
1054 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 5, MAY 2015

Rating Knowledge Sharing in Cross-Domain
Collaborative Filtering

Bin Li, Xingquan Zhu, Senior Member, IEEE, Ruijiang Li, and Chengqi Zhang, Senior Member, IEEE

Abstract—Cross-domain collaborative filtering (CF) aims to
share common rating knowledge across multiple related CF
domains to boost the CF performance. In this paper, we view CF
domains as a 2-D site-time coordinate system, on which multiple
related domains, such as similar recommender sites or successive
time-slices, can share group-level rating patterns. We propose a
unified framework for cross-domain CF over the site-time coordi-
nate system by sharing group-level rating patterns and imposing
user/item dependence across domains. A generative model, say
ratings over site-time (ROST), which can generate and predict
ratings for multiple related CF domains, is developed as the basic
model for the framework. We further introduce cross-domain
user/item dependence into ROST and extend it to two real-world
cross-domain CF scenarios: 1) ROST (sites) for alleviating rat-
ing sparsity in the target domain, where multiple similar sites
are viewed as related CF domains and some items in the target
domain depend on their correspondences in the related ones; and
2) ROST (time) for modeling user-interest drift over time, where
a series of time-slices are viewed as related CF domains and
a user at current time-slice depends on herself in the previous
time-slice. All these ROST models are instances of the proposed
unified framework. The experimental results show that ROST
(sites) can effectively alleviate the sparsity problem to improve
rating prediction performance and ROST (time) can clearly track
and visualize user-interest drift over time.

Index Terms—Collaborative filtering (CF), cross-domain,
knowledge transfer, rating sparsity, user-interest drift.

I. INTRODUCTION

COLLABORATIVE filtering (CF) has become the most
popular technique in real-world recommender systems

since it can efficiently handle a large-scale database in a
“content-free” manner. The basic idea of CF is memory-
based that finds k-nearest neighboring users [1] or items [2]
based on historical rating data to predict ratings for an active
user. Model-based methods were proposed later and most of
them also follow the same basic idea, i.e., finding similar
users or/and items, but resort to more complicated clustering
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techniques in various ways, such as latent variable mod-
els [3], [4] and low-rank approximations [5], [6]. Thus, the
essential problem of CF methods is how to find similar
users/items and how to measure similarities between them.

Thus far, most existing CF methods are single-domain
based, which make predictions based on one rating matrix. In
other words, these methods can only find similar users/items in
a single domain. However, in many recommendation scenarios,
multiple related CF domains may be presented at the same
time and finding similar users/items across domains becomes
possible, such that common rating knowledge can be shared
among related domains. We take two real-world cross-domain
CF problems for example, which will be addressed later in
this paper.

The first scenario is “cross-domain CF over sites” (i.e., CF
across recommender systems), in which one site is viewed as
one CF domain. This scenario can emerge when users wish to
borrow rating knowledge from some related auxiliary domains
(e.g., popular movie websites), whose rating matrices are rel-
atively dense, to alleviate the rating sparsity problem in the
sparse target domain (e.g., a new movie website), in which k-
NN or clustering can hardly obtain good results due to sparsity.
Although user/item sets of auxiliary and target domains are
different, they may have some implicit correspondences. For
example, movies of two domains have similar categories while
users of two domains have similar interest distributions over
movie categories. If we can find some rating-pattern match-
ings among related domains, the clustering knowledge can be
naturally transferred from one domain to another.

The second scenario is “cross-domain CF over time” (i.e.,
CF across temporal domains), in which the ratings collected in
each time-slice is viewed as one CF domain. Because users’
interests keep drifting over time and a user is likely to be inter-
ested in different item categories at different time, we cannot
simply view the multiple counterparts1 of the same user in
different temporal domains are identical. Some recent work
has considered such interest-drift problem and proposed an
approach by adding time-dependent components to a single-
domain CF model [7]. An alternative way is to build on
a cross-domain CF framework by viewing the counterparts
of the same user in successive temporal domains are differ-
ent but related users. If we can find the unchanged rating
patterns (static components) shared across temporal domains,

1A “user-counterpart” refers to a user in a certain temporal domain. We
view a user has multiple counterparts, which can have different interests in
different temporal domains.
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the drifting factors of users (changing components) in each
temporal domain can be easily captured.

In this paper, we view CF domains as a 2-D site-time coordi-
nate system, through which various cross-domain CF problems
(such as the two introduced above) can be solved in the same
framework. We first show that multiple related CF domains can
share group-level rating patterns through matching user/item
groups of different CF domains. Then we propose a unified
framework for cross-domain CF over the site-time coordinate
system by sharing a group-level rating matrix and impos-
ing user/item dependence across domains (Section III). A
Bayesian generative model, say ratings over site-time (ROST),
which can generate and predict ratings for multiple related
CF domains on the site-time coordinate system, is also devel-
oped as the basic model for the proposed cross-domain CF
framework (Section IV). We further introduce cross-domain
user/item dependence into ROST and extend it to the above
two real-world cross-domain CF scenarios: 1) ROST (sites) for
alleviating rating sparsity in the target domain, where multi-
ple similar sites are viewed as related CF domains and some
items in the target domain depend on their correspondences
in the related domains (Section V) and 2) ROST (time) for
modeling user-interest drifting over time, where a series of
time-slices are viewed as related CF domains and a user at
current time-slice depends on herself in the previous time-
slice (Section VI). All these ROST models are instances of
the proposed unified framework and they are defined with the
same generative process, where the cross-domain user/item
dependence is enabled by using Bayesian priors. We use Gibbs
sampling for latent variable inference in these models. The
main contribution of this paper is threefold.

1) Formalize cross-domain CF on a 2-D site-time coordi-
nate system, on which various cross-domain CF prob-
lems can be formulated in the same way.

2) Propose a unified framework for cross-domain CF
problems, which shares group-level rating patterns by
matching user/item groups from different domains and
imposing user/item dependence across domains.

3) Instantiate the proposed cross-domain CF framework by
developing a generative model and its two extensions,
which effectively address two real-world CF issues,
rating sparsity and user-interest drifting.

This paper essentially advances our previous work on cross-
domain CF [8]–[10] by: 1) providing a unified learning
framework for rating knowledge sharing across site domains
(asymmetric setting [8] and symmetric setting [10]) and tem-
poral domains [9]2; 2) developing Bayesian generative models
to instantiate the framework and solve real-world cross-domain
CF problems with efficient inference algorithms; and 3) con-
ducting comprehensive cross-domain CF experiments and case
study on real-world recommendation data sets.

Our comprehensive experiments on three real-world recom-
mendation data sets show that ROST (sites) can effectively
alleviate the sparsity problem to improve rating prediction
performance in the sparse target domain, and ROST (time)
can explicitly track and visualize user-interest drift over time

2Reference [9] is a special case of ROST applied to temporal domains.

TABLE I
NOTATIONS

(Section VII). We also conduct a case study of sharing ratings
over both sites and time simultaneously to clearly demonstrate
the advantage of our framework. The notations used through
the paper are listed in Table I.

