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Hashing for Adaptive Real-Time Graph Stream
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Lianhua Chi, Bin Li, Xingquan Zhu, Senior Member, IEEE, Shirui Pan, and Ling Chen

Abstract—Many applications involve processing networked
streaming data in a timely manner. Graph stream classification
aims to learn a classification model from a stream of graphs
with only one-pass of data, requiring real-time processing in
training and prediction. This is a nontrivial task, as many existing
methods require multipass of the graph stream to extract sub-
graph structures as features for graph classification which does
not simultaneously satisfy “one-pass” and “real-time” require-
ments. In this paper, we propose an adaptive real-time graph
stream classification method to address this challenge. We par-
tition the unbounded graph stream data into consecutive graph
chunks, each consisting of a fixed number of graphs and deliver-
ing a corresponding chunk-level classifier. We employ a random
hashing function to compress the original node set of graphs
in each chunk for fast feature detection when training chunk-
level classifiers. Furthermore, a differential hashing strategy is
applied to map unlimited increasing features (i.e., cliques) into
a fixed-size feature space which is then used as a feature vec-
tor for stochastic learning. Finally, the chunk-level classifiers are
weighted in an ensemble learning model for graph classifica-
tion. The proposed method substantially speeds up the graph
feature extraction and avoids unbounded graph feature growth.
Moreover, it effectively offsets concept drifts in graph stream
classification. Experiments on real-world and synthetic graph
streams demonstrate that our method significantly outperforms
existing methods in both classification accuracy and learning
efficiency.

Index Terms—Cliques, concept drifts, graph stream classifica-
tion, hashing.

I. INTRODUCTION

THE SURGE of real-world structure data, such as chemical
compounds, biological data, XML documents, program

flows, images, and social networks, has led to the rise of graph
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mining research. Graph classification aims to learn a discrim-
inative model from training data to predict class labels of test
data, where both training and test examples are graphs contain-
ing structure information. Because graphs do not have features,
the underlying challenge is to represent graphs in feature vec-
tors to facilitate classifier training, by using a generic machine
learning framework. A variety of studies [1]–[4] have been
proposed to extract features to represent graphs. However,
most of them carry out graph classification in a static set-
ting, requiring that all graph data are provided for training,
which prevents them from being applied to dynamic streams.

Dynamic networked data are common in many applications,
where data are presented with increasing volumes and change
over time. For example, a social network is made up of a pop-
ulation of individuals, and their interactions constantly evolve
resulting in new connections and changed networks over time.
A transportation network is a complex network made up of
interconnected routes, with dynamically generated traffic flows
over time. These evolving networked data can be defined as
graph streams, which not only inherit features of static graphs
but also possess special characteristics, such as frequent update
and necessary real-time response [5]. To solve these emerg-
ing problems, graph stream mining has recently attracted an
increasing number of research interests [6]–[10].

In this paper, we focus on the graph stream classification
problem. Graph stream is defined on a dynamic network which
comprises a massive universe of nodes, where the stream of
graphs are represented as sets of interconnected edges on the
underlying dynamic network [8], [10]. For example, coauthors
of research publications continuously form graphs on a coau-
thor network (e.g., DBLP), communities of special interest
continuously form graphs on a social network (e.g., Facebook),
and traffic flows continuously form graphs on a transporta-
tion network. In these scenarios, users may want to categorize
papers according to their research topics by using discrimina-
tive co-author or co-citation patterns. Social network analysts
may seek to organize interpersonal relationships by applying
an efficient classifier [11]. Traffic managers may categorize
transportation routes into different classes to better utilize
resources and services. All these realistic requirements incur
an urgent need of developing efficient learning methods for
graph stream classification.

However, graph stream classification on a dynamic network
with massive nodes is by no means an easy problem because
of the following challenges.

1) Increasing Graph Volumes: The volume of graph data
is continuously increasing. Due to the “real-time”
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requirement, one cannot rely on existing subgraph detec-
tion methods designed for off-line accurate subgraph
mining. Thus, we need to develop an approximate sub-
graph extraction method to tackle fast increasing graph
volumes.

2) Expanding Feature Space: The continuously received
graphs in the stream would lead to an increasing number
of subgraph patterns. Due to the “one-pass” requirement,
it’s computationally prohibitive to prescan the graph
stream and enumerate all subgraph patterns as features.
Thus, we need to design a projection that can map arbi-
trary subgraph patterns onto a fixed-size feature space
to represent graphs in the stream.

3) Concept Drifting: Another challenge is that the graph
data distributions and the decisions for graph classifi-
cation may evolve and change over time. Accordingly,
graph stream classification needs to ensure that the clas-
sification model can timely discover and adapt to such
concept drifts in the stream for accurate classification.

Aggarwal [8] and Chi et al. [10] have investigated the graph
stream classification problem. Both of them employ hashing
techniques to sketch the graph stream, in order to save compu-
tational cost and control the size of the subgraph-pattern set.
Aggarwal [8] proposed a 2-D hashing scheme to construct an
“in-memory” summary for sequentially presented graphs and
used a simple heuristic to select a set of most discriminative
frequent patterns to build a rule-based classifier. Although their
method [8] can achieve good performance for graph stream
classification, it has two major limitations.

1) The selected subgraph-patterns are composed with dis-
connected edges, which may have less discriminative
capability than connected subgraph-patterns due to a
lack of semantic meaning.

2) The computational cost is high because an additional fre-
quent pattern mining procedure is required to perform on
the summary table which contains massive transactions.

Our previous work, discriminative clique hashing
(DICH) [10], has addressed these limitations to a cer-
tain extent by employing a fast clique detection algorithm
from hashed graphs. However, DICH also has two limitations
in handling graph streams: 1) the hashing space of DICH is
fixed, so it cannot adapt to changing nodes and structures in
the graph streams and 2) the predictor of DICH is based on
simple decision rules, which makes it inefficient for handling
concept drifts in graph streams. To address the challenge
of concept drifting, an instance weighting mechanism has
been proposed in gSLU [12] to adjust the subgraph feature
selection module for emerging concept drifting graphs.
However, gSLU is a frequent subgraph pattern mining-based
framework, so it cannot achieve real-time responses for graph
stream classification.

Motivated by the aforementioned challenges and the limi-
tations of the existing approaches, in this paper we propose
an adaptive real-time method for graph stream classification
by integrating differential hashing, stochastic learning, and
a batch-incremental learning mechanism to build a real-time
classification framework for graph streams. More specifically,
to tackle the increasing graph volumes (Challenge #1), the

whole graph stream is partitioned into a number of nonover-
lapping graph chunks each containing the same number of
graphs. For each chunk, we employ a random hashing scheme
to compress the original node set of the graphs for fast
feature detection. By doing so, even if the node space of
the graphs may continuously change, the hashing module
will ensure that nodes are mapped to a confined space for
learning (Challenge #2). To tackle concept drifting in graph
streams (Challenge #3), a differential hashing scheme is used
to map unlimitedly increasing features (cliques) onto a fixed-
size feature space. The distribution of the hashed cliques in
each received graph is used as a feature vector for stochas-
tic learning of the real-time chunk classifier. Then, a chunk
level weighting mechanism is used to form an ensemble for
graph stream classification. The proposed method substantially
speeds up the graph feature extraction process, solves the
unlimited graph feature expanding problem, and effectively
adapts to the concept drifting in graph stream classification.
The contributions of this paper are highlighted as follows.

