
On one hand, some methods satisfy the Apriori property,
but they belong to approximate mining and cannot calculate
the exact occurrence of the patterns (by using approximate
occurrence counting). As a result, some frequent patterns may
be missed, such as sequence pattern mining under the one-off
condition [11], [25] or under the non-overlapping condition
[26]. On the other hand, some methods can calculate the
support of the patterns exactly, but both the support and
support ratio of a super-pattern can be greater than its sub-
pattern, that is, both the support and support ratio do not satisfy
anti-monotonicity. Therefore these issues do not satisfy the
Apriori property and have to adopt the Apriori-like property by
expanding the search spaces to achieve completeness mining,
such as sequence pattern mining under no condition [14], [16],
[24].

The above observations motivated the proposed research
which intends to use the non-overlapping condition for mining
sequence patterns with gap constraints. Compared to existing
sequence pattern mining algorithms, the proposed NOSEP
algorithm is an Apriori-based mining algorithm that is able to
count the exact occurrence of the patterns. Our experiments
in Section V demonstrate that NOSEP can discover more
meaningful patterns than the state-of-the-art algorithms.

The contributions of the paper are threefold: (1) we propose
a new algorithm, NETGAP using Nettree data structure, to
compute the support of a candidate pattern in the sequence
and prove the completeness of the algorithm; (2) we propose
NOSEP, a new algorithm employing a pattern growth strategy
to reduce the candidate space for effective sequence pattern
mining with gap constraints; and (3) experiments on DNA
sequence mining and time series data mining demonstrate
that NOSEP can discover more frequent patterns than state-
of-the-art algorithm under the same conditions, and patterns
discovered by NOSEP are more effective than those discovered
by other competitive algorithms.

The remainder of the paper is organized as follows. Related
work is introduced in Section II, followed by the problem def-
inition in Section III. Section IV proposes a pattern matching
algorithm NETGAP to compute the exact support of a pattern,
including the proof of completeness, and the NOSEP algorithm
for sequence pattern mining. Section V reports the algorithm
performance and comparisons, and we conclude the paper in
Section VI.

II. RELATED WORK

Sequence pattern mining has been widely applied in various
fields [27], [28], [29], [30], [21]. But the mining results some-
times cannot fulfill a special request. For example, patterns
with gap constraints can be used in many fields, but traditional
pattern mining methods fail to solve this challenge. These
methods have a variety of forms: no condition [1], [16], [14],
[24], the one-off condition [11], [25] and the non-overlapping

1 2 3 4 5
S = C G C G C

C G C . . The first occurrence
C G . . C The second occurrence
C . . G C The third occurrence
. . C G C The fourth occurrence

Fig. 1: All occurrences of pattern P in sequence S

condition [26]. Here, we point out that compared with other
conditions, a kind of methods without adding any condition,
therefore, we call no condition in this paper. An illustrative
example is shown as follows to clarify the relationships of
these methods.

Example 1. Suppose we have sequence S =
s1s2s3s4s5 = CGCGC and pattern P =
p1[min1,max1]p2[min2,max2]p3 = C[0, 2]G[0, 2]C,
the occurrences are shown in Figure 1.

Generally, a group of positions of the pattern in the se-
quence is used to represent an occurrence. Therefore, the
first occurrence can be represented as 〈1, 2, 3〉, and others
are 〈1, 2, 5〉, 〈1, 4, 5〉, and 〈3, 4, 5〉, and all four occurrences
of P will be counted in sequence S under no condition.
When matching pattern letters, some methods employ special
conditions, including the one-off condition [11], [25] and the
non-overlapping condition [26]. Both of them consider the
relationship between one occurrence and other occurrences.
Under the one-off condition (which is called the stronger
version of the non-overlapping condition as described in Ref.
[26]), each of the characters in the sequence can be used
only once. But under the non-overlapping condition, sj cannot
be reused by the same pi and can be reused by other pi
[26]. Therefore, there is only one occurrence, which can be
any one selected from the above four occurrences under the
one-off condition. For example, if we select 〈1, 2, 3〉, 〈3, 4, 5〉
is not an occurrence under the one-off condition, since 〈3〉
cannot be reused. However, 〈1, 2, 3〉 and 〈3, 4, 5〉 are two non-
overlapping occurrences under the non-overlapping condition,
since 〈3〉 matches p3 and p1, respectively.

Since pattern matching strategy can be used to calculate
the support in the sequence pattern mining task, therefore,
pattern matching methods are also considered in a comparison
of related work shown in Table I.

Now, we briefly review the contributions of these related
works. Many researchers focused on sequence pattern mining
under no condition. For example, Zhang et al [16] firstly ad-
dressed sequence pattern mining with periodic gap constraints
and proposed MPP-Best algorithm to tackle the problem. Zhu
and Wu [24] proposed a more effective algorithm GCS which
can be used to deal with a set of sequences. Our previous
research [14] employed Nettree data structure and proposed
MAPD algorithm which is more effective than the previous the
state-of-the-art algorithms. Li et al [14] showed that this kind
of mining method can be employed for feature selection for the
purpose of classification. All the above mining methods belong
to no condition. The advantage of sequence pattern mining
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TABLE I: A COMPARISON OF RELATED WORK

Type of research Type of condition Periodic Length Support Mining type Pruning strategy
gap constraints constraints

Li et al [1] Yes No
Zhang et al [16] Pattern mining No condition Yes No Exact Exact Apriori-like
Zhu and Wu [24] Yes No

Wu et al [14] Yes No
Bille et al [17] Pattern matching Other/No condition 1 No No Exact –2 –
Wu et al [31] No condition No Yes Exact – –
Wu et al [11] Pattern mining One-off condition No No Approximate Approximate Apriori
Lam et al [25] No No
Guo et al [19] Pattern matching One-off condition No Yes Approximate – –
Ding et al [26] Pattern mining Non-overlapping condition Yes Yes Approximate Approximate Apriori
Wu et al [20] Pattern matching Non-overlapping condition No Yes Exact – –

This paper Pattern mining Non-overlapping condition No Yes Exact Exact Apriori

Note 1: Bille et al [17] proposed two algorithms to calculate the last positions of occurrences and all occurrences, respectively. The former is other kinds of
pattern matching while the latter belongs to pattern matching under no condition.
Note 2: We do not consider mining type and pruning strategy for pattern matching issue.

under no condition lies that under no condition the support of
P in S can be calculated exactly according to many previous
researches [16], [24], [14]. Many researches also focused on
pattern matching under no condition. These researches are
beyond the limitations of periodic gap constraints [17], [31],
exact pattern matching [32], and positive gap constraints[33].
But the disadvantage of sequence pattern mining under no
condition lies that the support (the number of occurrences) of
a pattern is no less than that of its sub-pattern under no condi-
tion. For example, the supports of T[0,2]C and T[0,2]C[0,2]A
in TTCCAA are 4 and 8, respectively. Therefore, this mining
method does not meet the Apriori property. Although some
other researches under no condition, such as [5], [6] , also
meet the Apriori property but they change the definitions and
the mining results are a little bit different, therefore, these
researches can be seen as approximate mining. In general,
sequence pattern mining with no condition can exactly find
the patterns but fails to meet the Apriori property.

The advantage of sequence pattern mining under the one-
off condition and the non-overlapping condition is that these
two methods meet the Apriori property, since it is easy to see
that the support of a pattern is no greater than that of its sub-
pattern. Many researchers focused on pattern matching under
the one-off condition. For example, without user-specified gap
constraints, Wu et al [11] employed the one-off condition and
proposed an effective algorithm PMBC to discover pattern
from biological sequences. Lam et al [25] proposed two
minimum description length based algorithms for mining non-
redundant sets of sequential patterns. Although Lam et al
did not use the one-off condition term, actually, the study is
a pattern mining under the one-off condition. Unfortunately,
calculating the support under the one-off condition is an NP-
hard problem [34]. Although many heuristic algorithms [18],
[19], [35], [36], [37] were proposed to calculate the support,
all these algorithms cannot calculate the support exactly.
Therefore, the disadvantage of sequence pattern mining under
the one-off condition lies that some of the frequent patterns
may be lost.