II. RELATED WORK

In the following, we first introduce latent variable model
based CF. Then we introduce some state-of-the-art temporal
CF methods because ROST (time) introduced in Section VI is
a temporal CF method. After that, we briefly review existing
works on cross-domain CF.

A. Latent Variable Models

Our ROST models are latent variable models (LVMs).
Probabilistic latent semantic analysis (pLSA) [3] is an early
work that applies LVM to CF. Later, LVMs with a pair of latent
variables, associated to users and items respectively, were also
proposed for CF, such as two-sided clustering [11] and flexi-
ble mixture models [4]. Recently, many Bayesian extensions
of pLSA-style models [12], [13] were extensively exploited for
CF, including Bi-LDA [14], which underlies the fundamental
algorithm of ROST. Since the ROST models take into account
relatedness and dynamics between related CF domains, our
work is also related to dynamic probabilistic models [15]–[17].
To achieve more flexibilities in different cross-domain CF
problem settings, we adopt the approximate inference strat-
egy used in [16] and [17] to establish dependence between
related domains using Bayesian priors.

B. Temporal Collaborative Filtering

The state-of-the-art in this area is TimeSVD++ [7], in which
a latent feature of user/item (factors of SVD decomposition
of the user-item rating matrix) is a combination of one static
component and one time-dependent component. In [18], apart
from “user” and “item,” “time” is viewed as the third dimen-
sion and tensor factorization is used to factorize temporal
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components. Besides temporal dynamics, a spatio-temporal CF
method further considers user similarities [19]. Unfortunately,
the extracted temporal components in these methods cannot
be interpreted to describe user-interest drifting. On the con-
trary, ROST (time) is able to explicitly visualize users’ interest
variations using user-group memberships.

C. Cross-Domain Collaborative Filtering

In the following, we will give a brief introduction to the
existing works on cross-domain CF in terms of knowledge
transfer styles (please also refer to our work [20] for a brief
survey on cross-domain CF).

1) Rating-Pattern Sharing: Rating-pattern sharing was first
proposed in [8], where it is also called CodeBook trans-
fer (CBT), for solving domain adaptation problems in CF.
The idea was latter incorporated into a probabilistic model,
rating-matrix generative model (RMGM) [10], for solving
multitask learning problems in CF. More recently, this knowl-
edge transfer style was adapted to temporal domains in [9] and
multisource domains in [21]. In these works, multiple rating
matrices from related CF domains can share group-level rating
patterns (or partially share [22]). Such knowledge transfer style
can be viewed as a type of feature-representation transfer [23]
(e.g., self-taught learning [24]); differently, rating patterns are
a two-sided feature representation for both rows and columns.
In this paper, we propose a unified framework to accommo-
date a variety of cross-domain CF problems, based on this
rating-pattern transfer style.

2) Latent-Feature Sharing: This knowledge transfer style
was applied to CF to incorporate side-information by simul-
taneously factorizing the rating matrix and some other
related matrices, for example, user-movie, movie-genre,
and actor-movie matrices for movie recommendation [25]
and document-citation, document-author, and document-venue
matrices for document recommendation [26]. Recently, a
two-sided latent-feature sharing method named coordinate
system transfer (CST) is introduced in [27], which incorpo-
rates both user and item side-information into rating matrix
factorization. Later, implicit user feedback was taken into
account for knowledge transfer in [28]. Tri-factorization is
also applied to capture user-item-domain interactions in [29].
The existing works in this knowledge transfer style require
to share the same user and/or item sets across CF domains,
which are unavailable in our cross-domain CF problem
settings.

3) Domain Correlating: The idea of exploiting correla-
tions among item (or user) domains was first mentioned
in [30] without giving a solution. Some methods based on
this idea were proposed later, including collective link pre-
diction (CLP) [31] and multidomain collaborative filtering
(MCF) [32]. Both CLP and MCF explore user/item domain
correlations via latent feature learning. More recently, a
method resorts to estimating domain correlations based on
explicit cues (tag similarities) [33]. However, these works are
based on a strong assumption that the users (or items) of dif-
ferent CF domains are the same set. The problem setting of
this knowledge transfer style is different from ours where no
same user/item set is required for different CF domains.

Fig. 1. Site-time coordinate system for cross-domain CF. The horizontal
shaded band illustrates an example of cross-domain CF over sites (four site
domains at time 3). The vertical shaded band illustrates an example of cross-
domain CF over time (four temporal domains on site 2). The small circles
represent ratings from certain sites at certain time.

4) Neighborhood Augmentation: The last knowledge trans-
fer style is augmenting user/item neighborhoods from related
CF domains. In [34], the user affinity graphs from two
CF domains are embedded and aligned in the same low-
dimensional space such that a user profile can be reconstructed
from the user profiles in the other domain. However, this paper
aims to predict a user’s profile in domain B given the same
user’s profile in domain A, which is different from our prob-
lem setting. Shared collaborative filtering [35] augments the
neighborhood set of a user in domain A from the item-affinity
information in domain B; but it is required that the two CF
domains have the same item set. Our recent work [36] also
makes use of the item-affinity information of a related domain
to help noisy user detection in the target domain. Finally, [37]
proposes a transitive closure method to augment paths between
the item-affinity graphs of two CF domains and the ratings
in the combined rating matrices can be predicted using a
single-domain CF method.

III. UNIFIED FRAMEWORK FOR CROSS-DOMAIN CF

To clearly describe our cross-domain CF problem settings,
we first give some important definitions. Then, we introduce
our rating knowledge sharing scheme. Finally, we propose a
unified framework for cross-domain CF.

A. Definitions

Definition 1 (Site-Time Coordinate System): We view the
space of Site×Time as a 2-D coordinate system and the ratings
collected from different sites at different time are pooled on
it. Each rating is located on the site-time coordinate system
based on its site-identity and time-stamp (see Fig. 1).

It is worth noting that the elements on the site-coordinate are
the union of user-item pairs from multiple sites. Each site has
a user set and an item set, and the user/item sets of different
sites can have overlaps.

Definition 2 (Collaborative Filtering Domains): Given a
site-time coordinate system, CF domains can be 1) a set of
sites on the site-coordinate or 2) a series of time-slices on the
time-coordinate. In our problem, “site” and “time” are equiva-
lent concepts; either site-coordinate or time-coordinate can be
partitioned into multiple CF domains.
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Definition 3 (Cross-Domain Collaborative Filtering):
Cross-domain CF is performed on multiple related CF
domains by sharing ratings in those domains, where “related
CF domains” refer to a set of 1) rating matrices from
multiple similar sites within the same time-span3 (say
cross-domain CF over sites) or 2) snapshot rating matrices
of a series of time-slices from one site (say cross-domain CF
over time).

As illustrated in Fig. 1, cross-domain CF over sites is per-
formed on the ratings in a horizontal band on the site-time
coordinate system while cross-domain CF over time is per-
formed on the ratings in a vertical band. The ratings in each
cell on the site-time coordinate system can be used to con-
struct a user-item rating matrix for a certain site at certain time.
The successive cells in a horizontal/vertical band form a set
of related rating matrices for cross-domain CF. The user/item
sets in these related CF domains have different distributions
on user/item-groups since their interests/atributes may change
over sites and time. In this paper, we aim to propose a uni-
fied framework for accommodating cross-domain CF problems
over both sites and time.