1) We propose a fast graph feature extraction method by
detecting cliques from compressed graphs via hashing.
The method significantly improves the efficiency of
feature extraction and online learning to satisfy the
real-time requirement for graph stream classification.

2) We propose a graph feature reduction method by map-
ping unlimitedly expanding clique patterns onto a fixed-
size compatible feature space via differential hashing.
This can avoid a prescan of graphs to further speed up
the learning process, satisfy the one-pass requirement,
and also benefit to concept drifts.

3) We incrementally train an online graph classifier, which
achieves better classification performance than majority
voting methods used in the previous research [8], [10].

4) Combined with the differential hashing scheme, we pro-
pose a chunk level weighting mechanism to form a
weighted classifier ensemble for graph stream classi-
fication, which can effectively adapt to concept drifts
and achieve better performance than the instance-level
weighting mechanism [12].

The remainder of this paper is organized as follows.
Section II introduces related work. Section III formally defines
the graph stream classification problem, followed by the
proposed graph stream classification method in Section IV.
Experimental results are reported in Section V and we con-
clude the paper in Section VI.

II. RELATED WORK

A. Graph Stream Classification

Many existing studies of graph classification focus on
designing efficient kernels for measuring graph similarity.
Most of them are based on the similar idea of extracting sub-
structures from graphs to compare their co-occurrences.
Typical substructures for describing graphs include
walks [1], [13], paths [2], subtrees [3], [4], and subgraphs
(usually based on a frequent subgraph mining technique,
e.g., [14]). For walk-based approaches, Kashima et al. [1]
proposed a kernel between graphs with vertex labels and edge
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labels within the framework of the marginalized kernel, where
the random walk comparison can be reduced to a system
of linear simultaneous equations. Vishwanathan et al. [13]
further proposed a unified framework for the random walk
and marginalized kernels, and extended linear algebra to
efficiently compute these kernels by exploiting common struc-
tures inherent in these problems. For path-based approaches,
Borgwardt and Kriegel [2] proposed a graph kernel based
on the shortest paths, which require polynomial time to
compute, but it cannot be applied to the graphs whose edges
do not represent distances but attributes. For subtree-based
approaches, Mahé and Vert [3] proposed a family of graph
kernels based on the detection of common subtree patterns as
features to represent graphs. Shervashidze and Borgwardt [4]
designed a fast subtree kernel on graphs with the ability to
deal with node labels. In this paper, we extract cliques (fully
connected subgraphs) as features to describe a graph.

Our problem is also related to data stream mining, where
the rapid generation of continuous data streams brings not
only unique opportunities but also new challenges to data
mining researchers [15]–[17]. Babcock et al. [18] proposed
a general architecture for a data stream management system.
Muthukrishnan [19] discussed the emerging area of algo-
rithms for processing data streams and associated applications.
Mining high-speed data streams was first studied in [20],
which learns online from the high-volume data streams using
constant memory and constant time per example. Later the
idea of using ensemble learning for data stream classification
was proposed in [21], which introduces an ensemble-based
solution that can facilitate anytime learning on a problem
of arbitrary size. A classical ensemble learning framework
for addressing the concept drifting problem in data stream
mining was proposed in [22]. Bifet and Gavaldà [23] and
Brzezinski and Piernik [24] proposed to handling XML
streams. In order to address the concept drifting problem in
graph streams, both [12], [25] adopted an instance weighting
mechanism to adjust the subgraph feature selection module
for emerging concept drifting graphs. However, graph stream
is generally defined on a massive universe of nodes. It is
extremely time-consuming and memory intensive to enumer-
ate subgraph features from such a huge node set. In our graph
stream classification problem, instead of using subgraphs, we
use cliques as features to represent graphs. Combined with a
novel hashing scheme, named differential hashing, we adopt
a chunk level weighting mechanism to form a weighted clas-
sifier ensemble for graph stream classification. By integrating
stochastic learning [26], we incrementally update the underly-
ing graph classifier using extracted feature representations of
continuously received graphs. The advantage of using stochas-
tic learning is threefold: 1) more suitable for the streaming
situation; 2) simpler in terms of the model itself; and 3) faster
in learning.

B. Hashing for Structured Data

There have been a handful of research works on structured
data hashing. Shi et al. [27] introduced a kernel for hashing
sequential data and sparse data. Li et al. [9] proposed the
nested subtree hash kernel (NSHK) for recursively hashing

node labels of a graph; however, NSHK can be hardly
applied to unlabeled graphs generated on a dynamic network.
Recently, some studies introduce hashing techniques for spe-
cific structured data, such as hierarchical data [28], tree-
structured data [29], nested-set data [30], image-structured
data [31] and graph-structured data [8], [10].

Although hashing techniques have been introduced for deal-
ing with structured data, very few methods have considered
hashing graphs generated on a dynamic network stream.
Besides, our previous work [8], [10] also considers this
problem setting. It employs a 2-D hashing scheme to construct
an in-memory summary for sequentially received graphs. The
first random-hash scheme is used to reduce the size of the
edge set. The second min-hash scheme is used to dynamically
update a number of hash-codes, which is able to summa-
rize the frequent patterns of co-occurrence edges in the graph
stream observed thus far. In this paper, we propose an approx-
imate clique detection method and graph feature reduction
method, both based on hashing techniques, for solving the
same problem with a better performance in terms of both
classification accuracy and learning efficiency.

III. PROBLEM FORMALIZATION

A. Notations and Definitions

Definition 1 (Connected Graph): A graph is represented as
G = (V, E,L), where V = {v1, . . . , vV} is the set of vertices,
E ⊆ V × V is the set of edges, and L is the label1 set of the
vertices and edges. A connected graph is a graph in which
there exists a path between any pair of vertices.

Definition 2 (Graph Stream): A graph stream is defined
on a dynamic network which comprises a massive universe of
nodes, where the stream of graphs S = {G1, G2, . . . , Gn, . . .}
generated one after another are represented as sets of
interconnected edges on the dynamic network.

Definition 3 (Clique): A clique C = (V ′, E ′,L′) in a graph
G = (V, E,L) is a subgraph that satisfies V ′ ⊆ V and any pair
of vertices in V ′ are connected (i.e., a complete graph).

Clique is widely used as a fundamental unit for structural
analysis and knowledge discovery in graphs. Although find-
ing maximum clique is NP-complete [32], many algorithms
for finding cliques have been developed in exponential time
and even polynomial time for a certain type of graphs. In
this paper, we will employ the Bron–Kerbosch algorithm [33],
which is very fast in practice, for clique detection in undirected
graphs.

Definition 4 (Clique Features): Let C = {C1, . . . CM}
denote a set of clique patterns (or clique features). For a graph
Gn, we use a vector x(n) = [x(n)

1 , . . . x(n)
M ]� to represent its

clique-feature space spanned by C, where x(n)
m is the number

of clique pattern Cm found in Gn.
Instead of using frequent subgraph patterns, we propose to

use cliques as features to represent graphs. This approach has
two major advantages.

1) For dynamic network streams, frequent subgraph pat-
terns are rapidly changing, which makes the feature

1Note that the labels of nodes and edges are different notations from the
class labels of graphs.
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TABLE I
KEY NOTATIONS USED IN THIS PAPER

space exponentially grow and drastically change. A clas-
sifier built from histogram graphs might not be used to
classify future graphs because they have different sub-
graph feature space. Meanwhile, cliques are basic graph
structures remaining relatively stable in graph streams.
By using cliques as features to represent graphs, we
can ensure historical and future graphs to have shared
common feature space for learning.