Ding et al [26] firstly addressed the sequence pattern
mining under the non-overlapping condition and proposed
GSgrow and CloGSgrow to mine the frequent patterns and

the closed frequent patterns, respectively. To the best of our
knowledge, they are the only two algorithms considering the
non-overlapping condition for pattern mining. However, some
frequent patterns may not be found because the two algorithms
employ the INSgrow procedure to calculate the support, which
may result in the loss of some feasible occurrences. The
reason is shown in Challenge I in subsection IV-A NETGAP.
Therefore, GSgrow and CloGSgrow are approximate mining
algorithms. From Table I, we can see that besides [26] another
most relevant research is one of our previous works [20]
which deals with a pattern matching issue. In that research, we
proved that the problem of calculating the support of a pattern
under the non-overlapping condition is in P and proposed a
complete algorithm named NETLAP-Best which iteratively
finds the rightmost non-overlapping occurrences to calculate
the support. This paper however handles a sequence pattern
mining issue. We will propose NOSEP algorithm to mine
all frequent patterns, and NOSEP employs another complete
algorithm NETGAP which iteratively finds the leftmost non-
overlapping occurrence to calculate the support and a pattern
growth strategy to reduce the space of candidate patterns.
Our previous work [14] also mined the frequent sequence
patterns, but according to Table I, it is easy to see that it
focused on mining the patterns under no condition while
this paper deals with the patterns under the non-overlapping
condition. Therefore, the two works focus on different issues.
Moreover, in [14], we employed the last level of a Nettree,
named Incomplete Nettree structure, to calculate the support
of a pattern. And then, the Incomplete Nettree was used to
create other Incomplete Nettrees of all its super-patterns and
calculated their supports in a one-way scan. Therefore, the
data structures are different. Furthermore, we proposed two
algorithms MAPB (employed the breadth-first search) and
MAPD (employed the depth-first search) to find the frequent
patterns under no condition. Hence, the pruning strategies are
also different. Therefore, this study differs from the previous
studies.

To the best of our knowledge, existing sequence pattern
mining with gap constraints cannot achieve a balance between
the Apriori property and completeness. In this paper, we
investigate non-overlapping sequence pattern mining with gap
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constraints, with the aim of discovering the complete set of
frequent sequence patterns based on the Apriori property.

III. PROBLEM DEFINITION

In this section, we define important definitions and use
examples to illustrate the problem.

Definition 1. (Pattern with gap constraints and sequence)
Pattern P with gap constraints can be described as p1[min1,
max1]p2...[minm−1,maxm−1]pm, where pj ∈ Σ, minj and
maxj are two non-negative integers and represent the min-
imum gap constraint and maximum gap constraint, respec-
tively, 1 ≤ j ≤ m, and Σ is a set of all event items.
Given the gap constraints gap = [a, b], pattern P with
periodic gap constraints can be written as p1[a, b]p2...[a, b]pm
or P = p1p2...pm with gap = [a, b], where 0 ≤ a ≤ b.
Sequence S with length n can be written as s1s2...si...sn,
where 1 ≤ i ≤ n and si ∈ Σ. The number of elements in the
set is denoted by |Σ|.

For example, in a DNA sequence, Σ is {A, T, C, G} and
|Σ| is 4.

Definition 2. (Occurrence) A group of m integers L =
〈l1, l2, ..., lm〉 is called an occurrence of P in S, if and only
if 1 ≤ l1 < l2 < ... < lm ≤ n, minj ≤ lj+1− lj−1 ≤ maxj ,
p1 = sl1 ,p2 = sl2 ,..., and pm = slm .

Example 2. Suppose sequence S = s1s2s3s4s5 = CGCGC
and pattern P = C[0, 2]G[0, 2]C are given, all occurrences
of P in S are: 〈1, 2, 3〉, 〈1, 2, 5〉, 〈1, 4, 5〉, and 〈3, 4, 5〉, while
all occurrences of CGC with gap = [0, 1] in S are 〈1, 2, 3〉
and 〈3, 4, 5〉.

Definition 3. (Length constraints) The length constraints can
be written as len = [minlen,maxlen], where minlen and
maxlen are the minimum length constraint and the maximum
length constraint, respectively. If L = 〈l1, l2, ...lm〉 satisfies
minlen ≤ lm − l1 + 1 ≤ maxlen, then L is an occurrence
with length constraints.

We can see that all occurrences with length constraints
len = [1, 4] of P = C[0,2]G[0,2]C in S are 〈1, 2, 3〉,
〈3, 4, 5〉 in Example 2. For example, for occurrence 〈3, 4, 5〉
5− 3 + 1 = 3 satisfies len = [1, 4].

Definition 4. (Non-overlapping occurrence set and support)
Let L = 〈l1, l2, ..., lm〉 and L

′
= 〈l′1, l

′

2, ..., l
′

m〉 be two
occurrences. If and only if ∀1 ≤ j ≤ m: lj 6= l

′

j , L and L
′

are two non-overlapping occurrences. If any two occurrences
in a set are non-overlapping, then the set is called non-
overlapping occurrence set. The support of P in S under the
non-overlapping condition, which is denoted by sup(P, S), is
the size of the maximum non-overlapping occurrence set.

As we know that all occurrences of P with gap constraints
gap = [0, 2] and length constraint len = [1, 5] in S in
Example 2 is 〈1, 2, 3〉, 〈1, 2, 5〉, 〈1, 4, 5〉, and 〈3, 4, 5〉. We
can see that the maximum non-overlapping occurrence set is
{〈1, 2, 3〉, 〈3, 4, 5〉} in this example. Therefore, under the non-
overlapping condition, sup(P, S) is 2. In particular, we do not

consider the relationship between an occurrence and its sub-
occurrence. For example, we do not consider the relationship
between 〈1, 2, 3〉 and 〈1, 2〉.

Definition 5. (Support of sequence database) A set of se-
quences is called a sequence database, denoted by SDB,
SDB = {S1, S2, ..., SN},where N is the size of sequence
database. The support of pattern P in SDB is the sum
of supports of P in S1, S2, ..., SN , respectively, denoted by
sup(P, SDB) =

∑N
k=1 sup(P, Sk).

Example 3. Suppose SDB = {S1 = s1s2s3s4s5 =
CGCGC,S2 = s1s2s3s4s5 = CGTCA}. Then the support
of pattern P=CGC with gap constraints gap = [0, 2] and
length constraint len = [1, 4] in SDB is 3, since its supports
in S1 and S2 are 2 and 1, respectively.

Definition 6. (Frequent pattern and non-overlapping sequence
pattern mining with gap constraints) If the support of pattern
P in sequence S or in sequence database SDB is no less than
the given minimum support threshold minsup, then pattern
P is called the frequent pattern. The goal of non-overlapping
sequence pattern mining with gap constraints is to mine all
the frequent patterns with the gap and length constraints in
sequence S or in sequence database SDB.

Example 4. If the minimum support threshold minsup=3,
then pattern P=CGC with gap = [0, 2] and len = [1, 4] is a
frequent pattern in Example 4, since its support in SDB is
3. The supports of pattern CGCG in S1 and S2 are 1 and 0,
respectively. Therefore, the support of pattern CGCG in the
SDB is 1. Hence, pattern CGCG is not a frequent pattern.

IV. ALGORITHMS

For sequence pattern mining tasks, there are two main
factors that affect the mining performance: calculation of
the support and reduction of the candidate pattern space.
Accordingly, in Section IV-A we propose an effective algo-
rithm, named NETGAP, to calculate the support and we prove
the completeness of the algorithm. Section IV-B proposes
the mining algorithm to reduce the candidate pattern space.
Moreover, we show the space and time complexities in Section
IV-C and briefly introduce the principles of three competitive
algorithms in Section IV-D.

A. NETGAP

There are two major challenges in calculating the support:
(1) effectively checking a pattern occurrence without using a
backtracking strategy, and (2) distinguishing characters in the
sequence that may be reused for pattern matching.