B. Rating Knowledge Sharing

We start our study on cross-domain CF over sites and
time by introducing how to transfer rating knowledge across
related rating matrices. Since user-item ratings are dyadic data
with two finite sets of objects (user set and item set) [38],
we can co-cluster users and items simultaneously and find
implicit correspondences among different rating matrices by
matching group-level rating patterns. We take movie rating
matrices from two different sites (domains) for example. On
one hand, movies from two domains should have similar
categories in terms of genres, actors, and other attributes.
On the other hand, users from two domains are the sub-
sets of the real-world population and should reflect similar
interest distributions over movie categories. We can thus
simultaneously group users based on their ratings on items
and group items based on their associated ratings provided
by users in both domains to find shared group-level rating
patterns.

In Fig. 2, we illustrate this rating-matrix matching process,
which is obtained using the basic ROST model introduced
in Section IV on two randomly generated synthetic rating
matrices (left). By simultaneously grouping users and items
in the two rating matrices, we can uncover the latent block
structure shared between them (middle). If we estimate the
expected ratings for each block (user-item group dyad), we
can obtain a 3 × 3 group-level rating matrix shared between
two domains (right). This is an ideal case that two rating
matrices can be perfectly matched. In real-world scenarios,
there may be substantial amount of noise and each rating
matrix may only have a subset of the rating patterns (a sub-
matrix) in the shared group-level rating matrix. Nevertheless,
this illustration intuitively shows that, if user-interests and

3This is because, if rating matrices from different sites belong to different
ages (e.g., 2000s and 2010s), they are unlikely to be related since products
and user-tastes keep evolving over time.

Fig. 2. Illustration of group-level rating pattern matching between two syn-
thetic rating matrices (left). Three gray scales denote different rating scores
and white entries denote missing values. By simultaneously grouping users
and items in the two rating matrices (middle), a shared 3 × 3 block structure,
say group-level rating matrix, can be discovered (right).

item-categories in multiple rating matrices indeed have similar
distributions, we can uncover the underlying shared rat-
ing patterns by matching user/item groups among different
domains.

C. Cross-Domain CF Framework

The above observation suggests that we can match T rating
matrices on the site-time coordinate system as long as they are
related in user/item groups (e.g., rating matrices from similar
sites or successive time-slices). We use t to index related CF
domains and decompose an N(t)×M(t) rating matrix X(t) from
one of related domains into three parts: a K × L group-level
rating matrix B, an N(t)×K user-group membership matrix P(t)

and an M(t)×L item-group membership matrix Q(t). Each row
in P(t) and Q(t) sums to 1 (P(t)1 = 1 and Q(t)1 = 1), which
means a mixing proportion of user/item groups. We assume
that B can be shared across domains so it is not assigned a
domain index. An entry in B, say Bkl, denotes the expected
rating provided by user group k on item group l. The rating
matrix X(t) can be reconstructed by

X̂(t) = P(t)B
[
Q(t)

]�
(1)

each entry in X̂(t) is indeed a weighted sum of the expected
group-level ratings in B and the weights in terms of user/item-
group memberships are different from one another. The tri-
factorization representation of a rating matrix in (1) suggests
a cross-domain CF framework—sharing a group-level rating
matrix (B), which encodes the common rating knowledge of
multiple related domains, while assuming that users and items
(P(t) and Q(t)) from different domains are independent. It is
worth noting that, within this framework, the rating matri-
ces of different sizes or have different user/item sets can
also be matched as long as they have similar user and item
distributions.

In many real-world scenarios, we can easily find relat-
edness between users/items from different CF domains. For
example, we can identify a set of same movies existing in
multiple sites for cross-domain CF over sites. We can also
view the user-counterparts in successive temporal domains
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Fig. 3. Unified framework for cross-domain CF over site-time coordinates.
{X(t)}T

t=1 can be rating matrices from T sites or snapshot rating matrices of
T time-slices. A group-level rating matrix B is shared across domains (in the
shaded area) and additional relatedness between users/items from different
domains can also be considered (represented in dashed lines).

are different but related users for cross-domain CF over time.
Thus, besides sharing group-level rating patterns, we can also
take into account additional relatedness between users/items
from different CF domains. We will show later that we can
enable such relatedness by imposing dependence on related
users/items using Bayesian priors. Now we can construct a
unified framework for cross-domain CF over the site-time
coordinate system, by: 1) sharing a group-level rating matrix
(B) across multiple related CF domains and 2) enabling
additional relatedness between users/items (P(t)/Q(t)) from dif-
ferent CF domains. The proposed framework is shown in
Fig. 3.

IV. BASIC ROST MODEL

In this section, we introduce the basic ROST model for the
proposed cross-domain CF framework. With ROST, we can
infer latent group-level rating patterns based on the observed
ratings collected from multiple related CF domains. But for the
moment, ROST has not yet taken into account cross-domain
user/item dependence (i.e., no relatedness between {P(t)} or
{Q(t)}). We will introduce user/item dependence into ROST in
the next two sections.

ROST is a Bayesian generative model which has the fol-
lowing advantages: 1) its generative process is intuitive and
interpretable; 2) cross-domain user/item dependence can be
enabled using prior knowledge (prior distributions); and 3) a
variety of off-the-shelf approximate inference algorithms can
be used for inferring latent variables in the proposed models
(we will use Gibbs sampling).

We will extend a variant of latent Dirichlet alloca-
tion (LDA) [12], say Bi-LDA [14], to solve the tri-
factorization problem (1). Some well-known co-clustering
methods (see [39]) are also applicable to CF [40].
However, [39] is an orthogonal factorization, X = USV�,
where U and V are orthogonal bases, which cannot be
interpreted as mixing proportions. In contrast, Dirichlet dis-
tributions adopted in the proposed models are straight-
forward for modeling mixing proportions (user/item-group
memberships).

A. Generative Process

Given T related CF domains, each domain is repre-
sented with an N(t) × M(t) rating matrix X(t), where X(t)

nm

is the rating provided by user n on item m in domain t,
(n, m) ∈ S(t) and S(t) denotes the user-item set of the
observed ratings in X(t). Each rating is associated with a
pair of latent variables (zU(t)

nm , zI(t)
nm ), which are the user-

group and item-group indices of the rating X(t)
nm, respectively.

The generative process of the basic ROST model is as
follows.

1) For user-item joint group (k, l), choose φk,l ∼
Dirichlet(β).

2) For user n in domain t, choose θ
U(t)
n ∼ Dirichlet(αU ).

3) For item m in domain t, choose θ
I(t)
m ∼ Dirichlet(αI).

4) For the rating X(t)
nm:

a) choose a user group zU(t)
nm ∼ Multinomial(θU(t)

n );
b) choose an item group zI(t)

nm ∼ Multinomial(θI(t)
m );

c) choose a rating X(t)
nm ∼ Multinomial(φ

zU(t)
nm ,zI(t)

nm
).

where φk,l is the mixing proportion of R rating scales for
the ratings provided by user group k on item group l, and∑R

r=1 φk,l,r = 1; θ
U(t)
n is the mixing proportion of K user

groups (user-group membership) for user n, and
∑K

k=1 θ
U(t)
n,k =

1; θ
I(t)
m is the mixing proportion of L item groups (item-group

membership) for item m, and
∑L

l=1 θ
I(t)
m,l = 1; αU , αI , and

β are hyper-parameters of the Dirichlet priors. The graphical
model representation of the basic ROST model is illustrated
in Fig. 4.

