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Abstract—In this paper, we advance graph classification to
handle multi-graph learning for complicated objects, where each
object is represented as a bag of graphs and the label is only
available to each bag but not individual graphs. In addition, when
training classifiers, users are only given a handful of positive bags
and many unlabeled bags, and the learning objective is to train
models to classify previously unseen graph bags with maximum
accuracy. To achieve the goal, we propose a positive and unla-
beled multi-graph learning (puMGL) framework to first select
informative subgraphs to convert graphs into a feature space.
To utilize unlabeled bags for learning, puMGL assigns a con-
fidence weight to each bag and dynamically adjusts its weight
value to select “reliable negative bags.” A number of represen-
tative graphs, selected from positive bags and identified reliable
negative graph bags, form a “margin graph pool” which serves
as the base for deriving subgraph patterns, training graph classi-
fiers, and further updating the bag weight values. A closed-loop
iterative process helps discover optimal subgraphs from positive
and unlabeled graph bags for learning. Experimental compar-
isons demonstrate the performance of puMGL for classifying
real-world complicated objects.

Index Terms—Graph, multi-instance (MI), subgraph, features,
positive and unlabeled (PU) learning, classification.

I. INTRODUCTION

LEARNING and classifying objects have been commonly
used for many applications, such as text mining [1], [2]

and image recognition [3]. For learning purposes, objects are
required to be represented as instances by using feature vector
and class label to denote characteristics and categorizes of the
objects, respectively. This representation has been commonly
used to represent objects with simple features and class labels,
such as using bag-of-word features and a class label (e.g., pos-
itive versus negative) to represent a news article for automatic
news categorization [4].
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Fig. 1. Multi-graph learning for content-based image annotation. Each image
(i.e., bag) consists of a number of regions (with each region corresponding to
one graph for preserving local structure of the region). The compartments in
each region (i.e., nodes in graphs) are superpixels [8].

In reality, simple feature and class representation may be
inadequate for certain applications, which involve objects with
variant characteristics or complex behaviors. For instance,
research in drug discovery has observed that activities of
molecules may vary significantly and show different behav-
iors in response to changing environments. Therefore, for a
specific molecule, its feature values may vary under differ-
ent experimental conditions. An efficient way to accommodate
such changing behaviors and characteristics is to represent
the molecule as a bag of instances with each instance rep-
resenting molecule’s behavior in one single experiment. If,
for a number of experiments, the molecule demonstrates pos-
itive/interested behavior, the bag will be labeled as positive.
If, for all experiments, the molecule does not exhibit posi-
tive behaviors, the bag will be labeled as negative. Similarly,
in content-based image annotation, an image can be repre-
sented as a bag with each region inside the image denoting
an instance inside the bag. If an image region contains an
object of interest (e.g., a leopard), the image will be labeled as
positive.

In order to tackle the above mentioned complications,
multi-instance (MI) is emerged as a new classification tool [5]
with each object provided for learning (or classifying) being
a bag of instances. The label is only available for the bag
(i.e., an instance set) but not for each individual instance. For
MI learning, existing methods [6], [7] require that training
samples are provided and represented in vector space, which
inherently prohibits them from being applied to complicated
objects containing structure information.

Structure dependency exists in many applications and plays
crucial role for describing content and structure of the objects.
Take content-based image annotation in Fig. 1 as an example.
For traditional MI learning, the whole image is represented as
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a bag, with region #2 being treated as a single instance rep-
resented by using visual features, such as color histogram or
texture. In other words, although region #2 contains multiple
subregions (i.e., “tree,” “grass,” and “leopard”) with special
structures and layout, existing MI leaning approaches discard
the structure information and only consider visual features
of the whole region for learning. Instead, a more effective
data representation is to explicitly explore complex relation-
ships among the data by using effective data structures, such
as graphs, to represent data for learning. In this case, an
image region can be naturally represented as a graph in order
to preserve and represent local structure information inside
the region. This representation is more accurate than simply
treating the whole region as one feature instance.