Challenge 1. The information of the occurrence of a sub-
pattern cannot be employed directly to calculate the oc-
currence for the super-pattern, because it may cause some
feasible occurrences to be lost. For instance, given S =
s1s2s3s4s5 = ATTGC, it is easy to see that the first non-
overlapping occurrence of sub-pattern A[0,1]T is 〈1, 2〉. But
there is no non-overlapping occurrence of super-pattern P =
A[0,1]T[0,1]C based on 〈1, 2〉, since 〈1, 2, 5〉 does not satisfy
the gap constraints. We know that 〈1, 3, 5〉 is a non-overlapping
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occurrence of super-pattern P = A[0,1]T[0,1]C. INSgrow
[26] calculates the occurrences for a pattern based on the
sub-occurrences for its sub-pattern. INSgrow, without using
backtracking strategy, cannot find the occurrence 〈1, 3, 5〉,
therefore, may lose some feasible occurrences. However, if
a backtracking strategy is employed, then 〈1, 3, 5〉 can be
found based on 〈1, 2〉. Apparently, this method is less effective.
Therefore, an effective algorithm without using a backtracking
strategy should be presented.

Challenge 2. When dealing with the non-overlapping condi-
tion, after finding an occurrence, we cannot use an unmatch-
able character ’X’ to replace the corresponding character in
the sequence. For instance, we know that the first occurrence
in Example 1 is 〈1, 2, 3〉. If ’X’ is used to replace the
corresponding character in the sequence, the new sequence
is ’XXXGC’, and then non-overlapping occurrence 〈3, 4, 5〉
cannot be obtained. Hence, the algorithm should effectively
distinguish which characters in the sequence can be reused.

To tackle the above challenges, we propose to use the
Nettree data structure to solve the problem.

Definition 7. (Nettree) Nettree [31] is similar to a tree data
structure, consisting of root, leaf, level, parent, child, and so
on. Nevertheless, Nettree has three characteristics that are
evidently different from the tree structure:

1) A Nettree may have n roots, where n > 1.
2) To describe a node effectively, node i in the j-th level is

denoted by ni
j since the same node label can occur on different

levels.
3) Any node except the root may have more than one

parent and all its parents must be at the same level; that
is the non-root node ni

j (j > 1) may have multiple parents
{ni1

j−1, n
i2
j−1, ..., n

im
j−1} (m ≥ 1), and thus there may be

multiple paths from a node to a root node.

Definition 8. (Absolute leaf) A leaf in the m-th level Nettree
is called an absolute leaf.

Definition 9. (Full path) A path from a root to an absolute
leaf in a Nettree is called a full path.

Lemma 1. Each occurrence of pattern P in sequence S can
be represented as a full path in the Nettree and a full path
corresponds to an occurrence.

Proof. Our previous work [31] has shown that all occurrences
of pattern P in sequence S can be transformed into a Nettree
and each full path corresponds to an occurrence; that is, each
occurrence can be represented as a full path in the Nettree.

Definition 10. (The minimal full path, the minimal occurrence,
the maximal full path, and the maximal occurrence) A full path
that iterates the leftmost child from the min-root to its leaf is
called the minimal full path. The corresponding occurrence
of the minimal full path is called the minimum occurrence.
Similarly, a full path that iterates the rightmost parent from
the max-leaf to its root is called the maximal full path and its
corresponding occurrence is called the maximal occurrence.

Lemma 2. Let A and B be two full paths that do not contain
the same Nettree node. The corresponding occurrences of A
and B are the non-overlapping occurrences.

Proof. A and B are 〈na1
1 , na2

2 , ..., nam
m 〉 and 〈nb1

1 , nb2
2 ,

..., nbm
m 〉, respectively. For all i(1 ≤ i ≤ m), ai is not equal to

bi, since A and B do not contain the same node. Therefore,
〈a1, a2, ..., am〉 and 〈b1, b2, ..., bm〉 are two non-overlapping
occurrences.

Nettree data structure is suitable to solve this problem
effectively. First, a Nettree can be created according to the
pattern and the sequence. Then we obtain a minimal full path
on the Nettree and prune the minimal full path and other
invalid nodes from the Nettree. We iterate the above process
until the Nettree is NULL. Example 5 illustrates the processes
and some concepts of Definitions 8-10.

Example 5. Suppose we have sequence S = s1s2s3s4s5s6s7
s8s9s10s11s12s13s14s15s16 = AAGTACGACGCATCTA
and pattern P = A[0, 3]G[0, 3]C[0, 3]A, a Nettree shown as
follows can be created according to the algorithm CreateNet-
tree in previous work[20]. n8

4, n12
4 , and n16

4 are three absolute
leaves in the Nettree. Path 〈n5

1, n
7
2, n

9
3, n

12
4 〉 is a full path. Root

n1
1 is the min-root at the beginning. Path 〈n1

1, n
3
2, n

6
3, n

8
4〉 is the

minimal full path and its corresponding occurrence 〈1, 3, 6, 8〉
is the minimal occurrence. Similarly, n16

4 is the rightmost
leaf. Path 〈n8

1, n
10
2 , n14

3 , n16
4 〉 is the maximal full path and

its corresponding occurrence 〈8, 10, 14, 16〉 is the maximal
occurrence.

Note: pink nodes, yellow nodes, and blue nodes in the figure represent three
full paths of nodes respectively; red nodes represent invalid nodes after

pruning a minimal full path.

Fig. 2: The corresponding Nettree

It is easy for us to obtain the first minimal occurrence
〈1, 3, 6, 8〉, marked in pink in Figure 2. When 〈1, 3, 6, 8〉
is pruned from the Nettree, we know that node n2

1 has no
child and is an invalid node. Hence, n2

1 can also be pruned
and marked in red. Then the second minimal occurrence
〈5, 7, 9, 12〉, marked in yellow, can be found. After pruning
〈5, 7, 9, 12〉, node n11

3 has no child and can also be pruned.
Finally, the third minimal occurrence 〈8, 10, 14, 16〉, marked
in blue, is obtained. Therefore, we get three non-overlapping
occurrences of P in S; that is, sup(P, S) = 3.

Lemma 3. If a node has no child, then the node can be
pruned.

Proof. If ni
j is a non-absolute leaf node in a Nettree, then

there is no path from it to an absolute leaf. Therefore, ni
j is

an invalid node and should be pruned. After pruning ni
j , we
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should also check its parents to find out whether or not those
nodes have a child. A node that has no child should also be
pruned.

An algorithm, named NETGAP, which computes the sup-
port of P in S, sup(P, S), is shown in Algorithm 1. Since
NETGAP will be employed by sequence pattern mining algo-
rithms, when sup(P, S) is greater than the minsup, it is not
necessary to continue to calculate the support.

Algorithm 1 NETGAP
Input: Sequence S, Pattern P , gap = [a, b], len = [minlen,maxlen], and

minsup
Output: sup(P, S)
1: Create a nettree of P in S;
2: Prune nodes which have no child according to Lemma 3;
3: for each ni

1 in nettree do
4: node[1]← ni

1; //node used to store an occurrence;
5: for j=1 to nettree.level− 1 step 1 do
6: node[j + 1] is the leftmost child that meets the length constraints of

node[j];
7: end for
8: sup(P, S)++;
9: if sup(P, S) > minsup then return sup(P, S);

10: Prune nodes which have no child according to Lemma 3;
11: end for
12: return sup(P, S);

Lemma 4. Let 〈xj , xj+1〉 and 〈yj , yj+1〉 be two sub-
occurrences of sub-pattern pj [aj , bj ]pj+1. Supposing that
xj < yj and xj+1 > yj+1, we can safely say that 〈xj , yj+1〉
and 〈yj , xj+1〉 are also two sub-occurrences.

Proof. Our previous work [20] has shown that if 〈xj , xj+1〉
and 〈yj , yj+1〉 are two sub-occurrences, then 〈xj , yj+1〉 and
〈yj , xj+1〉 are also two sub-occurrences, where xj < yj and
xj+1 > yj+1.

Example 6. Suppose sequence S = s1s2s3s4s5s6 =
AATTCC and pattern P = A[0, 2]T [0, 2]C are given. We
can see that 〈3, 6〉 and 〈4, 5〉 are two sub-occurrences of sub-
pattern T[0,2]C. According to Lemma 4, we can safely say
〈3, 5〉 and 〈4, 6〉 are two sub-occurrences.

Theorem 1. The algorithm NETGAP is complete.

Proof. The proof is given in Appendix A.