Now, the shared group-level rating matrix B across T
CF domains and the user/item-group membership matrices
{P(t)}T

t=1 and {Q(t)}T
t=1 can be represented using the above

latent variables: Bkl = ∑R
r=1 rφk,l,r, P(t)

nk = θ
U(t)
n,k and Q(t)

ml =
θ
I(t)
m,l . This suggests that we can solve the cross-domain CF

problem formulated in (1) if we infer the latent variables in
ROST.

B. Inference and Prediction

The above generative process can be viewed as an extension
of Bi-LDA [14] in multidomain scenarios. We can thus adopt
the similar Gibbs sampling algorithm used in [14]. Let X =
{X(t)}T

t=1, zU = {zU(t)}T
t=1, zI = {zI(t)}T

t=1, θU = {θU(t)}T
t=1

and θI = {θI(t)}T
t=1. The joint distribution of all the random

variables in ROST gives

P
(

X, zU , zI , φ, θU , θI |β, αU , αI)

= P
(

X|zU , zI , φ
)

P(φ|β)

P
(

zU |θU
)

P
(
θU |αU)

P
(

zI |θI
)

P
(
θI |αI)

. (2)

By analytically marginalizing out all the parameters of
the Dirichlet-Multinomial conjugate distributions in (2), i.e.,
{φ, θU , θI}, we can obtain an expression for the joint prob-
ability P(X, zU , zI |β, αU , αI). Then we use the collapsed
Gibbs sampling algorithm for inferring the latent variables
zU and zI . For each latent variable pair (zU(t)

nm , zI(t)
nm ), the
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Fig. 4. Graphical model representation of the basic ROST model, in which the group-level rating patterns (φ) are shared by T CF domains.

Fig. 5. Basic ROST model: training and prediction.

conditional distribution is

P
(

zU(t)
nm = k, zI(t)

nm = l|zU¬(nmt), zI¬(nmt), X;β, αU , αI)

∝
⎛
⎝

h¬(nmt)

klX(t)
nm

+ β

∑
r h¬(nmt)

klr + Rβ

⎞
⎠ (

h¬(nmt)
nkt + αU)

(
h¬(nmt)

mlt + αI)
(3)

where zU¬(nmt) denotes the set zU excluding zU(t)
nm ; h¬(nmt)

klr
denotes the number of ratings that fall in cell (k, l, r), exclud-
ing X(t)

nm. Similar definitions are applicable for h¬(nmt)
nkt and

h¬(nmt)
mlt . The full expression of the joint distribution (2) and

the derivation of the conditional distribution (3) for Gibbs
sampling are detailed in Appendix.

After inferring {zU , zI}, we can estimate the shared group-
level rating matrix B and the user/item-group membership
matrices, {P(t), Q(t)}T

t=1, for each domain as follows:

Bkl =
R∑

r=1

rφk,l,r =
∑

r r(hklr + β)∑
r hklr + Rβ

(4)

P(t)
nk = θ

U(t)
n,k = hnkt + αU

∑
k hnkt + KαU (5)

Q(t)
ml = θ

I(t)
m,l = hmlt + αI

∑
l hmlt + LαI . (6)

When B and {P(t), Q(t)}T
t=1 are obtained, we can predict any

rating in the given T domains by using (1). We sum up the
modeling steps for the basic ROST model in Fig. 5.

V. CROSS-DOMAIN CF OVER SITES

In real-world scenarios, in addition to implicit group-level
rating pattern matchings, two CF domains may also have
some explicit relatedness, which can be easily established by

identifying a subset of similar or even same users/items from
related CF domains (e.g., same movies from two movie rec-
ommendation websites). Based on this observation, a common
cross-domain CF problem can be raised: Given a target CF
domain whose rating matrix is sparse, can we borrow useful
rating knowledge from related auxiliary domains and further
take into account some explicit relatedness to make a more
reliable user/item-group matching estimation? In this section,
we extend the basic ROST model by taking into account
some explicit relatedness between users/items from different
CF domains and introduce ROST (sites). The goal of ROST
(sites) is to alleviate the rating sparsity problem and improve
recommendation performance in the target domain.

A. Problem Setting

Given T related CF domains, we represent each domain as
an N(t) × M(t) rating matrix X(t). Note that the user/item sets
in different domains are different from one another and can
be of different sizes. A target domain, whose rating matrix is
sparse, is one of the given domains, and the others are aux-
iliary domains whose rating matrices are relatively dense and
are related to the target domain. Our task is to make use of
the rating knowledge from auxiliary domains to alleviate the
rating sparsity in the target domain for better rating predic-
tions. Without loss of generality, we let the last domain be the
target domain, i.e., X(T), and the other domains {X(t)}T−1

t=1 be
the auxiliary domains. In the case of T = 2, there is only one
auxiliary domain (more common in practice).

We use a mapping function � to link an item m in the target
domain to its correspondence �(m) in the auxiliary domains,
where m ∈ CI and CI denotes the item set in the target domain
which have correspondences in the auxiliary domains. Like the
basic ROST model, a group-level rating matrix B is shared by
{X(t)}T

t=1 from both auxiliary and target domains. In addition,
we impose dependence for an item m ∈ CI by letting its
correspondence’s item-group membership be the prior of its

item-group membership: θ
I(T)
m ∼ Dirichlet(λθ

I(tm)
�(m) ), where tm

is the domain index of �(m) and λ is a weighting param-
eter for tuning the concentration of the Dirichlet prior. The
intuition of λθ

I(tm)
�(m) can be interpreted as the pseudo count

of ratings for item m in L item groups before any rating from
the target domain is observed [13]. Similar dependence is also
applicable for users between auxiliary and target domains. The
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Fig. 6. Graphical model representation of ROST (sites). The group-level rating patterns (φ) are first learned from the T − 1 auxiliary domains and then are

reused by the target domain, while the user/item-group memberships (θU(T)/θI(T)) of the target domain partially depend on their corresponding users/items
in the T − 1 auxiliary domains (dashed arrowed lines denote partially dependence).

user set having correspondences is denoted by CU and the
corresponding users can also be mapped by using �.

B. ROST (Sites)

For ROST (sites), we adopt an asymmetric knowledge trans-
fer strategy used in [8], i.e., to learn group-level rating patterns
from the auxiliary domains first and transfer them to the target
domain later. In ROST (sites), besides transferring group-
level rating patterns, user/item-group memberships of related
users/items between auxiliary and target domains should also
be transferred. To this end, we first use the basic ROST model
introduced in Section IV to learn φ and {θU(t), θI(t)}T−1

t=1 on the
auxiliary domains {X(t)}T−1

t=1 , where the group-level rating pat-
terns are encoded in φ and some elements in {θU(t), θI(t)}T−1

t=1
will be used as the Dirichlet priors for their correspondences
in the target domain T .