2) Finding cliques is much more efficient than finding fre-
quent subgraph patterns (we will elaborate our clique
finding details in the next section), so our method can
rapidly discover graph features for learning.

Key notations used in this paper are summarized in Table I.

B. Problem Setting

We consider a stream of graphs {G1, G2, . . . , Gn, . . .}
presented/received in a sequential order, where subscript n
denotes the receiving order of the graph in the stream.
So Gn denotes a graph which arrives right after the graph
Gn−1. Specifically, the edge set of Gn is denoted by En =
{e1, . . . , eE} ⊂ E . Each graph Gn has a class label ln ∈
{1, . . . , L}. We represent each received graph Gn in the form
of 〈n, e1, . . . , eE, ln〉.

In this paper, we assume that each edge in a graph has a
numerical weight wij, where i and j are the indices of the two
vertices of the edge (for simplicity, we do not consider edge
labels). For the weight, in many applications, each edge in a
graph has an associated non-negative value, which is usually
called “weight.” The meaning of the weight depends on the
applications. It can be a distance between two nodes, or a
capacity of an edge, etc.

Given the graph stream, our goal is to learn graph classifi-
cation models from the graphs received thus far to accurately
predict class labels of future test graphs Gtest (test > n)
which are yet to arrive, under the conditions that graphs in
the stream can only be scanned once and the decision needs
to be made in real-time. In this paper, the real-time con-
straint is not strictly enforced because different applications
have their own interpretations and requirements for real-time
response. Accordingly, we use the runtime efficiency to justify
the performance of the algorithm for real-time response.

IV. GRAPH STREAM CLASSIFICATION

The framework of our method for graph stream classifica-
tion is shown in Fig. 1, which includes four modules.

1) Graph Clique Detection: Each received graph Gn from
the stream is first compressed into a small graph Ḡn

Fig. 1. Framework of the proposed adaptive real-time graph stream
classification method.

using a random hashing scheme. Then, we employ a
fast algorithm to decompose the compressed graph into
a number of cliques as features to represent Gn.

2) Differential Graph Clique Hashing: Since the number
of clique patterns (features) will unlimitedly increase as
new graphs are fed in, the underlying feature space will
keep expanding accordingly. Thus, in this stage, a clique
hashing scheme is performed to map the unlimitedly
emerged clique patterns onto a fixed-size clique-pattern
set, denoted by C = {C̄1, . . . C̄M}. Now, all the graphs in
the stream can be represented in this compatible space,
for Gn, we have x(n) = [x(n)

1 , . . . x(n)
M ]�.

3) Clique-Based Chunk Classifier Learning: For each
chunk, the hashed clique-pattern representation x(n) of
each received graph and its corresponding class label ln
are used to incrementally update the underlying chunk
classifier online, using a stochastic learning algorithm.

4) Weighted Chunk Classifier Ensemble: In order to adapt
to the concept-drifting in graph streams, we propose the
weighted chunk classifier ensemble to reduce the impact
of concept drifting on the classification performance. In
this module, multiple weighted chunk classifiers form
an ensemble to predict future graph labels.

To classify a test graph Gtest in the future graph stream, Gtest
is processed in the first two modules and the obtained hashed
clique-pattern representation xtest is input to the ensemble clas-
sifier for class label prediction. The detailed approaches used
in the four modules are introduced as follows.

A. Graph Clique Detection

As introduced in Section III-B, a graph in the stream is
a connected subset of edges of the dynamic network. For
dynamic networks with constantly evolving new nodes and
edges, the edge set of the complex network can be extremely
large, which makes it inefficient, or even infeasible, to detect
cliques from such a large network in real-time. Therefore, it is
necessary to sketch the graph stream and accelerate the clique
detection (feature extraction) process. To this end, we first
employ a random hashing scheme to compress each graph Gn

on the large network into a small graph Ḡn

Ḡn := Graph-Hash
(
Gn, V̄

)
(1)
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Fig. 2. Example of clique detection on a compressed graph.

where V̄ denotes the desired number of vertices in the com-
pressed network. The graph hashing operation includes two
steps: first, we use a random hash function

� : {1, . . . , V} 
→ {
1, . . . , V̄

}
(2)

to map the indices of the vertices in Gn to {1, . . . , V̄} (V̄ < V)
as the set of vertices in Ḡn. Second, for each edge in Ḡn, its
weight w̄ij is calculated as follows:

w̄ij =
∑

i=�(p),j=�(q)

wpq (3)

The above graph compression in Eq. (1) enjoys a zero false-
negative property: if two graphs G and G′ on the original
network have a same subgraph g, the compressed graphs Ḡ
and Ḡ′ also have the same subgraph ḡ. This property implies
that, if two original graphs are similar in terms of subgraphs,
the compressed graphs are also similar. We may have colli-
sions (i.e., false-positive) that different subgraph patterns in
the original graphs result in the same subgraph pattern in the
compressed graphs. In reality, the probabilities of such cases
are rather low because the collided edges in the compressed
graphs are unlikely to form a connected graph (we only extract
cliques as features which are fully connected subgraphs). The
leftmost two columns in Fig. 2 illustrate this operation.

After obtaining compressed graph Ḡn, we employ a fast
algorithm to detect cliques in Ḡn. To this end, we adopt the
graphlet basis estimation algorithm used in [34]. The first
step for clique detection is to apply different thresholds to
compressed graph Ḡn by using various weight levels in a
descending order, say t ∈ {max(Ḡn), . . . , min(Ḡn)}, where
max(Ḡn) and min(Ḡn) denote the largest and the smallest edge
weights in Ḡn, respectively. We define this graph thresholding
operation as

Ḡ(t)
n := 1

(
Ḡn ≥ t

)
(4)

where 1(·) denotes an indicator function, which sets the weight
of an edge in Ḡ(t)

n to be 1, i.e., w̄(t)
ij = 1, if w̄ij ≥ t. We use the

Bron–Kerbosch algorithm [33] to identify all the cliques from
Ḡ(t)

n at each threshold. The Bron–Kerbosch is an algorithm for
finding maximal cliques in an undirected graph. The union set
of the cliques found in {Ḡ(t)

n }max(Ḡn)

t=min(Ḡn)
is represented as the

clique set for Gn. This procedure is detailed in Algorithm 1.
An example of clique detection is illustrated in Fig. 2. After

graph hashing, we obtain the compressed graph of Gn (sec-
ond col). Then, four weight thresholds {4, 3, 2, 1} are set to
generate three graphs {Ḡ(1)

n , Ḡ(2)
n , Ḡ(4)

n } (third col). Note that
Ḡ(3)

n is not shown. Because in this example the edges with

Algorithm 1 Graph Clique Detection
Input: Gn: a graph in the graph stream; �: node hash function
Output: Cn: the clique set detected from Ḡn

1: Ḡn = Graph-Hash(Gn, V̄)
2: Cn = ∅
3: for t = max(Ḡn) : 1 : min(Ḡn) do
4: Ḡ(t)

n = 1(Ḡn ≥ t)
5: C(t)

n := Bron-Kerbosch(Ḡ(t)
n )

6: Cn := Cn
⋃ C(t)

n
7: end for

weight ≥ 3 are the same as the edges with weight ≥ 4, Ḡ(3)
n

is actually identical to Ḡ(4)
n . The Bron–Kerbosch algorithm is

applied to detect a set of cliques from each graph (fourth col).
Finally, all cliques detected are merged to form the clique set
Cn for Gn as its feature representation (fifth col).