B. NOSEP

Before NOSEP is presented, some related concepts are
given at first.

Definition 11. (Prefix and suffix sub-pattern and super-
pattern) Suppose we have sequence P = p1p2...pm and event
items a and b. If Q = Pa, then P is called the prefix sub-
pattern of Q and is denoted by prefix(Q) = P . Q is a
super-pattern of P . Similarly, if R = bP , then P is called
the suffix sub-pattern of R and denoted by suffix(R) = P
and R = bP . Since prefix(Q) = suffix(R) = P , R and Q
can be connected to a super-pattern T whose length is m+ 2
using the operator ⊕; that is, T = Q⊕R = bPa.

Example 7. Let pattern P be ACCT. The prefix sub-pattern
and the suffix sub-pattern of P are ACC and CCT, respectively.
If Q = CCTG, then T = P ⊕Q = ACCTG.

Theorem 2. The non-overlapping sequence pattern mining
with gap constraints satisfies the Apriori property.

Proof. The proof is given in Appendix A.

Our previous work [14] employed both breadth-first search
and depth-first search to mine the frequent patterns with gap
constraints. Since there is no condition in that research, MAPB
and MAPD [14] can calculate all the candidate patterns with
the same prefix pattern in one-way scanning the sequence
or SDB. Therefore, MAPB and MAPD are two effective
mining algorithms. However, in this paper, we calculate the
support under the non-overlapping condition. NETGAP cannot
calculate the supports of the candidate patterns with the same
prefix pattern in one-way scanning the sequence, can calculate
the support of a candidate pattern in once scanning. Neither
breadth-first search nor depth-first search is a very effective
strategy.

Example 8. We find all frequent patterns from sequence S =
s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15s16 =AAGTACGACG
CATCTA, minsup = 3, gap constraints gap = [0, 3], and
length constraints len = [1, 15].

We know that all the frequent patterns with length 1 are
{’A’, ’C’, ’G’, ’T’}, and it is easy for us to know that there are
seven kinds of frequent patterns with length 2; that is, {’AA’,
’AC’, ’AG’, ’CA’, ’CC’, ’GA’, ’GC’}. Hence, the number of
candidate patterns with length 3 is 7 × 4 = 28, since each
frequent pattern with length 2 will generate four kinds of
candidate patterns. We can safely know that pattern ’AAT’
is not a frequent pattern, since pattern ’AT’ is not a frequent
sequence. Therefore, there are seventeen kinds of candidate
patterns with length 3 using pattern growth approach; that is,
{’AAA’, ’AAC’, ’AAG’, ’ACA’, ’ACC’, ’AGA’, ’AGC’, ’CAA’,
’CAC’, ’CAG’, ’CCA’, ’CCC’, ’GAA’, ’GAC’, ’GAG’, ’GCA’,
’GCC’}. Hence, this example shows that the pattern growth
approach is more effective than breadth-first search and depth-
first search approaches.

Since the frequent pattern set with a length of n − 1 is an
ordered set, the candidate pattern set with a length of n is also
an ordered set. The following example is used to illustrate how
to generate the candidate pattern set with length n based on
the pattern growth approach.

Example 9. Let the frequent patterns with length 2, C2 be
{’AA’, ’AC’, ’AG’, ’CA’, ’CC’, ’GA’, ’GC’}. We will generate
the candidate patterns with length 3 based on the pattern
growth approach.

Firstly, we get the first pattern in C2 which is ’AA’. We know
that the suffix pattern of ’AA’ is ’A’. Now, the binary search
strategy is employed to find the first position in C2 whose prefix
pattern is also ’A’. We know that the first pattern in C2 is ’AA’
and its prefix pattern is ’A’. So the first candidate pattern
’AAA’ is generated. Since ’AA’, ’AC’, and ’AG’ have the
same parent in the pattern tree, ’A’, ’AAC’ and ’AAG’ can be
obtained. Now, the next pattern of ’AG’ is ’CA’ and its prefix
pattern is ’C’ which is different from ’A’. The suffix pattern ’A’
should be changed. The above steps are iterated until pattern
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’C’ as the suffix pattern of ’GC’ has been processed and all
the candidate patterns can be found.

To mine the frequent patterns quickly, when we detect the
support of a pattern is greater than minsup, we should stop
calculating the support as early as possible since this process
is slow. NOSEP is shown in Algorithm 2.

Algorithm 2 NOSEP: Mining all the frequent patterns based
on pattern growth approach
Input: Sequence database SDB, minsup, gap = [a, b],

len = [minlen,maxlen]
Output: The frequent patterns in meta
1: Scan sequence database SDB once, calculate the support of each event item, and

store the frequent patterns with length 1 into a queue meta[1];
2: len = 1;
3: C =gen candidate(meta[len]); // call gen candidate algorithm, put the results in

candidate set C
4: while C <> null do
5: for each cand in C do
6: minsup1 = minsup;
7: for each sequence sk in SDB do
8: sup1 = NETGAP(cand, minsup1);
9: minsup1− = sup1;

10: sup(cand)+ = sup1;
11: if sup(cand) ≥ minsup then
12: meta[len + 1].enqueue(cand);
13: break;
14: end if
15: end for
16: end for
17: len = len + 1;
18: C =gen candidate(meta[len]);
19: end while
20: return meta[1] ∪meta[2]... ∪meta[len];

Algorithm gen candidate, shown in Algorithm 3, is used to
generate a candidate set with length len + 1.

Algorithm 3 gen candidate(m)
Input: m
Output: Candidate set C
1: start = 1;
2: for i = 1 to |m| do
3: R = suffix(m[i]);
4: Q = prefix(m[start]);
5: if R <> Q then
6: start = binarysearch(m, Q, 1, |m|);
7: end if
8: if start >= 1 && start <= |m| then
9: while Q == R do

10: C.enqueue(R⊕Q);
11: start = start + 1;
12: if start > |m| then
13: start = 1;
14: R = prefix(m[start]);
15: end if
16: end while
17: end if
18: end for
19: return C;

C. Complexities

Theorem 3. The space complexity of NOSEP is O(m×n×w)
in the worst case and O(m×n×w/r/r) in the average case,
where m, n, w, and r are the maximal length of mined pattern,
the maximal length of sequence in the sequence database SDB,
b− a + 1, and the size of Σ, respectively.

Proof. The proof is given in Appendix A.

Theorem 4. The time complexity of NOSEP is O(m×m×N×
w×L) in the worst case and O(m×m×N ×w×L/r/r/r)

in the average case, where m, w, and r are given in the space
complexity, N and L are the length of SDB and the number
of the candidate patterns, respectively.

Proof. The proof is given in Appendix A.

V. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATIONS

In this section, we validate the mining capacities, the
performance and scalability of NOSEP on DNA sequences,
time series data, protein sequence databases and clickstream
data from an e-commerce. In particular, we will report the
comparison of the mining capacities in Section V.C. In Section
V. D we will evaluate the performances of algorithms. In
Section V.E we will show the performances for different
parameters. All experiments are conducted on a computer
with an Intel Core I5, 3.4GHz CPU, 8.0GB DDR2 of RAM,
Windows 7, and a 64 bit operating system. VC++6.0 is
used to develop all algorithms, including GSgrow, NetMining-
B, NetMining-D, NOSEP-Back, and NOSEP, which can be
downloaded from http://wuc.scse.hebut.edu.cn/nettree/nosep/.

A. Benchmark Datasets

Table II shows datasets used in this paper for clarification.

B. Baseline Methods

1) gd-DSPMiner [22]: This method is a kind of contrast
sequence pattern mining under no condition.

2) SAIL [36] and SBO [37]: These methods are two pattern
matching strategies to approximately calculate the support
under the one-off condition since the issue is an NP-hard
problem.

3) GSgrow [26]: This method is a kind of sequence pattern
mining under the non-overlapping condition.

4) NOSEP-Back: As we mentioned in Challenge 1 in
Section IV-A, the backtracking strategy is less effective to
calculate the support. To verify the analysis, we propose
the algorithm NOSEP-Back which adopts the backtracking
strategy and employs the same pruning strategy as NOSEP
to reduce the candidate space.