Another prerequisite of existing MI learning methods is that
they require both positive and negative bags being provided.
In reality, it is common to have only positive bags to describe
users’ interests and there is no negative bags, so learning is
supported by a handful of positive bags and some unlabeled
bags, which may be positive, negative, or even irrelevant to
the underlying learning task. For example, in image retrieval,
query images provided by users can be considered as positive
bags to express his/her retrieval interest. During the search
process, users might click one or multiple images interesting
to them. The clicked images can be regarded as positive bags
whereas majority images will remain unclicked and therefore
being unlabeled bags. In this case, we do not know whether
unclicked images are of interest to users or not. In other words,
only positive bags (i.e., clicked images) and unlabeled bags
(i.e., unclicked images) are available for learning.

The above observations raise a special learning setting
where only positive and unlabeled (PU) graph bags exist for
learning. In this paper, we refer to this problem as posi-
tive and unlabeled multi-graph learning (puMGL). Indeed, to
date, existing graph classification approaches [9]–[12] mainly
consist of global distance-based approaches and local sub-
graph feature-based methods. For the former, including graph
kernels, graph embedding, and graph transformation-based
methods, they directly work on the graph data in order to
calculate graph similarity. In contrast, the latter translates a
graph into a feature-vector instance by using subgraph pat-
terns mined from the training graph data set. After that,
graph classification becomes a traditional learning task where
existing supervised learning approaches [e.g., support vector
machine (SVM)] can be adopted to train the models.

For existing graph classification methods, a label is assigned
to each graph, so they cannot be directly applied to multi-
graph setting where the label is only available for a bag
(i.e., graph set). On the other hand, traditional MI learning
requires data to be represented in vector space, but cannot
tackle graph data. Accordingly, puMGL is facing the following
main challenges.

1) Multi-Graph Representation: Because graphs do not
have feature values required for derive learning mod-
els, an important process to deal with graph data is
to explore informative subgraphs to represent them into
vector space. In addition, traditional MI learning meth-
ods are incapable of handling structure data (e.g., graph).

Therefore, we need to design a novel framework to
represent complicated objects for classification.

2) Unlabeled Bags: Because our problem setting only con-
tains PU bags and there is no negative bag, in order to
make existing MI or supervised learning methods use-
ful for multi-graph classification, we need solutions to
identify “reliable negative” bags from unlabeled bags for
learning.

3) Uncertainty Inside Bags: For multi-graph with PU bags,
the uncertainty inside bags is twofold.

a) The genuine labels of graphs inside a positive bag
are unknown, so existing subgraph feature mining
approaches are unable [13], [14] to extract sub-
graph features from multi-graph bags because they
require each graph to be explicitly labeled.

b) The identified reliable negative bags may be
incorrect (i.e., a negative bag may contain pos-
itive graph), and contain incorrect bag labels.
Accordingly, an effective multi-graph learning
algorithm needs to take such uncertainty into con-
sideration.

When PU graph bags are provided for learning, because
genuine labels of graphs in positive bag are unknown, a
straightforward graph-level solution for multi-graph learning
is to propagate the bag label to graphs inside each bag. In this
case, the problem becomes “PU graph classification,” which
has been addressed by existing research [15]. Unfortunately,
simple label transmission for positive bags may result in incor-
rect class labels for negative graphs. Alternatively, one can
first explore some frequent subgraph features to represent the
graphs into vector space, and represent each graph bag as
one instance (i.e., a bag-level solution). By doing so, existing
PU learning algorithms [16], [17] can be applied to solve the
problem. More specifically, some initially identified “reliable
negative graph bags,” which will be iteratively updated, are
used to help the positive bags train the MI classifier. However,
this type of bag-level strategy is still inefficient mainly because
their frequent subgraph features are selected without taking
multi-graph bag constraints and uncertainty inside the bag into
consideration [13], [14]. As a result, their subgraph features
may not be discriminative for classifying multi-graph bags and
result in suboptimal classification performance.

To solve the above challenges, we put forward a novel
puMGL framework, which relies on an iterative discriminative
subgraph-based learning model for maximum classification
accuracy. PuMGL has three notable technical contributions:
1) a graph feature scoring algorithm with capability of prun-
ing the search space; 2) a margin graph pool (MGP)-based
approach to solve the dual uncertainty for graphs in positive
bags and reliable negative graph bags selected from unlabeled
bags; and 3) a multi-graph learning algorithm with only PU
graph bags. Experimental comparisons on real-world learning
tasks confirm the effectiveness of the proposed designs.