Given φ and {θU(t), θI(t)}T−1
t=1 learned from the auxiliary

domains, the generative process of ROST (sites) is the same
as the basic ROST model except for the user/item-group
membership priors for users in CU and items in CI .

1) For user n in the target domain T:

a) choose θ
U(T)
n ∼ Dirichlet(αU ), if n /∈ CU ;

b) choose θ
U(T)
n ∼ Dirichlet(λθ

U(tn)
�(n) ), if n ∈ CU .

2) For item m in the target domain T:

a) choose θ
I(T)
m ∼ Dirichlet(αI), if m /∈ CI ;

b) choose θ
I(T)
m ∼ Dirichlet(λθ

I(tm)
�(m) ), if m ∈ CI .

The graphical model representation of ROST (sites) is
illustrated in Fig. 6.

Since we consider the asymmetric knowledge transfer set-
ting in which the group-level rating patterns learned from the
auxiliary domains are directly reused in the target domain, the
mixing proportions of rating scales for user-item joint groups
(i.e., φ) are fixed in the generative process of ROST (sites).
The conditional distribution becomes

P
(

zU(T)
nm = k, zI(T)

nm = l|zU(T)
¬(nm), zI(T)

¬(nm), X(T);β, αU , αI)

∝ φ
k,l,X(T)

nm

(
h¬(nmT)

nkT + γ U
nk

) (
h¬(nmT)

mlT + γ I
ml

)
(7)

Fig. 7. ROST (sites): training and prediction.

where

γ U
nk =

{
αU if n /∈ CU
λθ

U(tn)
�(n),k if n ∈ CU (8)

γ I
ml =

{
αI if m /∈ CI
λθ

I(tm)
�(m),l if m ∈ CI .

(9)

Note in (7), we only sample the ratings in the target domain.
The derivation of the conditional distribution (7) is similar to
(3) except for fixing φ and using different prior parameters.

Then we can estimate the user/item-group membership
matrices, P(T) and Q(T), as follows:

P(T)
nk = θ

U(T)
n,k = hnkT + γ U

nk∑
k

(
hnkT + γ U

nk

) (10)

Q(T)
ml = θ

I(T)
m,l = hmlT + γ I

ml∑
l

(
hmlT + γ I

ml

) (11)

where γ U
nk and γ I

ml are defined in (8) and (9), respectively. We
do not estimate the group-level rating matrix B since we have
obtained it from the auxiliary domains and can reuse it in the
target domain. We sum up the modeling steps for ROST (sites)
in Fig. 7.

We further compare the conditional distributions of ROST
(sites) (7) and the basic ROST model (3). ROST (sites) directly
reuses group-level rating patterns φ learned from auxiliary
domains so the first term φ

k,l,X(T)
nm

in (7) is fixed over Gibbs
sampling epoches. The second term is proportional to the
probability of selecting user-group k while the third term
is proportional to the probability of selecting item-group l.
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Fig. 8. Graphical model representation of ROST (time). The group-level rating patterns (φ) are shared by T temporal domains, while the user/item-group
memberships of the current domain (θU(t)/θI(t)) depend on their corresponding users/items in the previous domain (θU(t−1)/θI(t−1)).

By making weighted user/item-group memberships of auxil-
iary domains as pseudo counts of ratings (prior knowledge) for
corresponding users/items in the target domain, the users/items
in CU /CI are more likely to obtain similar group memberships
as their corresponding users/items in auxiliary domains.

VI. CROSS-DOMAIN CF OVER TIME

Another cross-domain CF problem commonly found in real-
world scenarios is CF over time, in which a time-slice is
viewed as a temporal domain. This problem is motivated by
the fact that users’ interests may drift over time since they
are continuously affected by moods, contexts, and pop cul-
ture trends. Thus, the ratings provided by the same user at
different time may reflect different interests as those ratings
are provided by different users. Based on this observation,
we can assume that a user has multiple counterparts across
temporal domains and the counterparts in successive temporal
domains are different but closely related. In this section, we
will extend the basic ROST model by taking into account the
correspondences between user-counterparts in successive tem-
poral domains and introduce ROST (time). The goal of ROST
(time) is to model and track user-interest over time for better
understanding users’ preferences.

A. Problem Setting

Given an N×M rating matrix X whose element Xnm is asso-
ciated with a time-stamp, indicating the time user n provided a
rating on item m. We split the entire time span of the ratings
in X into T equal time-slices and each time-slice is viewed
as a temporal domain. Then we let X(t) denote the snapshot
rating matrix in temporal domain t and X = {X(t)}T

t=1, where
X(t)

nm denotes a rating provided by user n on item m at time-
slice t, (n, m) ∈ S(t) and S(t) denotes the user-item set of the
observed ratings in X(t).

Although individual users’ interests keep drifting, the inter-
est distribution of a large population should be consistent over
time. In other words, if we group user-counterparts based on
their interests in each temporal domain, we will have same
user groups in all temporal domains. Thus, a group-level rat-
ing matrix can also be shared across temporal domains. For
user-group memberships, as they keep drifting, we let them
change over time and, at the same time, impose dependence

on them in successive temporal domains. We adopt a sim-
ple strategy to enable the underlying relatedness between
them, that is to let the user-group memberships in the pre-
vious temporal domain be the Dirichlet priors in the current
one: θ

U(t)
n ∼ Dirichlet(λθ

U(t−1)
n ). This strategy can also be

applied to imposing dependence on item-group memberships
in successive temporal domains.4

B. ROST (Time)

For ROST (time), we aim to learn a group-level rat-
ing matrix B shared across T temporal domains and
learn user/item-group memberships, {P(t), Q(t)}T

t=1, for the
user/item-counterparts in T temporal domains. It is feasi-
ble to directly apply the basic ROST model to this prob-
lem by viewing T temporal domains be independent and
user/item-counterparts in successive domains have no relat-
edness. However, since users usually have few ratings in each
temporal domain, neglecting relatedness between user/item-
counterparts in successive temporal domains may lead to
overfitting. Thus, in ROST (time), in addition to sharing group-
level rating patterns across all temporal domains, we also take
into account the dependence between user/item-counterparts
in successive temporal domains.

The generative process of ROST (time) is the same as the
basic ROST model except for the user/item-group membership
priors for all the user/item-counterparts:

1) for user-counterpart n in temporal domain t, choose
θ
U(t)
n ∼ Dirichlet(λθ

U(t−1)
n );

2) for item-counterpart m in temporal domain t, choose
θ
I(t)
m ∼ Dirichlet(λθ

I(t−1)
m ).

λ is a tradeoff parameter: a larger λ will introduce more
knowledge from the previous temporal domain to the cur-
rent one (i.e., regularization) while a smaller λ will make the
model concentrate more on the rating knowledge in the cur-
rent domain (but may lead to overfitting). The graphical model
representation of ROST (time) is illustrated in Fig. 8.

Since the hyper-parameters in the Dirichlet priors are them-
selves the latent variables to be inferred, we cannot marginalize
out θU and θI as done for the basic ROST model. We resort
to another approximation used in [16] and [17] by viewing

4To consider a general setting, we also introduce item-counterparts into
ROST (time). In practice, item-character can be viewed static over time.
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Fig. 9. ROST (time): training and prediction.