B. Differential Graph Clique Hashing

The cliques extracted from the compressed graph are used
as features to represent the original graph. To learn a graph
classifier, features of all training graphs should be in the
same feature space. In reality, since new graphs continuously
arrive and update the stream, the number of unique clique
patterns (features) will unlimitedly grow and expand the under-
lying feature space. Meanwhile, in dynamic graph streams, the
data distributions may gradually or abruptly change, leading
to “concept drifts” [35] in the stream with entirely different
feature space. To address these problems, we propose a differ-
ential feature hashing scheme to combine “new cliques” and
“old cliques,” and constraint the dimensionality of the feature
space. Both the “new and old cliques” and “differential feature
hashing” can help the learner adapt to changes in the stream
and alleviate the impact of the concept drifts.

The differential clique hashing scheme is applied to both old
and new cliques. It not only helps control the feature space,
but also provides capability to identify emerging new features
in the stream, so our algorithm differentially processes features
in order to tackle the concept drifts. In the following, we first
define new clique versus old clique and further address the
differential clique hashing.

In order to tackle the increasing volume of the graph stream,
we partition the stream into a set of sequential chunks. We
can thus efficiently train classifiers from small chunks. The
ultimate goal is to learn an ensemble classifier to predict the
class label of each test graph Gtest in a future chunk, where
an ensemble includes a number of weighted chunk classifiers.
We set the ensemble size as K which represents the number
of chunk classifiers in the ensemble. Whenever a clique is
detected from graphs in the current chunk, we will check this
clique in the previous K chunks. If the same clique appears
in one of the previous K chunks, we regard this clique as an
old clique; otherwise it is set as a new clique. Because the
K chunks will vary according to the current chunk, “old” or
“new” is a relative concept.

After cliques are detected from the current chunk, a differ-
ential clique hashing scheme is performed to map unlimited
emerging clique patterns onto a fixed-size clique-pattern set,
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Algorithm 2 Differential Graph Clique Hashing

Input: Cn = Cnew ∪ Cold: the clique set detected from Ḡn
Output: x(n): the feature vector of Gn

1: x(n) = [0, . . . , 0]�
2: for k = 1 : length(Cnew) do
3: hnew,k = �(str(Cnew,k), M ∗ R)
4: if hnew,k = m(1 ≤ m ≤ M ∗ R) then
5: x(new)

m = x(new)
m + 1

6: end if
7: end for
8: for k = 1 : length(Cold) do
9: hold,k = �(str(Cold,k), M ∗ (1 − R)

10: if hold,k = m(1 ≤ m ≤ M ∗ (1 − R)) then
11: x(old)

m = x(old)
m + 1

12: end if
13: end for
14: x(n) = x(n)/

∑M
m=1 x(n)

m

denoted by C = {C̄1, . . . C̄M} (M is the range of clique hash
values). In order to distinguish new cliques from old cliques
in the clique-pattern set, we set a ratio value as R. For new
cliques, the size of hash space is M ∗ R, whereas for old
cliques, the size of hash space is M ∗ (1 − R). The differential
clique hashing scheme will map new and old cliques onto cor-
responding fixed-size clique-pattern subset. By adjusting the
value of R, we can easily tradeoff the importance of new ver-
sus old feature space, such that the learner can quickly adapt
to the concept drifting in the stream.

Given a graph Gn received from the graph stream, we first
use Algorithm 1 to detect its new clique set Cnew and old clique
set Cold. Then, for each new clique Cnew,k in Cnew and each
old clique Cold,k in Cold, we differentially apply a random hash
function �(·) to Cnew,k and Cold,k to generate corresponding
index hnew,k ∈ {1, . . . , M ∗ R} and hold,k ∈ {M ∗ R + 1, . . . , M}
as follows:

hnew,k = �
(
str

(
Cnew,k

)
, M ∗ R

)
(5)

hold,k = �
(
str

(
Cold,k

)
, M ∗ (1 − R)

)
(6)

where str(Cnew,k) denotes the string of the ordered node
indices of Cnew,k and M ∗ R constraints the range of hash val-
ues in {1, . . . , M ∗ R}. We use a vector x(n) = [x(n)

1 , . . . x(n)
M ]�

to represent a graph Gn, where x(n)
m is the frequency of cliques

in Cn whose indices are m based on the clique hash func-
tion (5), (6). This procedure is detailed in Algorithm 2. As
the result of the above process, all graphs in the stream can
be represented in an M-dimensional compatible feature space.

C. Clique-Based Chunk Classifier

When training a classifier from each graph chunk, we first
construct a feature vector x(n) = [x(n)

1 , . . . x(n)
M ]� for each

received graph Gn using the above method, and then use con-
tinuously obtained feature vectors as training instances to learn
a classifier. Since graphs have been represented as feature vec-
tors, a classifier can be learned using any generic learning
algorithm following a standardized learning procedure.

Suppose there are N graphs in the entire stream (N may
be infinite). As each feature vector x(n) is M-dimensional, we

assume that the entire data set for training is a feature matrix
X ∈ R

M×N , where N columns correspond to N graphs and M
rows correspond to M hashed clique patterns. We also con-
struct an label matrix Y ∈ {0, 1}L×N for supervised learning,
where L rows correspond to L classes; if Gn belongs to the
lth class, Yl,n = 1; otherwise Yl,n = 0.

Because the feature vector x(n) of Gn actually describes the
distribution of the M clique patterns, we adopt a regularized
ridge regression model to fit label distributions of Gn

Q(W) = 1

2
‖WX − Y‖2

2 + λ

2
‖W‖2

2 (7)

where W ∈ R
L×M is the weight matrix. We aim to minimize

the following objective function to estimate W:

W∗ = arg min
W

Q(W) (8)

which is a linear least-squares problem.
Many methods can be used to solve (8), such as gradi-

ent descent and Newton’s method. The standard (or “batch”)
gradient descent method will perform the following iterations:

W := W − α∇Q(W) = W − α

N∑

n=1

∇Qn(W) (9)

where α is the step size (i.e., learning rate) and

Qn(W) = 1

2

∥
∥∥Wx(n) − y(n)

∥
∥∥

2

2
+ λ

2N
‖W‖2

2 (10)

where x(n) and y(n) are the nth columns of X and Y,
respectively.

In our problem setting, these training pairs (x(n), y(n)) for
n = 1, 2, . . . are obtained in sequence rather than in batch.
We cannot simply use the standard gradient descent method
to optimize W. Therefore, we resort to the stochastic gradient
descent method to solve this problem, which updates W using
a single example at each iteration, for n = 1, 2, . . .

W := W − α∇Qn(W) (11)

where

∇Qn(W) = Wx(n)
[
x(n)

]� − y(n)
[
x(n)

]� + λ

N
W. (12)

Based on the iteration function (12), the linear regression
model W is updated online at the arrival of each new graph
in the stream. After finishing updating W for the last graph in
a chunk, we use the obtained W as the current chunk classi-
fier. By doing so, the updating for W can be stopped at any
time for testing tasks, in order to meet the real-time decision
requirement.