The remaining part of this paper is structured as follows.
Section II reviews related works. Preliminary and problem
statement are addressed in Section III. Section IV outlines
the proposed puMGL framework, followed by experiments in
Section V. We conclude the paper in Section VI.
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II. RELATED WORKS

MI learning was first proposed by Dietterich et al. [5] for
drug activity prediction, and later applied to applications [18],
such as image classification, text categorization, web mining,
and 3-D object recognition [19]. In summary, existing MI
learning algorithms can be broadly categorized into two major
groups.

1) Upgrading existing single-instance-based learning algo-
rithms to support MI learning. Examples include MI
logistic regression (MILR) learning [20].

2) Specifically designed MI learning algorithms which
directly utilize bag constraints to reorganize instances
inside each bag into specific formats for learning [6].

For all existing MI learning methods, one prerequisite is
that their training data must contain both positive and neg-
ative bags. In reality, many applications only have positive
bags to indicate users’ learning interests and remaining bags
are unlabeled (which may be positive, negative, or irrelevant
to the learning task). This problem is referred to as PU learn-
ing in the literature. One popular solution to tackle unlabeled
data is the heuristic labeling approach [21], which follows
a two-step strategy: 1) select a number of reliable negative
instances from the unlabeled set by using various techniques,
such as the expectation maximization [22] and 2) the iden-
tified reliable negative instances, together with the positive
samples, are combined to train traditional classification mod-
els. Density-estimation-based PU learning approaches estimate
the conditional probability of the positive class for predica-
tion [23], [24]. For these methods, some probability density
functions, such as marginal probability of the positive class
or the probability of the positive instance, are estimated as
an intermediate learning step. In reality, the estimation of
conditional probability densities is a rather challenging task,
especially with a very limited number of labeled data [23].

For existing MI learning algorithms, they require instances
in each bag to be represented in a tabular feature-vector for-
mat, which makes them incapable of handling graphs. To
date, existing graph classification methods mainly rely on
two types of approaches, including: 1) global distance-based
approaches, such as graph kernel or graph embedding [25] and
2) local subgraph pattern features-based methods, which find
a feature representation for graphs by using subgraph patterns
discovered from the graph set. Compared to distance-based
methods, subgraph feature-based approaches can explicitly
indicate which substructures (a portion of the graph) con-
tribute to the classification. The most popular subgraph feature
evaluation criterion is frequency. For example, gSpan [26]
uses a lexicographic order-based coding to discover frequently
connected subgraphs that can be used as features. Recently,
Zhao et al. [15] proposed to use PU graphs for learning.

For all existing graph classification methods, the object for
learning is a single graph, so they cannot be directly applied
to multi-graph setting where an object to be classified is a
graph bag (i.e., a graph set), which is also different from
existing graph-based learning using graph-regularization on
vectors [27], [28]. For existing MI learning techniques, the
classification object is represented in feature-vector space, so

they cannot be applied to graphs. This naturally raises the
necessity of designing new methods to handle bags containing
PU graph bags.

III. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first introduce important notations and
definitions, and then state our research problem.

Definition 1 (Connected Graph): A graph is represented as
G = (V, E,L, l), where V is a set of vertices V = {v1, . . . , vnv},
E ⊆ V × V is a set of edges, and L is the set of labels for the
vertices and edges. l : V ∪ E → L is the function assigning
labels to the vertices and edges. A connected graph is a graph
such that there is a path between any pair of vertices.

Definition 2: (Graph Bag): Denote B = {B1, . . . , Bn} a set
with n bags, and Bi is the ith bag in the set, which can be posi-
tive B+i and unlabeled Bu

j . Let Y = [y1, . . . , yn], where yi is the
label of Bi. Generally, a positive and a negative bag’s label can
be denoted by yi = +1 and yi = −1, respectively. In a puMGL
setting, an unlabeled bag Bu

j ’s label is denoted by yj = 0.
The collections of PU bag sets can be denoted by B+ and Bu,
respectively. During the learning process, the algorithm may
identify a set of unlabeled bags to form a negative bag set,
which is denoted by B−.