5) NetMining-B and NetMining-D: These two algorithms
also employ the algorithm NETGAP to calculate the support,
but adopt the breadth-first search and the depth-first search
which were employed by MAPB and MAPD in our previous
research [14], respectively. NetMining-B stores the frequent
patterns in a queue while NetMining-D stores the frequent pat-
terns in a stack. The principle of NetMining-B and NetMining-
D are shown as follows. We get a frequent pattern from the
queue/ stack at first. According to the Apriori property, all
its supper-patterns are candidate patterns. We calculate the
supports of these supper-patterns and then find the frequent
patterns. At last we enqueue or push the frequent patterns into
the queue or stack and iterate the above process until the queue
or stack is empty.
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TABLE II: DATABASES

Dataset Type From |Σ| Number of Same size for Length
sequences each sequence

TSS Human genes1 Transcriptional Start Sites 4 100 Yes, 100/sequence 10,000
WTC Convert WormsTwoClass in UCR 20 77 Yes, 150/sequence 11,550

sequence 2 time series data
DNA1 DNA 3 Homo Sapiens AL158070 4 1 Single 6,000
DNA2 DNA Homo Sapiens AL158070 4 1 Single 8,000
DNA3 DNA Homo Sapiens AL158070 4 1 Single 10,000
DNA4 DNA Homo Sapiens AL158070 4 1 Single 12,000
DNA5 DNA Homo Sapiens AL158070 4 1 Single 14,000
DNA6 DNA Homo Sapiens AL158070 4 1 Single 16,000
SDB1 Protein 4 ASTRAL95 1 161 20 507 No 91,875
SDB2 Protein ASTRAL95 1 161 20 338 No 62,985
SDB3 Protein ASTRAL95 1 161 20 169 No 32,503
SDB4 Protein ASTRAL95 1 171 20 590 No 109,424
SDB5 Protein ASTRAL95 1 171 20 400 No 73,425
SDB6 Protein ASTRAL95 1 171 20 200 No 37,327
BMS1 Gazelle 5 Clickstream data from an e-commerce 497 59,601 No 149,638
BMS2 Gazelle Clickstream data from an e-commerce 3,340 77,512 No 358,278

Note 1: TSS, from http://dbtss.hgc.jp/, which was studied in [22], contains 200 human genes with the positive class and the negative class. In this paper, we
select the first 100 sequences (positive class).
Note 2: WormsTwoClass in UCR time series data [38] (http://www.cs.ucr.edu/˜eamonn/time series data/) is converted to demonstrate the capability of the
discovered patterns for classification using SAX [39] (http://cs.gmu.edu/˜jessica/sax.htm) with parameters data len = 900, nseg = 150, and
alphabet size = 20.
Note 3: Homo Sapiens AL158070 can be downloaded from http://www.ncbi.nlm.nih.gov/nuccore/AL158070.11.
Note 4: ASTRAL95 1 161 and ASTRAL95 1 171 were studied in [40].
Note 5: Gazelle datasets, provided by Fournier-Viger P et al [41], had been used by [26] and [42].

C. Comparison of mining capacities

As we know besides the non-overlapping condition, there
are no condition and the one-off condition which are in-
troduced in this paper. We briefly review the relationships
and characteristics of the three conditions in related work
section. In this subsection, two kinds of experiments, pattern
discovery from DNA sequences and the discovered patterns
for classification in time series sequence, are employed to
illustrate the difference of the mining capacities.

1) The mining capacity in DNA sequences: Pattern discov-
ery from DNA sequences for gene transcription site discovery
is a defined biological sequence mining task, because a gene
transcription site is a special subsequence carrying meaningful
biological functions. To discover the top 19 patterns with
length 4 from dataset TS, we set len = [1, 15] and gap = [1, 2]
which is the same gap constraints as in Ref. [22]. We report
their frequencies in Figure 3, where the points on the left of
the triangle (inclusive) denote the meaningful ”CpG islands”
of DNA sequences, which are intervals of sequences that are
high frequency in C and G [43], and the points on the right
of a star denote noisy patterns.

From Figure 3 (a) we can see that the minimum frequency
of meaningful ”CpG islands” patterns and the maximum fre-
quency of noisy patterns under the non-overlapping condition
are 433 and 298, respectively. Hence, the gap under the
non-overlapping condition is 433-298=135. Under the one-off
condition using SBO, the minimum and maximum frequencies
are 278 and 262, respectively, according to Figure 3 (b).
Under the one-off condition using SAIL, the minimum and
maximum frequencies are 268 and 261, respectively, according
to Figure 3 (c). Therefore, the gaps under the one-off condition
using SBO and SAIL are 16 and 7, respectively. Therefore,

the rates of gap ratios under the non-overlapping condition
and under the one-off condition using SAIL are 135/433
and 7/268, respectively. Since Ref. [22] also mined a noisy
pattern CCTC, we can safely conclude that if sequence pattern
mining with periodic gap constraints is suitable for CpG island
discovery, patterns under the non-overlapping condition is
easier to mine the useful patterns without noisy patterns than
the other conditions.

2) The mining capacity in a time series sequence: In this
subsection, WTC is selected to demonstrate the capability
of the discovered patterns for classification. Three kinds of
mining methods, no condition, the one-off condition, and the
non-overlapping condition, are used to mine frequent patterns
in the sequences and the parameters are gap = [5, 15] and
len = [1, 150]. All the methods can mine the frequent pattern
’dcd’. In order to show the difference in the mining results,
the 46th piece of training time series in WTC is selected and
the corresponding time series are shown in Figure 4.

The red curve in Figure 4 means a frequent pattern in time
series data. Compared with Figure 4 (c), we can make the
following observations: (1) A part of the red curve in Figure
4 (a) is apparently different from the others. It is a kind of
over-expression. (2) A part of the curve in Figure 4 (b) is
similar to other frequent patterns, but it fails to be mined. It
is a kind of under-expression. The reasons are as follows. All
three figures describe the pattern P = p1p2p3 = ’dcd’ using
different methods. But under-expression occurs under the one-
off condition, since it is the most restrictive one and requires
that each position in the sequence only appears once in any
of the occurrences. For example, there is only one occurrence
for pattern ’d[0,2]c[0,2]d’ in sequence ’dcdcd’ under the one-
off condition, either 〈1, 2, 3〉 or 〈3, 4, 5〉, while there are
two occurrences under the non-overlapping condition, which
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(a) NOSEP

(b) SBO

(c) SAIL

Fig. 3: Comparison of the use of the non-overlapping condition
versus the one-off condition for DNA sequence mining. The
region between a triangle and a star denotes the margin
between meaningful patterns and noisy patterns. The larger
the margin, the better the algorithm is for discovering good
patterns (i.e., less noise prone).

means that both 〈1, 2, 3〉 and 〈3, 4, 5〉 can be matched under the
non-overlapping condition. Therefore, under-expression can
happen under the one-off condition. There are three occur-
rences for pattern ’d[0,2]c[0,2]d’ in sequence ’dcdcdxd’ under
no condition, 〈1, 2, 3〉, 〈3, 4, 5〉, and 〈3, 4, 7〉, while there are 2
occurrences under the non-overlapping condition, 〈1, 2, 3〉 and
〈3, 4, 5〉. Apparently, 〈3, 4, 7〉 is an over-expression occurrence
under no condition. Hence, from this example, we know that
mining under the non-overlapping condition can avoid under-
expression and over-expression effectively.

(a) No condition

(b) One-off condition

(c) Non-overlapping condition

Fig. 4: The frequent patterns in the training set of WormsT-
woClass

TABLE III: COMPARISON OF THE NUMBER OF MINED PAT-
TERNS IN DNA SEQUENCES

DNA1 DNA2 DNA3 DNA4 DNA5 DNA6
GSgrow 9 26 41 78 119 195

NetMining-B 14 36 82 175 274 500
NetMining-D 14 36 82 175 274 500
NOSEP-Back 14 36 82 175 274 500

NOSEP 14 36 82 175 274 500

D. Comparison of the performances of algorithms

1) Experimental results on DNA sequences: In order to
verify the performances of the mining algorithms, DNA1 ∼
DNA6 are selected in this subsection. We set len = [1, 20],
gap = [0, 3], and minsup = 800, and the mining results
are shown in Table II. Figure 5 and Figure 6 show the
comparisons of mining speed and the number of candidate
patterns, respectively.