D. Weighted Chunk Classifier Ensemble

To classify a test graph, we adopt a weighted chunk clas-
sifier ensemble. We use S1, S2, . . . , Sn to represent sequential
chunks, each contains the same number of graphs, and Sn is
the most up-to-date chunk. For each chunk Si (1 ≤ i ≤ n), we
use �i to denote the classifier trained from chunk Si. We set
the ensemble size as K to use K consecutive chunk classifiers
for prediction. For the current testing chunk St, we use the
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previous K weighted chunk classifiers {�t−1, �t−2, . . . , �t−K}
as an ensemble to predict the class label of each graph in the
current testing chunk St separately. The process is as follows.

1) A weight value Wi is assigned to each individual chunk
classifier �t−i (1 ≤ i ≤ K).

2) Each chunk classifier �t−i is used to predict the class
label of a test graph Gtest, which results in K predicted
labels for the test graph from K chunk classifiers.

3) We sum up all the weight values of each same label and
choose the label with the largest aggregated weight as
the final label of Gtest.

More specifically, given a test graph Gtest, we first detect
its cliques using Algorithm 1, and then differentially hash its
cliques to construct the clique-pattern feature vector xtest using
Algorithm 2. After that, we calculate its class-label distribution
vector ytest using

ytest = Wxtest (13)

according to which the class label of Gtest is predicted by

ltest = arg max
l

{
ytest

1 , . . . , ytest
L

}
(14)

where ytest
l denotes the value of the lth dimension of ytest.

For the current testing chunk St, according to the hash space
ratio R, the weights {Wt−1, . . . , Wt−K} of the previous K clas-
sifiers {�t−1, . . . , �t−K} are set to {(1 − R)1, . . . , (1 − R)K}.
Such weight setting ensures that the closer a chunk to the
testing chunk St, the larger the chunk weight is.

E. Theoretical Analysis

The proposed method uses random hashing and graph clique
detection to compress and represent graphs for classification.
One possible concern is that since the hashing scheme ran-
domly maps a node in the original graph to a node in the
compressed graph, it may lose information encoded in the
edges and eventually lose important substructure features in
the original graph for classification.

Consider our problem setting, where a graph stream is
defined on a dynamic network. After random hashing of the
nodes, the resulting compressed graphs only lead to aggregated
weights of multiple edges in the original graph. If we detect
cliques from such a “compressed” graph, we can ensure: 1) no
false negatives and 2) theoretically guaranteed false positives.

False Negative: The proposed clique detection algorithm
based on a randomly compressed graph Ḡn (Algorithm 1) will
not bring false negatives. If there exists a clique in the original
graph Gn, the clique must also exist in the compressed graph
Ḡn (under a mild constraint that neighboring nodes are not
allowed to hashed to a same node in Ḡn).

False Positive: Algorithm 1 may introduce false positives.
We show below that the expected error can be dramatically
reduced if the size of the dynamic network and the size
of cliques are sufficient large whereas the average degree
of nodes is not too large compared to the size of the
network: suppose we have a compressed graph obtained by
Ḡn := Graph-Hash(Gn, V̄), where the probability of a node
connecting to another in Gn is p ∈ [0, 1] (thus the aver-
age degree of node is pV). For convenience, we use v to

denote a vertex in Gn and v̄ as a vertex in Ḡn. The proba-
bility of v in v̄ is not connected to another v̄′ is (1 − p)V/V̄ ;
the probability that any v in v̄ is not connected to any v in
v̄′ is [(1 − p)V/V̄ ]V/V̄ . Thus, the probability that two ver-
tices in Ḡn are connected is 1 − (1 − p)V2/V̄2

. Since the
proposed algorithm is to detect cliques (complete graphs),
the probability to generate a false positive of a k-clique is
[1 − (1 − p)V2/V̄2

](
k
2) ≈ [1 − e−pV2/V̄2

](
k
2). For example, if

V = 100 000, V̄ = 5000, p = 0.001, and k = 4 (which means
that the number of nodes in the compressed graph is 1/20
of the original graph), the probability of generating a false
positive 4-clique is only 0.00128.

V. EXPERIMENTS

We empirically validate the performance of the proposed
classifier adaptive real-time classification for graph stream
(ARC-GS) on three real-world graph streams and one syn-
thetic graph stream. In particular, in Sections V-C and V-D,
we will evaluate the effectiveness and efficiency of ARC-GS
under different configurations, respectively. In Section V-E we
will validate the robustness of ARC-GS with various types of
concept drifts (abrupt, gradual, and recurrent).

A. Benchmark Data Sets

1) IBM Sensor Stream2: This data stream records the local
traffic information of a sensor network. The IP-addresses
represent nodes and local traffic flows are edges. Each
graph is associated with a particular intrusion type and
there are over 300 different intrusion types (classes) in
the data set. Our goal is to classify a traffic flow pattern
into one intrusion type. Because the number of classes
is very large (> 300), and many of them are rarely
observed, we select 50 most dense classes in our experi-
ments for multiclass classification. The data set contains
1.0 × 106 nodes, 1.25 × 106 edges, which generate a
stream of 5.0 × 105 graphs over time.

2) Citation Network Stream3: In this citation network,
each paper is represented as a graph with each node
representing a paper ID and each edge representing cita-
tion relationship between papers. The stream is formed
according to the chronological order of papers. In our
experiment, we select 16 000 papers with authors and
references attribute information from two research areas,
artificial intelligence and computer vision (CV), to gen-
erate a graph stream for binary classification. The edges
are citations between papers and co-authorships between
authors. The final data stream contains 7.1 × 104 nodes,
5.8 × 104 edges, and 1.6 × 104 graphs.

3) DBLP Graph Stream 4: The DBLP stream [12] consists
of bibliography data in computer science. Each record in
DBLP is associated with a number of attributes, such as
abstract, authors, year, venue, title, and reference ID. To
build a graph stream, we select a list of conferences and

2http://www.charuaggarwal.net/sens1/gstream.txt
3http://arnetminer.org/citation
4https://snap.stanford.edu/data/com-DBLP.html

http://www.charuaggarwal.net/sens1/gstream.txt
http://arnetminer.org/citation
https://snap.stanford.edu/data/com-DBLP.html
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use the papers published in these conferences (in chrono-
logical order) to form a binary-class graph stream. The
classification task is to predict whether a paper belongs
to database and data mining or CV and pattern recog-
nition field. Each paper in DBLP is represented as a
graph, where each node denotes a paper ID or a keyword
and each edge denotes the citation relationship between
papers or keyword relations in the title. The final graph
stream contains 1.9 × 105 nodes, 3.7 × 105 edges, and
1.875 × 104 graphs.

4) GTGraph Stream 5: This graph stream is a synthetic data
set generated by the graph generator GTGraph based on
R-MAT model [36]. We choose default parameter values
suggested by the authors during network generation. Our
GTGraph network contains 6.0×105 nodes and 5.0×105

edges, and the edges from the same node are used as
a graph for experimental evaluation, which generate a
stream containing 1.0 × 105 graphs over time.

We divide each stream into 25 nonoverlapping chunks. For
citation network stream (CNS), DBLP, IBM, and GTGraph,
each chunk contains 640, 750, 20 000, and 4000 graphs,
respectively.

B. Baseline Methods

1) 2-D [8]: This method uses a 2-D hashing scheme to
construct an in-memory summary for the sequentially
presented graphs. The first random-hash scheme is used
to reduce the size of the edge set, and the second min-
hash scheme is used to dynamically update a number of
hash-codes. Finally, a simple heuristic is used to select
a set of most discriminative frequent patterns to build a
rule-based classifier.