θU and θI in the Dirichlet priors as another two sets of inde-
pendent parameters, θ̂U and θ̂I , which have the same values
of θU and θI , respectively. Then, we can marginalize out
θU and θI and use the same Gibbs sampling algorithm of the
basic ROST model for inference. The only difference between
ROST (time) and the basic model is that, after each sam-
pling epoch, θ̂U and θ̂I are updated with the new values of
θU and θI .

The conditional distribution of each latent variable pair
(zU(t)

nm , zI(t)
nm ) in ROST (time) gives

P
(

zU(t)
nm = k, zI(t)

nm = l|zU¬(nmt), zI¬(nmt), X;β, αU , αI)

∝
⎛
⎝

h¬(nmt)

klX(t)
nm

+ β

∑
r h¬(nmt)

klr + Rβ

⎞
⎠

(
h¬(nmt)

nkt + δUnkt

)

(
h¬(nmt)

mlt + δImlt

)
(12)

where

δUnkt = λθ̂
U(t−1)
n,k (13)

δImlt = λθ̂
I(t−1)
m,l (14)

where θ
U(0)
n = αU , θ

I(0)
m = αI for t = 1.

Then we can estimate the user/item-group membership
matrices, {P(t), Q(t)}T

t=1, for the user/item-counterparts in T
temporal domains as follows:

P(t)
nk = θ

U(t)
n,k = hnkt + δUnkt∑

k

(
hnkt + δUnkt

) (15)

Q(t)
ml = θ

I(t)
m,l = hmlt + δImlt∑

l

(
hmlt + δImlt

) (16)

where δUnkt and δImlt are defined in (13) and (14), respectively.
The group-level rating matrix B can be estimated using (4).
We sum up the modeling steps for ROST (time) in Fig. 9.

We further compare the conditional distributions of ROST
(time) (12) and the basic ROST model (3). ROST (time)
has the same expression of the group-level rating patterns
φ as that in (3). The second term is proportional to the
probability of selecting user-group k while the third term is
proportional to the probability of selecting item-group l. By
making weighted user/item-group memberships of temporal
domain t − 1 as pseudo counts of ratings (prior knowledge)
for corresponding user/item-counterparts in temporal domain
t, user/item-group memberships are likely to change smoothly
over all temporal domains.

Finally, we can track user n’s interest-drift by investigat-
ing {[P(1)

n B]�, . . . , [P(T)
n B]�}, where P(t)

n denotes the nth row
in P(t). The column vector [P(t)

n B]� can be interpreted as the

TABLE II
MODEL SELECTION (AVERAGE RMSE/MAE OVER 5 SPLITS)

expected ratings provided by user n on L item groups (e.g.,
interests on L different movie themes) at time-slice t.

VII. EXPERIMENTS

We study the proposed ROST models empirically on three
real-world recommendation data sets.

1) Validate that ROST (sites) can indeed transfer useful rat-
ing knowledge from auxiliary CF domains to alleviate
the sparsity problem in the target domain and outper-
form the compared both single- and cross-domain CF
methods.

2) Validate that ROST (time) can model user-interest drift
over time and explicitly visualize the underlying drift to
achieve state-of-the-art performance.

3) Demonstrate a case study to simultaneously share rat-
ings over both sites and time-slices and illustrate some
interesting behaviors of items revealed by the ROST
models.

1) Evaluation Protocol: The evaluation metrics employed
in our experiments are the root mean squared error (RMSE),√∑

i∈S(ri − r̂i)2/|S|, and the mean absolute error (MAE),

(
∑

i∈S |ri − r̂i|)/|S|, where S denotes the set of test rat-
ings, ri the ground-truth rating and r̂i the predicted rating. A
smaller RMSE/MAE indicates better performance. Note that
all the reported RMSE/MAE results in our experiments are
the average performance over five random data splits.5

2) Model Selection: The parameters in the ROST mod-
els are selected as follows: for the hyper-parameters of the
Dirichlet priors, we set αU = 1/K, αI = 1/L, and β = 1/R,
according to [14]. The weighting parameter λ in the Dirichlet
priors is selected in {0.1, 1, 10, 100, 1000} on a separate vali-
dation data set and we find that λ = 100 gives the best result
for ROST (sites) and λ = 10 gives the best result for ROST
(time). The numbers of users and item groups are selected
on the separate validation data set and we find that K = 20
and L = 20 give the best result; the selected numbers are as
same as those in [10]. The model selection results are shown

5We conduct t-test for each pair of methods based on five runs of results
and claim that all the comparison results in Tables IV and V, and Fig. 10 are
statistically significant at the 5% significance level.
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TABLE III
RESULTS OF ROST (SITES) IN DIFFERENT AUXILIARY AND TARGET DOMAIN SETTINGS (AVERAGE RMSE / MAE OVER 5 SPLITS)

TABLE IV
COMPARISON RESULTS FOR CROSS-DOMAIN CF OVER SITES (AVERAGE RMSE / MAE OVER 5 SPLITS)

in Table II, where the separate validation data set is a subset
of the data set used in Section VII-A.

3) Complexities: The computational complexity for train-
ing a ROST model is O(X(R + K + L)iter), where X is
the number of all the observed ratings in {X(t)}T

t=1, and
O(R+K +L) is consumed for sampling from the mixing pro-
portions of R rating scales, K user groups, and L item groups.
The number of Gibbs sampling epoches iter is empirically
set to 200, where the first 100 are for burn-in and the rest
100 are the samples for estimating model parameters. The
spatial complexity is O(KLR + NKT + MLT + 2X), which
are allocated for three histograms hklr, hnkt, hmlt, and 2X
latent variables {zU , zI} during the sampling process. All the
tests of the ROST models are performed on a laptop with
2.67GHz CPU and 4G RAM. In our experiments, the empir-
ical training time of a ROST model is 1 ∼ 2 minutes in
MATLAB.

A. Cross-Domain CF Over Sites

1) Data: We use MovieLens 1M6 to simulate cross-domain
CF over sites. The entire data set comprises over 1M ratings
provided by 6040 users on 3952 movies. In this experiment,
we divide the entire data set into four parts as four different
but related CF domains (one target domain and three auxiliary
domains). We preprocess the data set as follows.

1) Randomly select 3020 users from the entire user set for
each of the four CF domains. Randomly select 1976
movies from the entire movie set for each of the four CF
domains. There may exist common users/items among
these domains but we hide these correspondences using
random permutations.

2) Construct four rating matrices based on the four selected
user/item sets. View the first rating matrix as the target
domain and the rest three as the auxiliary domains. Pick
1000 most popular movies (with most ratings) from the
target domain and identify there correspondences (i.e.,
common movies) in the auxiliary domains to form the
correspondence item set7 CI .

6http://www.grouplens.org/node/12
7We do not consider user correspondences in this experiment since user

correspondence information is difficult to obtain in real-world scenarios.