1. NetMining-B, NetMining-D, NOSEP-Back, and NOSEP
have better performance than GSgrow.

According to Table III, we know that NetMining-B,
NetMining-D, NOSEP-Back, and NOSEP have the same min-
ing results and can find more frequent patterns than GS-
grow, especially for long sequences. For example, for DNA6,
NetMining-B, NetMining-D, and NOSEP can find 500 fre-
quent patterns while GSgrow only finds 195 frequent patterns.
Since INSgrow may lose feasible occurrences, the support of a
pattern is less than the actual value. Therefore, some frequent
patterns cannot be found using GSgrow, which employs IN-
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Sgrow to calculate the support. NetMining-B, NetMining-D,
and NOSEP, however, can mine all the frequent patterns, since
they use the algorithm NETGAP to calculate the support and
we show that NETGAP is a complete algorithm. NOSEP-Back
employs NETGAP-Back which adopts the backtracking strate-
gy to iteratively obtain the non-overlapping occurrences and is
also a complete algorithm. Hence, NetMining-B, NetMining-
D, NOSEP-Back, and NOSEP can find more frequent patterns
than GSgrow.

Fig. 5: Comparison of the mining speed in DNA sequences

Fig. 6: Comparison of the candidate patterns in DNA se-
quences

2. NOSEP is faster than NOSEP-Back, NetMining-B, and
NetMining-D but slower than GSgrow.

Figure 5 reports that GSgrow is faster than the other four
algorithms. But GSgrow cannot find all the frequent patterns.
So we do not take GSgrow into consideration. NOSEP is
faster than the other three algorithms. For example, NOSEP-
Back, NetMining-B, and NetMining-D take 64, 109 and 105 s,
respectively, while NOSEP takes only 63 s in DNA5 accord-
ing to Figure 5. The reason is that both NetMining-B and
NetMining-D check 1096 candidate patterns while NOSEP
only checks 745 candidate patterns according to Figure 6.
Hence, NOSEP is considerably faster than NetMining-B and
NetMining-D. NOSEP is a little bit faster than NOSEP-
Back since the backtracking strategy is occasionally used. For
example, in Fig. 2, when NOSEP-Back finds sub-occurrence
〈8, 10, 11〉 and node n12

4 as the only child of node n11
3

has been used by occurrence 〈5, 7, 9, 12〉. Therefore, node
n12
4 cannot be used by sub-occurrence 〈8, 10, 11〉. Hence,

the backtracking strategy is triggered and NOSEP-Back finds
occurrence 〈8, 10, 14, 16〉 at last. There are 3 non-overlapping
occurrences and the backtracking strategy is triggered only
once. So the backtracking strategy is occasionally used in
Example 5. Hence, NOSEP is a little bit faster than NOSEP-
Back.

TABLE IV: COMPARISON OF THE NUMBER OF MINED PAT-
TERNS IN PROTEIN SEQUENCE DATABASES

SDB1 SDB2 SDB3 SDB4 SDB5 SDB6
GSgrow 1073 410 110 1722 584 156

NetMining-B 1249 472 120 1929 672 165
NetMining-D 1249 472 120 1929 672 165
NOSEP-Back 1249 472 120 1929 672 165

NOSEP 1249 472 120 1929 672 165

2) Experimental results for protein sequence databases: To
further evaluate the performance of the mining algorithms, we
select six databases with SBD1 ∼ SDB6 and set len = [1, 30],
gap = [0, 5], and minsup = 500, and the mining results
of GSgrow, NetMining-B, NetMining-D, NOSEP-Back, and
NOSEP are shown in Table IV. Figure 7 and Figure 8 show the
comparisons of the mining speed and the number of candidate
patterns, respectively.

Fig. 7: Comparison of the mining speed in protein sequence
databases

Fig. 8: Comparison of the number of candidate patterns in
protein sequence databases

The experimental results show that the five algorithms
can be applied to not only a single sequence, but also a
sequence database. According to Table IV, we know that
NetMining-B, NetMining-D, NOSEP-Back, and NOSEP have
the same mining results and can find more frequent patterns
than GSgrow, especially for long sequences. According to
Figure 7, we know that GSgrow is much faster than the other
three algorithms. But GSgrow cannot find all the frequent
patterns. NOSEP is faster than NOSEP-Back, NetMining-B,
and NetMining-D. The reason for this is that NOSEP can
effectively reduce the candidate patterns according to Figure
8. For example, NetMining-B and NetMining-D take 1597 and
1589 s, respectively, while NOSEP only takes 712 s in SDB1
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TABLE V: COMPARISON OF THE NUMBER OF MINED PAT-
TERNS IN GAZELLE DATABASES

B1 700 B1 800 B1 900 B2 700 B2 800 B2 900
GSgrow 59 42 36 112 75 58
NOSEP 59 42 36 112 75 58

TABLE VI: COMPARISON OF THE MINING SPEED IN
GAZELLE DATABASES

B1 700 B1 800 B1 900 B2 700 B2 800 B2 900
GSgrow 93 76 70 1266 933 716
NOSEP 157 85 65 712 343 254

according to Figure 7. These phenomena can also be found in
DNA sequences. The reason for this is that both NetMining-
B and NetMining-D check 26229 candidate patterns while
NOSEP only checks 13494 candidate patterns. Hence, NOSEP
is much faster than NetMining-B and NetMining-D.

3) Experimental results for Gazelle datasets: To further
evaluate the performance on large alphabet size, we set gap =
[0, 200] and len = [1, 200] for BMS1 and BMS2. Due to
the limitation of the space, we only show the performances
of GSgrow and NOSEP. The number of mined patterns, the
mining speed, and the number of candidate patterns are shown
in Tables V, VI, and VII, respectively. In the tables, Bx Y refers
the name of the dataset with minsup. For example, B1 800
means BMS1 with minsup =800.

From Table V, we can see that GSgrow has the same mining
results as NOSEP. The reason is shown as follows. It is easy to
know that GSgrow cannot find occurrence 〈8, 10, 14, 16〉 based
on sub-occurrence 〈8, 10, 11〉 in Example 5 since GSgrow does
not employ the backtracking strategy. The missing feasible
occurrence phenomenon may occur when there are multi-
choices in the same gap constraint. However, in large alphabet
size dataset, there is less chance for multi-choice to occur.
The risk of missing feasible occurrence goes down when the
alphabet size increases. This phenomenon can also be found
in DNA and protein experiments. We know that the alphabet
sizes of DNA and protein are 4 and 20, respectively. According
to Tables II and IV, GSgrow finds 195 patterns while NOSEP
finds 500 patterns in DNA6. Over 60% patterns are lost in the
DNA experiment. However, GSgrow finds 1722 patterns while
NOSEP finds 1929 patterns in SDB4. About 10% patterns are
lost in the protein experiment. Therefore, GSgrow obtains the
same results as NOSEP for Gazelle datasets.

However, we ought to stress that we can see that GSgrow
runs slower than NOSEP in many cases especially in BMS2
according to Table VI. The reason lies that BMS2 contains
3340 distinct items while BMS1 contains 497. As we know
that GSgrow employs the depth-first search to mine frequent
patterns. According to Example 8, we show that pattern growth
approach is more effective than the depth-first search. From

TABLE VII: COMPARISON OF THE NUMBER OF CANDIDATE
PATTERNS IN GAZELLE DATABASES

B1 700 B1 800 B1 900 B2 700 B2 800 B2 900
GSgrow 29559 21042 18036 374080 250500 193720
NOSEP 2810 1521 1156 5694 2737 2038

TABLE VIII: COMPARISON OF THE NUMBER OF MINED
PATTERNS UNDER DIFFERENT THRESHOLDS IN DNA SE-
QUENCES

minsupminsupminsupminsupminsupminsup
=450 =500 =550 =600 =650 =700

GSgrow 262 196 145 106 89 71
NetMining-B 793 507 359 247 188 142
NetMining-D 793 507 359 247 188 142
NOSEP-Back 793 507 359 247 188 142

NOSEP 793 507 359 247 188 142

Table VII, we see that GSgrow checks 193720 candidate
patterns while NOSEP only checks 2038 candidate patterns
in BMS2 with minsup =900. This means that NOSEP only
checks about 1% patterns of that of GSgrow in this instance.
Similar, NOSEP only checks about 6% patterns of GSgrow
in BMS1 with minsup =900. This phenomenon can also be
seen in DNA and protein experiments. For example, GSgrow
checks 36162 candidate patterns while NOSEP does 22564 in
SDB4. So NOSEP checks about 60% patterns of GSgrow in
protein instance. Meanwhile, GSgrow checks 780 candidate
patterns while NOSEP does 1432 in DNA6. NOSEP checks
about 2 times of that of GSgrow in DNA. Hence, with the
increase of the alphabet the running time of GSgrow increases
which means that the performance of GSgrow goes down
remarkable. Therefore, experimental results show that NOSEP
adopts better pruning strategy than GSgrow.