2) DICH [10]: This method employs a fast algorithm
to decompose a compressed graph into a number of
cliques to sequentially extract clique-patterns over the
graph stream as features. Two random hashing schemes
are used to compress the original edge set of the
graph stream and map the unlimitedly increasing clique-
patterns onto a fixed-size feature space, respectively.

3) gSLU [12]: This method employs an ensemble-based
framework to partition graph streams into a number of
graph chunks each containing some labeled and unla-
beled graphs, and then uses unique measures to discover
informative subgraph features with minimum redun-
dancy. Meanwhile, an instance weighting mechanism
is adopted to emphasize on emerging concept drifting
graphs.

C. Effectiveness Evaluation

For all the methods, we investigate their performance with
respect to: 1) the number of features M and 2) the ensemble
size K. For the proposed ARC-GS classifier, we set hash ratio
R to 0.2, which means that 20% of hashing space is used for
new cliques discovered from the current chunk. In addition
to a fixed value of R, we also investigate the performance of
ARC-GS with different hash ratio values R.

5http://www.cse.psu.edu/~madduri/software/GTgraph/

Fig. 3. Classification accuracy on the CNS (upper row, ensemble size K = 6),
the DBLP (middle row, ensemble size K = 4), and the IBM (bottom row,
ensemble size K = 4) with different numbers of features M.

Number of Features M: For ARC-GS and DICH classi-
fiers, M represents the fixed size of hashed clique-pattern set.
For 2-D classifier, M represents the number of discrimina-
tive patterns in the underlying graph used by the 2-D hashing
scheme. For gSLU classifier, M represents the number of
minimum-redundancy subgraph features.

Ensemble Size K: If the current testing chunk is ST , our
ARC-GS classifier will use the most recent K weighted chunk
classifiers {CT−1, CT−2, . . . , CT−K} as an ensemble to predict
graphs in ST ; the gSLU classifier will build an ensemble of
classifier from the most recent K chunks to predict graphs in
the ST ; the 2-D and DICH classifiers will combine the most
recent K chunks {ST−1, ST−2, . . . , ST−K} as training data to
train a classifier and predict graphs in ST .

Hash Ratio R: For our ARC-GS classifier, R represents the
proportion of allocated feature hashing space for new cliques,
compared to the whole hashing space.

1) Performance With Respect to the Number of Features
M: In this experiment, we fix the ensemble size K (K = 4
for IBM, K = 6 for CNS, and K = 4 for DBLP) and adjust
the number of features M to evaluate the effectiveness of the
methods. For IBM, we investigate the number of features M
in {300, 1000, 3000}. For CNS and DBLP, we investigate the
M in {5000, 10 000, 15 000}.

Fig. 3 reports the classification accuracy (y-axis) with
respect to the chunk ID (x-axis) on CNS, DBLP, and IBM by
using different numbers of features. The average classification
accuracy over the CNS and IBM streams is reported separately

http://www.cse.psu.edu/~madduri/software/GTgraph/
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Fig. 4. Average accuracy on the CNS (left, ensemble size K = 6) and the
IBM (right, ensemble size K = 4) with different numbers of features M.

in Fig. 4. We can see that the overall classification performance
of ARC-GS is the best among the four compared methods on
the three streams under different settings of M across the whole
stream. For DBLP and IBM streams, the accuracy of ARC-GS
is always higher than 2-D, gSLU, and DICH at all chunk IDs.
For CNS stream, ARC-GS’s accuracy is more stable than other
classifiers, especially for gSLU with large M values. This is
mainly attributed to the stochastic learning strategy adopted
in ARC-GS which helps achieve better classification accuracy
and real-time response. This experiment implies that ARC-
GS can achieve significantly improved accuracy, compared to
baselines.

Fig. 4 further validates that ARC-GS outperforms 2-D,
gSLU, and DICH classifiers especially on the IBM stream.
Among these classifiers, the effectiveness of the 2-D classifier
is the worst. The reason is that the selected subgraph-patterns
with disconnected edges may have less discriminative capabil-
ity than connected subgraph-patterns used in the gSLU, DICH,
and ARC-GS, because connected subgraph structure may have
semantic meaning. For DICH and gSLU classifiers, DICH out-
performs gSLU on CNS stream, but performs worse on IBM
stream. The reason is that DICH is a majority voting classifier
whose performance could degrade as the number of classes
becomes large, and IBM stream has 50 classes which is much
more than CNS stream.

An interesting observation is that a larger number of fea-
tures can help improve the accuracies of ARC-GS and DICH
classifiers on both streams. The reason is that a relatively large
number of features would have better discriminative capabil-
ity to differentiate graphs in different classes. We also find
that the improvement of average accuracy becomes smaller
with respect to the increase of the number of features. In
IBM stream, when the number of features reaches 1000, all
four classifiers have similar discriminative capability to clas-
sify graphs, and adding more features will not significantly
help improve the accuracy. For gSLU classifier, when the num-
ber of features reaches 10 000, its average accuracy falls on
the CNS stream. This is mainly because that those selected
features are not beneficial and even misleading the classifier.
For 2-D classifier, when the number of features reaches 300
and 5000, respectively, it already has enough discriminative
capability to classify graphs on IBM and CNS streams.

2) Performance With Respect to the Ensemble Size K: In
this experiment, we fix the number of features M (M = 1000
for IBM and M = 10 000 for CNS and DBLP) and adjust the

Fig. 5. Classification accuracy on CNS stream (upper row, number of features
M = 10 000), DBLP stream (middle row, number of features M = 10 000),
and IBM stream (bottom row, number of features M = 1000) with respect to
different ensemble size K.

Fig. 6. Average accuracy on CNS stream (left, number of features M =
10 000) and IBM stream (right, number of features M = 1000) with respect
to different ensemble size K.

ensemble size K for effectiveness evaluation. For IBM and
DBLP, we investigate the ensemble size K in {2, 4, 6}. For
CNS, we investigate the ensemble size K in {4, 6, 8}.

Fig. 5 reports the classification accuracy (y-axis) with
respect to the chunk ID (x-axis) on all four streams by using
different ensemble sizes. The average classification accuracy
over the entire streams is reported in Fig. 6, which further
demonstrates that ARC-GS always outperforms DICH and
gSLU and significantly outperforms 2-D hash compressed
stream classifier, especially on IBM sensor stream. The rea-
son is that a larger number of classes in the IBM stream
provide a more challenging learning task to distinguish the
classifier performance. By employing adaptive clique hashing
to extract features for different classes, ARC-GS demonstrates
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Fig. 7. Classification accuracy and average classification accuracy on CNS
stream (number of features M = 10 000 and ensemble size K = 6) with
different hash ratio R.

good performance on IBM stream. Overall, we can find that a
larger ensemble size helps improve the average classification
accuracy, mainly because that a larger ensemble size will allow
ARC-GS and DICH to accumulate more training graphs to
generate better discriminative classification models. However,
for 2-D classifier, the fixed number of features may be insuf-
ficient even if more training graphs are added, and a larger
ensemble size may even decrease the average accuracy. For
gSLU, its average accuracy is unstable under different ensem-
ble sizes, especially on the CNS stream. This is mainly because
that gSLU relies on frequent subgraph features for classifica-
tion. As the graph stream continuously evolves, the selected
features in gSLU may significantly change between chunks
and result in unstable accuracy for training and classifying
graphs.