As a result, we obtain four 3020 × 1976 rating matrices
with a density around 5.9%. We investigate different density
settings of the target domain by randomly selecting a subset
of ratings from the target rating matrix to make its density in
{0.3%, 0.5%, 0.8%, 1.0%, 1.2%} as the training set, and the
rest ratings are used for test. It is worth noting that, in the
proposed ROST models, we hide all user and item correspon-
dences between the target domain and the auxiliary domains
except a small set of item correspondences CI . The identified
movies with correspondences in CI are viewed as different but
related items. We do not directly concatenate the two parts of
ratings of a corresponding movie in our method.

2) Methods: We compare the following methods:
1) Bayesian probabilistic matrix factorization (BPMF) [6];
2) Bi-LDA [14]; 3) transitive closure based on user-to-user
similarities (TransClosure) [37]; 4) rating matrix generative
model (RMGM) [10]; and 5) ROST (sites) with different
sizes of CI . BPMF is a state-of-the-art CF method which is
often used as a baseline. Bi-LDA can be viewed as the single-
domain version of the basic ROST model. TransClosure is a
memory-based cross-domain CF method by augmenting paths
between domains. RMGM is a cross-domain CF method
based on the same rating knowledge transfer style as the
ROST models do except for disregarding user/item depen-
dence. The single-domain methods (BPMF and Bi-LDA) are
trained only on the target domain while the cross-domain
methods (TransClosure, RMGM, and ROST) are trained on
both the auxiliary and the target domains.

3) Results: We first investigate the results of ROST (sites)
in terms of number of auxiliary domains and density of the tar-
get domain in Table III. In both RMSE and MAE, we find that
the ROST models trend to perform better as more auxiliary
domains are involved. This result suggests that more related
auxiliary domains can transfer more useful rating knowledge
to the target domain. We can also observe that the performance
improves as the density of the target domain increases. This
observation implies that a denser target domain can be bet-
ter matched to the auxiliary domains to acquire more rating
knowledge. Another important result is that a more obvious
performance gain can be achieved at a lower density (e.g.,
0.3% in Table III) by incorporating more auxiliary domains.



1064 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 5, MAY 2015

Table IV reports the results of the compared methods in
terms of density of the target domain. The first observa-
tion is that ROST (|CI | = 1000) performs best in almost all
cases; and it outperforms ROST (|CI | = 100) while ROST
(|CI | = 100) further outperforms ROST (|CI | = 0). The results
imply that more item correspondences are beneficial for group-
level rating pattern matching. The second observation is that
the ROST models clearly outperform their single-domain ver-
sion Bi-LDA. These results validate that related auxiliary
domains indeed can transfer useful rating knowledge to the
target domain to alleviate its sparsity problem. RMGM and
ROST (|CI | = 0) have similar performance since they use the
same rating knowledge transfer style and have not considered
item dependence between domains. TransClosure even per-
forms worse than the single-domain method BPMF because
memory-based method is sensitive to sparsity such that it may
hardly augment paths. The last important result is that the
superiority of the ROST models is more obvious if the target
domain is relatively sparse (e.g., 0.3% in Table IV).

B. Cross-Domain CF Over Time

1) Data: We use Netflix8 to simulate cross-domain CF over
time. The entire data set comprises over 100M ratings provided
by 480K users on 17K movies between 1999 and 2005. Each
rating is associated with a time-stamp. To better investigate
how users’ interests drift over time, we conduct the following
data preparation steps.9

a) Discard the ratings before 2002 and divide the remaining
time span 2002.01 ∼ 2005.12 into 16 time-slices, each
of which corresponds to three months, and associate
each rating with a time-slice in {1, . . . , 16}.

b) Select users who registered in Netflix before 2002 and
were still active in 2005 (based on the time-stamps of
their first and last ratings). Further select users who have
more than 100 ratings in total and have at least 15 ratings
in 4 time-slices. Obtain 6784 users.

c) Select the movies which were imported into Netflix
before 2002. Further select the movies with more than
50 ratings. Obtain 3287 movies.

After data preprocessing, we obtain a 6784 × 3287 rat-
ing matrix (density 4.5%) whose elements are associated
with 16 time-slices (temporal domains). We pick the first
four temporal domains for validation and the rest twelve for
evaluation.

2) Methods: We compare the following methods:
1) Bayesian probabilistic matrix factorization (BPMF) [6];
2) Bayesian probabilistic tensor factorization (BPTF) [18];
3) Bi-LDA [14]; 4) TimeSVD++ [7]; and 5) ROST (time).
BPMF is a state-of-the-art CF method and BPTF is an
extension of BPMF by considering the temporal dimension.
Bi-LDA can be viewed as the single-domain version of the
basic ROST model. TimeSVD++ is a well-known tempo-
ral CF method that won the Netflix prize. Among them,

8http://www.netflix.com
9In the entire Netflix data set, 53.8% (or 73.7%) users were active only in

half (or one) year, 80% ratings of 53.9% (or 74.8%) users were provided in
three (or six) months. These observations suggest that the majority of users
are not suitable for investigating interest drift during a long time period.

Fig. 10. Comparison results for cross-domain CF over time (12 temporal
domains) in terms of RMSE (left) and MAE (right). The performance curves
are average results over 5 splits with standard deviations.

BPTF, TimeSVD++, and ROST (time) consider temporal
information.

3) Results: Fig. 10 plots the results of the compared
methods over 12 time-slices. The two panels plot the perfor-
mance curves in RMSE and MAE, respectively. We can see
that ROST (time) achieves the similar performance as the well-
known TimeSVD++ and outperforms other three compared
methods in all 12 temporal domains. BPTF performs better
than BPMF since it takes into account an additional temporal
factor. The reason that ROST (time) outperforms BPTF and
achieves comparable performance with TimeSVD++ might be
that ROST (time) can learn time-dependent components for
individual users/items as TimeSVD++ does while BPTF can-
not. TimeSVD++ performs a little better than ROST (time)
since it considers many effective heuristics in practice (e.g.,
time-dependent user bias). The curves of Bi-LDA and ROST
(time) are similar in shape, which implies that ROST (time) is
an enhanced version of Bi-LDA by taking into account tempo-
ral knowledge. The overall performance on the test data over
12 temporal domains indicates that ROST (time) can achieve
state-of-the-art performance.

Apart from the state-of-the-art performance, a unique abil-
ity of ROST (time) is user-interest drift tracking. We can
visualize user-interest drift based on the learning results of
ROST (time). In Fig. 11, we plot some examples of user-
group membership components (in Fig. 11(a), each subplot
shows a matrix

[
[P(1)

n ]�, . . . , [P(12)
n ]�

]
) and the accompanied

user-interest components (in Fig. 11(b), each subplot shows a
matrix

[
[P(1)

n B]�, . . . , [P(12)
n B]�

]
). Through visualization, we

can investigate how users switch their user-groups from time
to time and change their interests over movie groups accord-
ingly. These results show that ROST (time) can explicitly track
and visualize user-interest drift over time.

C. Case Study

1) Data: Finally we conduct a case study of rating
knowledge sharing over sites and time simultaneously on
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Fig. 11. (a) Examples of visualized user-group membership change (color scales indicate mixing proportions in [0, 1]), and its (b) accompanied user-interest
drift (color scales indicate expected rating values in [1, 5]).