To summarize, when the alphabet size is small, NOSEP
runs slow, but can find more frequent patterns in the same
case. When the alphabet size is large, the mining results are
the same, but NOSEP runs fast. All in all, NOSEP has better
performance than the state-of-the-art algorithms.

E. Performance evaluations for different parameters

1) Length of sequence evaluation: Obviously, the experi-
ments in the above subsections show the relationship between
sequence length and the number of mined patterns, mining
speed, and the number of candidate patterns. When the se-
quence length increases, the number of mined patterns also
increases and the mining time will also increase rapidly. For
example, the lengths of DNA1 and DNA6 are 6000 and 16000,
respectively. The number of frequent patterns increases from
14 to 500, and the mining time increases correspondingly from
0.7 to 151 s with the NOSEP algorithm. Other algorithms
also show similar growth. The reason for this is that when
the length of sequence increases, the support of a pattern will
increase, more patterns can be frequent patterns, and it takes
more time to calculate the support. Therefore, the mining time
increases rapidly when sequence length increases.

2) Threshold evaluation: In the rest of the experiments,
DNA3 and SDB5 are selected. To evaluate the relationships
between the threshold and the number of mined patterns and
mining speed, in the DNA experiments, we choose len =
[1, 20] and gap = [0, 3] and in the protein experiments, we
set len = [1, 30] and gap = [0, 5]. The results are shown in
Tables VIII and IX and Figures 9 and 10.

The experimental results show that the higher minsup is,
the fewer mined patterns there tend to be and the faster the
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Fig. 9: Comparison of mined speed under different thresholds
in DNA sequences

TABLE IX: COMPARISON OF THE NUMBER OF THE MINING
PATTERNS UNDER DIFFERENT THRESHOLDS IN PROTEIN SE-
QUENCE DATABASES

minsupminsupminsupminsupminsupminsup
=400 =450 =500 =550 =600 =650

GSgrow 1128 777 584 471 383 325
NetMining-B 1282 929 672 528 431 361
NetMining-D 1282 929 672 528 431 361
NOSEP-Back 1282 929 672 528 431 361

NOSEP 1282 929 672 528 431 361

mining speed is. For example, in the DNA experiments, when
minsup increases from 450 to 700, the number of mined
patterns and the mining time decrease from 793 to 142 and
from 127 to 19.4 s, respectively, with NOSEP according to
Table VIII and Figure 9. The protein experiments also exhibit
the same phenomena. It can be easily understood that when
minsup increases, fewer patterns will be frequent patterns.
Then the number of candidate pattern tends to be smaller.
Hence, the mining time decreases when minsup increases.

3) Gap constraints evaluation: In order to evaluate the
relationships between the gap constraints and the number of
mined patterns and mining speed, in the DNA experiments,
we set len = [1, 20] and minsup = 800 and in the protein
experiments, we set len = [1, 30] and minsup = 500. The
results are shown in Tables X and XI and Figures 11 and 12.

The experimental results show that the larger gap is, the
larger the number of mined patterns tends to be and the slower
the mining speed is. For example, in the DNA experiments,
when gap increases from [0, 1] to [0, 7], the number of mined
patterns and mining time increase from 16 to 1446 and
from 1.6 to 477s, respectively, with NOSEP according to

Fig. 10: Comparison of the mining speed under different
thresholds in protein sequence databases (s)

TABLE X: COMPARISON OF THE NUMBER OF MINED PAT-
TERNS UNDER DIFFERENT GAPS IN DNA SEQUENCES

gap gap gap gap gap gap gap
=[0,1] =[0,2] =[0,3] =[0,4] =[0,5] =[0,6] =[0,7]

GSgrow 16 29 41 82 138 178 227
NetMining-B 16 34 82 275 650 1117 1446
NetMining-D 16 34 82 275 650 1117 1446
NOSEP-Back 16 34 82 275 650 1117 1446

NOSEP 16 34 82 275 650 1117 1446

Fig. 11: Comparison of the mining speed under different gaps
in DNA sequences (s)

Table X and Figure 11. The protein experiments also exhibit
similar phenomena. It can be easily understood that when gap
increases, more patterns will be frequent patterns. Then the
number of candidate patterns increases. Hence, the mining
time increases when gap increases.

4) Length constraint evaluation: To evaluate the relation-
ships between the maximum length constraint and the number
of mined patterns and mining speed, in the DNA experiments,
we select gap = [0, 4], minlen = 1, and minsup = 600 and
in the protein experiments, we set gap = [0, 5], minlen = 1,
and minsup = 500. The results are shown in Tables XII and
XIII and Figures 13 and 14.

Obviously, when the maximum length constraint is less
than the feasible maximum length, the number of patterns

TABLE XI: COMPARISON OF THE NUMBER OF MINED PAT-
TERNS UNDER DIFFERENT GAPS IN PROTEIN DATABASES

gap gap gap gap gap gap gap
=[0,1] =[0,2] =[0,3] =[0,4] =[0,5] =[0,6] =[0,7]

GSgrow 106 202 261 355 584 1063 1678
NetMining-B 108 203 265 385 672 1264 2132
NetMining-D 108 203 265 385 672 1264 2132
NOSEP-Back 108 203 265 385 672 1264 2132

NOSEP 108 203 265 385 672 1264 2132

Fig. 12: Comparison of the mining speed under different gaps
in protein databases (s)
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TABLE XII: COMPARISON OF THE NUMBER OF MINED PAT-
TERNS UNDER DIFFERENT LENGTHS IN DNA SEQUENCES

maxlenmaxlenmaxlenmaxlenmaxlenmaxlenmaxlen
=21 = 26 = 31 = 36 = 41 = 46 = 51

GSgrow 231 236 238 239 239 239 239
NetMining-B 1116 1388 1460 1479 1481 1481 1481
NetMining-D 1116 1388 1460 1479 1481 1481 1481
NOSEP-Back 1116 1388 1460 1479 1481 1481 1481

NOSEP 1116 1388 1460 1479 1481 1481 1481

Fig. 13: Comparison of the mining speed under different
lengths in DNA sequences (s)

meeting the constraint and mining time will increase with
the increase in maxlen. On the contrary, when the maximum
length constraint exceeds the feasible maximum length, the
number of mined patterns and mining time will not increase
with the increase in maxlen. For example, in the protein
experiments, when minsup is 500, the length of the longest
frequent patterns is 3 in SDB5, and the maximum feasible
length is 3 + (3− 1)× 5 = 13 with the gap = [0, 5]. It can be
seen from Table XIII that when maxlen exceeds 13, no matter
how much maxlen increases, the results are the same for all
mining algorithms. Meanwhile, according to Figure 14, we
can see the running time is a little bit different when maxlen
exceeds 13. All the five algorithms have the same phenomena.
The reason lies that the running time will be a little bit differ-

TABLE XIII: COMPARISON OF THE NUMBER OF MINED PAT-
TERNS UNDER DIFFERENT LENGTHS IN PROTEIN DATABASES

maxlenmaxlenmaxlenmaxlenmaxlenmaxlenmaxlen
=5 = 7 = 9 = 11 = 13 = 15 = 17

GSgrow 255 305 371 505 584 584 584
NetMining-B 258 308 422 584 672 672 672
NetMining-D 258 308 422 584 672 672 672
NOSEP-Back 258 308 422 584 672 672 672

NOSEP 258 308 422 584 672 672 672

Fig. 14: Comparison of the mining speed under different
lengths in protein databases (s)

ent even though running the same instances twice. However
when maxlen is less than 13, the number of mined patterns
and mining time increase correspondingly with increases in
maxlen. For example, maxlen = 9, maxlen = 13, and
maxlen = 15, the number of mined patterns with NOSEP is
422, 672, and 672, respectively. Similar phenomena are shown
in DNA experiments. When minsup = 600, the longest length
of frequent patterns is 9. In gap = [0, 4], the maximum feasible
length is 9 + (9 − 1) × 4 = 41. So before reaching 41, with
the increase in maxlen, the number of mined patterns and
mining time increase accordingly. But after reaching 41, no
matter how much maxlen increases, the number of mined
patterns and the mining time remain unchanged. The same
results can be seen in Table XII.