Based on the overall evaluation results, we can conclude that
ARC-GS can outperform DICH and gSLU, and significantly
outperform 2-D hash compressed stream classifier in terms of
the classification accuracy.

3) Performance With Respect to the Hash Ratio R: In this
experiment, we fix the number of features M = 10 000 and
the ensemble size K = 6 for CNS, and adjust the hash ratio
R for ARC-GS classifier in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

Fig. 7 reports the classification accuracy curves (y-axis)
with respect to the chunk ID (x-axis) and average classifi-
cation accuracy over the entire streams under different hash
ratios. When the hash ratio R increases to 0.2 or 0.3, ARC-
GS achieves the best performance. Overall, the classification
performance of ARC-GS is relatively stable for different hash
ratio values.

D. Efficiency Evaluation

Performance With Respect to the Number of Features M: In
this experiment, we fix the ensemble size K (K = 4 for IBM,
K = 6 for CNS) and adjust the number of features M for the
efficiency evaluation. The experimental settings are the same
as those in Fig. 3.

The average system runtime performance over two streams
is reported in Fig. 8, which shows that the average runtime of
ARC-GS and DICH are less than gSLU, and significantly less
than 2-D classifier. The reason is that an additional frequent
pattern mining procedure in the 2-D is required to perform on
the summary table which comprises massive transactions. For
gSLU, its subgraph search process is computationally much

Fig. 8. Average runtime on IBM (left, ensemble size K = 4), and CNS
streams (right, ensemble size K = 6) with respect to different numbers of
features M.

Fig. 9. Average runtime on IBM (left, number of features M = 1000), and
CNS streams (right, number of features M = 10 000) with respect to different
ensemble size K.

more expensive than clique search process in both ARC-GS
and DICH. As the number of features increases, the average
runtime of all four classifiers also increase. This is because that
the learning process needs extra time to discover and manage
more features.

For both IBM and CNS streams, the average runtime
of ARC-GS is close to DICH. As the number of features
increases, the average runtime of ARC-GS increases gradually
slower than DICH on IBM stream. When using M = 3000 fea-
tures on the IBM stream, and using M = 10 000 features on
the CNS stream, the average runtime of ARC-GS is less than
DICH, which shows that ARC-GS has better efficiency than
DICH for large number features. This is mainly attributed to
the incremental stochastic learning strategy in ARC-GS, which
helps discover optimized weight values for high dimensional
features for effective classification.

Performance With Respect to the Ensemble Size K: In this
experiment, we fix the number of features M (M = 1000 for
IBM and M = 10 000 for CNS) and adjust the ensemble size
K for efficiency evaluation. The experimental settings are the
same as those in Fig. 5.

Fig. 9 reports the average system runtime performance of
the four classifiers. Compared to 2-D classifier, ARC-GS,
DICH, and gSLU require significant less runtime. The aver-
age runtime of the four classifiers increases as the ensemble
size increases. This is because a larger ensemble size would
result in more training graphs, which increase the training time
accordingly. For the two benchmark streams, the overall aver-
age time of ARC-GS is close to DICH. For IBM stream, the
overall average time of ARC-GS is less than DICH. When
K = 6, the average runtime of ARC-GS is less than DICH on
CNS stream. As K increases, the average runtime of ARC-GS
is less than DICH. Therefore, ARC-GS has more stable and
better efficiency as the ensemble size increases.
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E. Concept Drifting Analysis

In this section, we extensively investigate the performance
of different methods in handling various concept drifts, includ-
ing temporary and permanent drifts. In particular, we evaluate
the methods on four types of concept drifts.

1) Temporary Abrupt Drift: Under the temporary abrupt
drift, the experimental data is from a single dataset, and
the label distribution between two consecutive chunks
within this dataset has an abrupt drift. This concept drift
model includes a positive threshold parameter which
determines how much drift is abrupt.

2) Temporary Abrupt and Gradual Drifts: This concept
drift model is similar to the first above one. The only dif-
ference is that there occurs a gradual drift which means
the change of the label distribution between two con-
secutive chunks is gradual. Also, a positive threshold
parameter will be defined in this model to determine
how much drift is gradual.

3) Permanent Abrupt Drift: For this drift type, the experi-
mental data includes two datasets from different areas.
There is a permanent abrupt change when the two con-
secutive chunks are from different datasets, and the first
occurred dataset will never occur again.

4) Recurrent Abrupt Drift: In this drift, the experimental
data also includes two datasets from different areas. The
only difference with the permanent abrupt drift is that
the two datasets will recurrently occur multiple times.

Next, the corresponding experiments on these four types of
concept drift will be conducted to evaluate the performance
of each algorithm. In our experiments, we evaluate the impact
of the concept drifts on four classifiers in terms of: 1) the
number of features M; 2) the ensemble size K; and 3) the
chunk size. For ARC-GS, we adjust the hash ratio R within
range {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} to evaluate the performance
change. The default R in ARC-GS in other experiments is 0.2.

1) Results on Temporary Abrupt Drift: In this experiment,
the IBM stream dataset is redesigned to bring in a tempo-
rary abrupt drift. We change the class distribution to simulate
abrupt concept drifting on IBM graph stream. we select 50 dif-
ferent classes (1∼50) of graphs from the whole IBM sensor
stream (which contains 250 classes) as our experimental data.
In our experiments, there are 25 chunks, each of which com-
prises 20 000 graphs. To introduce concept drift, we employ
following approach. From chunks 1∼14, and from chunks
18∼25, graphs are randomly selected from original IBM
experimental data containing 50 classes. After checking the
overall class distributions in chunks 1∼14 and chunks 18∼25,
we introduce abrupt concept drifts to chunk 15 by designing
a highly different class distribution. After that, we gradually
change the class distributions in chunks 16 and 17, which
results in explicit but gradual concept drifts.

In the first group of experiments, we fix the ensemble size
K = 4 and adjust the number of features M with {300, 3000}
for impact evaluation. And in the second group of experi-
ments, the number of features M is fixed to 1000 and adjust
the ensemble size K with {2, 6}.

Fig. 10 reports the classification accuracy (y-axis) with
respect to the chunk ID (x-axis) by using different numbers

Fig. 10. Classification accuracy on the IBM stream for temporary abrupt
drift. Upper row: results on different M and K = 4. Bottom row: results on
different K and M = 1000.

of features. The results show that there is noticeable con-
cept drifting from chunks 14∼18 (marked by the rectangle
boxes). As a result, all four classifiers experience performance
loss. From chunks 14∼15, all four classifiers experience large
performance loss because there is an abrupt concept drift in
chunk 15. For gSLU, there is a larger performance loss after
the concept-drifting chunks. The reason is that the instance
weighting mechanism employed by gSLU may be too sensitive
to better adapt to the concept drifting, and the training results
in the concept-drifting chunks mislead the classification of
the following chunks. Among all classifiers, ARC-GS receives
less loss than 2-D, gSLU, and DICH, which indicates that the
overall impact of the concept drifts on ARC-GS is minimal
among four compared classifiers. As the number of features
increases, the impact of the concept drifts on the classification
performance of ARC-GS becomes less significant. However,
for DICH and 2-D classifiers, the impact almost remains the
same. This experiment implies that ARC-GS can effectively
handle temporary abrupt concept drift in graph streams.