Douban [41], which is a composite social network data set
containing user ratings on movies, music, and books. The
original data set comprises 50K users and 7.45M ratings. For
simplicity, we only investigate movies and music for three
years, and preprocess the data as follows.

a) Divide the time span 2009.01 ∼ 2011.12 into 12 time-
slices, each of which corresponds to three months.
Associate each rating with a time-slice index in
{1, . . . , 12}.

b) Select users who have more than 100 ratings in total
during the time span. Obtain 1616 users for the movie
site and 675 users for the music site.

c) Select the movies and soundtracks with more than 100
ratings in total during the time span. Obtain 1580 movies
and 741 soundtracks.

After data preprocessing, we obtain a 1616 × 1580 movie
rating matrix, say Xmovie, with density 1%, and a 675 × 741
music rating matrix, say Xmusic, with density 2.7%. The two
rating matrices are treated as two sites without user/item
overlaps.

2) Methods: We investigate our ROST model under three
configurations.

a) ROST (sites) is performed on both Xmovie and Xmusic
disregarding time-slices.

b) ROST (time) is performed on Xmovie and Xmusic, respec-
tively, incorporating time-slices.

c) ROST (sites+time) is performed on both Xmovie and
Xmusic as well as considering time-slices.

This can be enabled straightforwardly by sharing the group-
level rating patterns B over both sites and temporal domains.10

We also perform Bi-LDA [14] on Xmovie and Xmusic, respec-
tively, as the baseline.

3) Results: The overall results in Table V show that ROST
(sites) performs better than Bi-LDA due to sharing ratings
across the two movie and music sites. ROST (time) also per-
forms better than Bi-LDA because it captures users’ varying
interests. ROST (sites) performs a little better than ROST
(time) implying that sharing ratings among multiple sites

10For estimating B in this setting, we only need to count the ratings from
any sites and any time-slices into hklr in (4).

TABLE V
COMPARISON RESULTS OF THE CASE STUDY

is relatively more helpful for improving rating predictions.
As expected, ROST (sites+time) performs best due to incor-
porating both the advantages of ROST (sites) and ROST
(time).

Because both movies and music share the same group-level
rating patterns B, each movie or music has a distribution over
L = 20 item groups for T = 12 time-slices, denoted by
Qm ∈ [0, 1]20×12. Thus we can compare items by calculating
pairwise correlations based on {Qm} of all the items in Xmovie
and Xmusic. Some examples11 of top matched pairs are listed
in Table VI. Each pair is relevant in some aspects. For exam-
ple (see Table VI), the movie/music in (a) are both French
classical; the movies in (b) are both about Chinese Kung Fu;
the music/movie in (c) are both about romance memory; and
the movies in (d) are both Japanese samurai animations.

Based on the distribution matrix Qm ∈ [0, 1]20×12, we can
also investigate the drifting of item-group distribution for each
movie/music. We use ‖Q(2:12)

m − Q(1:11)
m ‖2

Fro to measure the
fluctuation of the distribution between consecutive time-slices
(where Q(1:11)

m denotes the columns 1 ∼ 11 in Qm). An inter-
esting phenomenon we observed is that most top ranked items
involve controversial topics, such as (see Table VII) homosex-
uality (a), scientific ethics (d), and politically sensitive issues
(g). In particular, ROST (sites+time) obtains 0.847 and 0.806
in RMSE for predicting the ratings of (a) and (g), respectively,
compared to 0.883 and 0.840 obtained by Bi-LDA. The per-
formance gain of ROST (sites+time) on (a) and (g) is around
−0.035 in RMSE while that on all the items is only −0.028
in RMSE (see Table V).

11The numbers in [ ] are movie/music IDs in www.douban.com. One can
find the webpage of “La Haine (1995)” by searching “douban+1306449.”
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TABLE VI
SOME EXAMPLES OF THE TOP 30 MATCHED ITEM PAIRS

TABLE VII
SOME EXAMPLES OF THE TOP 20 FLUCTUATING ITEMS

The above case study validates our hypothesis that user rat-
ings are indeed constantly evolving, and item-groups across
related sites are also highly correlated. Leveraging rating
knowledge from related sites and further capturing user rating
evolution over time, like ROST (time) and ROST (sites+time)
do, provide effective solutions to tackle rating sparsity and
user-interest drift for collaborative filtering in highly dynamic
user environments.

VIII. CONCLUSION

In this paper, we proposed a unified framework for accom-
modating various cross-domain CF problems. Based on this
unified framework, cross-domain CF over sites and time can
be formulated as the same problem, that is, to learn from a
set of related rating matrices by sharing group-level rating
patterns and imposing user/item dependence across domains.
We instantiated the proposed framework by developing a
Bayesian generative model, say ROST, which can generate
and predict ratings over the site-time coordinate system for
different sites at different time. We also applied ROST (sites)
and ROST (time) to address two challenges in real-world
CF-based recommender systems, rating sparsity problem and
user-interest drift problem, respectively. The experiments on
a number of real-world recommendation data sets validated
the effectiveness of the proposed models in addressing these
two challenges. Our case study on simultaneously sharing
ratings over both sites and time-slices illustrated some inter-
esting behaviors of items revealed by the ROST models. Our
framework open the opportunities to consider additional types
of CF domains, such as contexts, to formulate complicated
cross-domain CF problems.

In the future work, we will study how to make our
ROST models selectively share useful rating knowledge across
heterogeneous domains. To this end, we can introduce a link
function to each domain for weighting and transforming rat-
ing patterns for sharing across heterogeneous domains. We will
also extend the current Bayesian models to Bayesian nonpara-
metric models which can automatically choose the numbers
of latent user/item groups without empirical selection.

APPENDIX

GIBBS SAMPLING FOR ROST

According to the generative process of ROST described in
Section IV, we have

P
(

X(t)
nm|zU(t)

nm , zI(t)
nm , φ

)
= φ

zU(t)
nm ,zI(t)

nm ,X(t)
nm

P
(
φk,l|β

) = 
 (Rβ)∏
r 
 (β)

∏
r

[φk,l,r]β−1

P
(

zU(t)
nm |θU(t)

)
= θ

U(t)

n,zU(t)
nm

P
(
θU(t)

n |αU)
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KαU )

∏
k 


(
αU )

∏
k

[
θ
U(t)
n,k
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(

zI(t)
nm |θI(t)
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m,zI(t)
nm
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(
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m |αI)
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(
LαI)
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(
αI)
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l

[
θ
I(t)
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]αI−1

where 
(·) denotes Gamma function.
By plugging the above equations into the joint distribution

of all the random variables in (2), we have

P
(
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∝
∏
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where 1(·) denotes the indicator function.
By marginalizing out {φ, θU , θI}, we have
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For Gibbs sampling, we need to compute the conditional

distribution of {zU(t)
nm , zI(t)

nm } given the rest of the latent variables
{zU¬(nmt), zI¬(nmt)}

P
(

zU(t)
nm , zI(t)
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=
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The above equation can be further simplified by treating the
terms not dependent on (k, l) as constants
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which is the conditional distribution in (3) for Gibbs sampling.
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