VI. CONCLUSIONS

Sequence pattern mining with gap constraints is inherently
difficult to tackle, mainly because of difficulties in counting
the pattern occurrences and in reducing the candidate pattern
space. For all existing sequence pattern mining methods,
counting of pattern occurrences is mainly based on three
approaches: no condition, the one-off condition, and the
non-overlapping condition. All existing methods are either
anti-Apriori or incomplete, and patterns discovered by these
methods are either too restrictive or too general but cannot
represent meaningful knowledge underneath the sequences. In
this paper, we focus on a non-overlapping sequence pattern
mining task with gap constraints, where a non-overlapping
sequence pattern allows sequence letters to be utilized flexibly
for pattern discovery. An effective mining algorithm, NOSEP,
is proposed to solve non-overlapping sequence pattern mining
with gap constraints. NOSEP not only meets the Apriori
property but is also a complete algorithm. It employs an
effective algorithm to completely calculate the support and
also adopts an effective pattern growth approach to effectively
reduce the candidate patterns. Experimental results in DNA
sequence mining and time series data mining demonstrate that
NOSEP can discover more frequent patterns than state-of-the-
art algorithms under the same conditions.

Many possible future works could be investigated. 1) In
this paper, we focus on mining frequent sequence patterns,
but for a real task, it is difficult to set the support threshold
minsup. If minsup is too big, there will be no frequent
pattern. Conversely, if minsup is too small, there will be
many frequent patterns. Therefore a possible future work will
be mining Top-k frequent sequence patterns. 2) This paper is
a kind of user-specified gap requirements research. However,
sometimes users do not have the knowledge to set the gaps.
How to deal with without involving user-specified gaps could
be explored. 3) How to handle the incremental sequence
pattern mining under the non-overlapping condition should
also be considered. 4) The support is used to find the frequent
patterns. However, there are many other methods to determine
the frequent patterns, such as frequency, occupancy [4], etc
which can also be investigated. 5) In this paper, two kinds of
experiments are employed to exhibit that the non-overlapping
condition has better performance than no condition and the
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one-off condition. However, more important applications will
be conducted. In our opinion, the ways to effectively mine
patterns as features for sequence classification [9], [10] , as
one of the important applications, which are frequent in the
positive class and infrequent in the negative class should be
considered in the future.
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APPENDIX A

Proof. Proof of Theorem 1: Our previous work [20]
has shown that we can obtain a maximal non-overlapping
set D that has k non-overlapping occurrences; that is,
〈d1,1, d1,2, ...d1,m〉,〈d2,1, d2,2, ...d2,m〉,... 〈dk,1, dk,2, ...dk,m〉,
where dh,j < dh+1,j and 1 ≤ h < k. That work has also
shown that 〈dk,1, dk,2, ...dk,m〉 can be replaced by the max-
imal occurrence 〈fk,1, fk,2, ...fk,m〉. Now we will show that
〈d1,1, d1,2, ...d1,m〉 can be replaced by the minimal occurrence
〈g1,1, g1,2, ...g1,m〉.

Suppose 〈d1,1, d1,2, ...d1,m〉 is the minimal occurrence,
which means that 〈d1,1, d1,2, ...d1,m〉 is the same as
〈g1,1, g1,2, ...g1,m〉. Now 〈d1,1, d1,2, ...d1,m〉 is different from
the minimal occurrence 〈g1,1, g1,2, ...g1,m〉. There are only
three cases.

Case 1. There exist j (1 ≤ j ≤ m) that satisfy d1,j < g1,j .
〈g1,1, g1,2, ...g1,m〉 is not a minimal occurrence. This con-
tradicts the assumption that 〈g1,1, g1,2, ...g1,m〉 is a minimal
occurrence.

Case 2. For all j (1 ≤ j ≤ m) d1,j is greater than g1,j ; that
is, d1,j > g1,j . 〈d1,1, d1,2, ...d1,m〉 and 〈g1,1, g1,2, ...g1,m〉 are
two non-overlapping occurrences. So there should be k + 1
non-overlapping occurrences. This contradicts the assumption
that there are k non-overlapping occurrences.

Case 3. For all j (1 ≤ j ≤ m) d1,j is no less than
g1,j ; that is, d1,j ≥ g1,j . Since 〈d1,1, d1,2, ...d1,m〉 and
〈di,1, di,2, ...di,m〉 (1 < i ≤ k) are two non-overlapping occur-
rences and di,j > d1,j , di,j is greater than gi,j ; that is, di,j >
g1,j . Therefore 〈g1,1, g1,2, ...g1,m〉 and 〈di,1, di,2, ...di,m〉 are
two non-overlapping occurrences. Hence 〈g1,1, g1,2, ...g1,m〉
can be used to replace 〈d1,1, d1,2, ...d1,m〉.

To sum up, no matter whether 〈d1,1, d1,2, ..., d1,m〉 is the
minimal occurrence or not, 〈d1,1, d1,2, ...d1,m〉 can be safely
replaced by 〈g1,1, g1,2, ...g1,m〉. As we know NETGAP iterates
to find the minimal occurrences. Therefore the algorithm
NETGAP is complete.

Proof. Proof of Theorem 2: The prefix sub-pattern and the
suffix sub-pattern of pattern P are Q and R, respectively. S
is a given sequence. It can be easily seen that sup(Q,S) ≥
sup(P, S) and sup(R,
S) ≥ sup(P, S) according to Definition 4. So if Q is not a
frequent pattern; that is, sup(Q,S) < minsup, then sup(P, S)
is less than minsup. Hence, P is also not a frequent pattern
as a result of sup(P, S) < minsup. Similarly, if R is not a
frequent pattern, then P is also not a frequent pattern. Obvi-
ously, the above cases are still valid in a sequence database.
Therefore, the non-overlapping sequence pattern mining with
gap constraints satisfies the Apriori property.

Proof. Proof of Theorem 3: In NOSEP, the frequent patterns
are stored in meta. Suppose there are F frequent patterns. So
the space complexity of meta is O(m × F ). Since F is far
less than n; that is F << n, the space complexity of meta
can be neglected. Now, we consider the space complexity of
NETGAP. NETGAP calculates the support of a pattern in a
sequence using a Nettree. In the worst case, a Nettree has no
more than m levels, each level has no more than n nodes,

and each node has no more than w children. Hence, the space
complexity of NETGAP and NOSEP are both O(m×n×w)
in the worst case. Moreover, in the average case, each level
has no more than n/r nodes and each node has no more than
w/r children. Hence, the space complexity of NETGAP and
NOSEP are both O(m×n×w/r/r) in the average case.

Proof. Proof of Theorem 4: It is easy to know that the time
complexity of Algorithm 3 can be neglected. We consider the
worst case at first. As we mentioned above, we can see that the
time complexity of creating a Nettree is O(m×n×w). There
are no more than n non-overlapping occurrences. It is easy to
see that no more than O(m×w) nodes in the m-th level can
be pruned according Lemma 3, hence, there are no more than
O(m×m×w) can be deleted. Therefore, the time complexity
of NETGAP is O(m×m×N ×w) for an N -length sequence
database. Since there are L candidate patterns, in the worst
case, the time complexity of NOSEP is O(m×m×N×w×L).
Moreover, as mentioned in the space complexity, it is easy to
see that in the average case, the time complexity of NOSEP
is O(m×m×N × w × L/r/r/r).