2) Results on Temporary Abrupt and Gradual Drifts: In
this experiment, we design a synthetic graph stream called
GTGraph which includes the temporary abrupt and gradual
drifts. We create a synthetic GTGraph stream with drifting
concepts by changing parameters used to label the graphs in
the stream. In the GTGraph network, we divide all nodes into
d classes (d-dimensional space) and establish a hyperplane in
d-dimensional space by

∑d
i=1 fixi = f0, where fi denotes the

ith feature weight, and xi denotes the number of nodes in the
ith feature in a graph. The feature weights fi (1 ≤ i ≤ d)
are randomly initialized by values within the range [0, 1].
The f0 is chosen to cut the graphs into two parts, that is,
f0 = (1/2)

∑d
i=1 fi. Therefore, roughly a half of graphs are

labeled as positive.
If the graph satisfies

∑d
i=1 fixi ≥ f0, we label the graphs

as positive; if the graph satisfies
∑d

i=1 fixi < f0, we label the
graphs as negative. Accordingly, by changing f0 value, we can
simulate concept drifts in graph stream. In our examination,
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Fig. 11. Classification accuracy on the GTGraph stream for temporary abrupt
and gradual drift. Upper row: results on different M and K = 4. Bottom row:
results on different K and M = 5000.

we set d as 10, and insert abrupt concept drift in chunk 15
(the total number of chunks is 25) by introducing a signifi-
cant change to f0, and then gradually adjust f0 to continuously
introduce gradual concept drifts to chunks 16 ∼ 18.

In the first group of experiments, we fix the ensemble
size K = 4 and adjust the number of features M with
{1000, 10 000} for impact evaluation. And in the second group
of experiments, the number of features M is fixed to 5000 and
adjust the ensemble size K with {2, 6}.

Fig. 11 reports the classification accuracy (y-axis) with
respect to the chunk ID (x-axis) in GTGraph streams by using
different numbers of features. The results also show that there
are noticeable concept drifting from chunks 14∼19 (marked
by the rectangle boxes). From chunks 14∼15, all four classi-
fiers also experience large performance loss because there is
an abrupt drift when switching to chunk 15. Next from chunks
15∼17, the gradual drifts occur. This experiment implies that
ARC-GS can effectively handle temporary abrupt and gradual
concept drifts in graph streams.

3) Results on Permanent Abrupt Drift: In order to assess the
performance on permanent abrupt concept drifts, we design a
sudden permanent concept drift by combining the GTGraph
stream (50 chunks * 2000 graphs) and the CNS stream (8
chunks * 2000 graphs).

Fig. 12 shows the experimental results on GTGraph + CNS
stream. As expected, there is a decline in chunk 29 when
the temporary drift occurs. When the concept permanently
changes from GTGraph to CNS in chunk 50, all algorithms
experience a sharp drop. However, ARC-GS algorithm recov-
ers much faster than other algorithms. The results validate
ARC-GS is better at handling permanent abrupt drift.

4) Results on Recurrent Abrupt Drift: In this experiment, we
use the DBLP and CNS streams to simulate recurrent concept
drifts. Specifically, we construct a graph stream by sequentially
adding eight chunks of DBLP graphs (each chunk consists of
2000 graphs), following by eight chunks of CNS graphs. The
procedure repeats three times to generate a stream that both
DBLP and CNS concepts recur three times.

Fig. 12. Classification accuracy on the GTGraph+CNS stream for mixed
temporary and permanent abrupt drift (chunk size is 2000). Upper row: results
on different M and K = 4. Bottom row: results on different K and M = 5000.

Fig. 13. Classification accuracy on the GTGraph+CNS stream for recurrent
abrupt drift. Upper row: results on different K with M = 5000. Bottom row:
results on different K with M = 15 000.

Fig. 13 shows the experimental results for recurrent abrupt
drift. The results show that when the concept change from
DBLP to CNS (or from CNS to DBLP), all algorithms will
drop significantly in their performance and then recover in
following chunks. As K increases, gSLU will recover more
slowly. However, GCS-CH will recover much faster and bet-
ter than all other algorithms. This is because the GCS-CH
algorithm assigns much larger weights into the most recent
chunk, so it is better to capture the underlying concept drift.

F. Further Analysis

Results With Respect to Wider Range of Ensemble Size K:
To better understanding the role of K, we experiment K from 2
to 20 with interval 2 in the dataset GTGraph-CNS. The experi-
mental result is reported in Fig. 14. The result in Fig. 14 shows
that when K keeps increasing, gSLU and DICH algorithms
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Fig. 14. Performance change over K in GTGraph-CNS (M = 5000 and
chunk size = 2000).

Fig. 15. Classification accuracy on the GTGraph-CNS (M = 5000 and
K = 4) with different chunk size.

Fig. 16. Classification accuracy and average classification accuracy on
GTGraph-CNS stream (M = 5000 and ensemble size K = 4) with different
hash ratio R.

experience a slight drop rather than an increase in accuracy.
This is because when the ensemble increase, the older clas-
sifiers in the ensemble will affect the algorithm (e.g., gSLU),
so the ability of the algorithm to handle concept drift may
decrease. However, our algorithm ARC-GS remains relatively
stable when K increases, because it assigns larger weights on
the most recent classifier and it is more sensitive in handling
concept drift.

Results With Respect to the Chunk Size: We report the
experimental results in Fig. 15 for different chunk size. The
results show that no matter how to adjust the chunk size, our
algorithm ARC-GS always performs the best.

Results With Respect to the Hash Ratio R: In this experi-
ment, for ARC-GS, we adjust the hash ratio R within range
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6} to evaluate the performance change
in the dataset GTGraph-CNS. Fig. 16 reports our algorithm
performs stable even under different ratio settings.

Results With Respect to Nonparametric Test: To summarize
the comparison of all classifiers over all four datasets with con-
cept drifts, we report a Friedman post-hoc test using Bergman
and Hommel correction [37], [38]. In Table II, each value rep-
resents a raw p-value for each pair of classifiers. A summary
with the average values of each classifier over all datasets is

TABLE II
NONPARAMETRIC TEST: FRIEDMAN Post-Hoc TEST

shown in Table II. From the result of Friedman post-hoc test,
ARC-GS statistically outperforms the best.

VI. CONCLUSION

In this paper, we proposed an adaptive real-time classifi-
cation method for concept-drifting graph streams. We argued
that graph stream classification has three major challenges:
1) increasing graph volumes; 2) expanding feature space; and
3) concept drifting. An effective graph classification model
should tackle these challenges to classify graphs in real-
time with only one-pass of the stream data. Accordingly,
we employed two hashing schemes to speed up the graph
feature extraction, and combined incremental stochastic learn-
ing strategy and chunk level weighting mechanism for graph
stream classification. In particular, we proposed an approx-
imate method for fast graph feature extraction by detecting
cliques from compressed graphs via hashing, which signifi-
cantly improves the efficiency of feature extraction to satisfy
the real-time requirement. A graph feature reduction method
is used to map expanding clique patterns onto corresponding
fixed-size compatible feature spaces via differential hashing,
which can avoid a prescan of graphs to address the one-pass
and “concept drifting” challenges. As a result, the stream
of graphs is converted into feature vectors without addi-
tional parsing such that we can directly adopt a stochastic
learning strategy to train a graph classifier online. A chunk
level weighting mechanism is adopted to build an ensemble
for classifying graph stream with concept drifts. Experiments
and comparisons on real-world and synthetic graph streams
demonstrate that the proposed method outperforms the state-
of-the-art methods in both classification accuracy and learning
efficiency.
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