We use Gi,j (Gj for abbreviation) whose label is yj to denote
the jth graph in the bag Bi = {Gi,1, . . . , Gi,ni}. To tackle unre-
liable bag labels in puMGL setting (challenge #3 in Section I),
we use a weight value wi to indicate the label confidence of
each bag Bi. So for a positive bag B+i , its weight value wi is
1 (because it is genuinely positive), whereas for an identified
negative bag B−j , its weight value wj ∈ (0, 1], with a higher
wj value indicating that Bj is more likely being negative.

Definition 3: (Subgraph): Let G = (V, E,L, l) and g =
(V ′, E′,L′, l′) be two graphs. g is a subgraph of G (g ⊆ G),
iff there exists an injective function ϕ : V ′ → V subject to:
1) ∀v ∈ V ′, l′(v) = l(ϕ(v)) and 2) ∀(u, v) ∈ E′, (ϕ(u), ϕ(v)) ∈
E and l′(u, v) = l(ϕ(u), ϕ(v)). If g is a subgraph of G, G is a
supergraph of g.

Definition 4: (Subgraph Feature Representation): Denote
Sg = {g1, . . . , gs} a set of subgraphs discovered from a given
graph set G. For each graph Gi, we use a subgraph feature
vector xi = [xg1

i , . . . , xgs
i ]	 to represent Gi in graph domain,

where xgk
i = 1 iff gk is a subgraph of Gi (i.e., gk ⊆ Gi) and

xgk
i = 0, otherwise.

Given a set of bags B contains a number of positive B+ and
unlabeled Bu graph bags, puMGL learning aims to build a pre-
diction model from B to accurately predict labels of previously
unseen bags.

IV. POSITIVE AND UNLABELED MG LEARNING

A. Overall Framework

The proposed puMGL framework is shown in Fig. 2. In
summary, puMGL uses the following three major procedures
to tackle the main challenges discussed in Section I.

1) Embedding Subgraph Feature Exploration: In order to
explore informative subgraph patterns from the graph set
in MGP, we propose a confidence weight value embed-
ding approach (detailed in Section IV-B2) to identify
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Fig. 2. Conceptual view of the puMGL framework: given training multi-graph set consisting of PU graph bags, each unlabeled bag is initially assigned a
confidence value (i.e., weight) in order to establish the MGP for further learning. During the learning process, (b) some informative subgraphs are explored
to represent graphs in MGP and training set by (a) utilizing the proposed confidence weight embedding approach. After that, a classifier is built based on the
MGP (in vector feature space) to (c) update the weight values of unlabeled bags. Accordingly, (d) some “reliable negative bags” are identified from unlabeled
set to (e) help update the graphs in MGP, which consists of the “least negative graph” from the unlabeled set and those “most positive graph” from the
positive set. The quality of the reliable negative bags and the corresponding graphs in MGP are continuously improved through the iterative process until the
algorithm converges.

discriminative subgraph patterns to represent graphs in
multi-graph bags for learning.

2) Margin Graph Pool: Because there is no negative bag
for training multi-graph classification models, after some
graph bags are identified as reliable negative bags, a
maximum margin strategy is proposed to select most
positive subgraphs from the positive set, and select
least negative subgraphs from identified reliable negative
graph bags, respectively, to form MGP. Because MGP
contains signature patterns with respect to positive and
identified negative bags, it will help identify decision
boundaries for separating positive bags.

3) Unlabeled Bag Weight Updating: In order to prop-
erly identify negative bags from unlabeled bags, every
unlabeled bag is assigned an initial confidence weight
that will be used to identify the reliable negative bags.
Obviously, the initial weight is inaccurate, so the weight
updating process will be carried out to improve the
quality of identified negative bags.

B. puMGL Learning

In order to tackle the multi-graph learning problem with
only PU graph bags, we need to consider the following two
research subproblems: 1) how to design an effective approach
to construct MGP, which contains graphs with relatively reli-
able labels for learning; and 2) how to design a subgraph
feature evaluation criterion to assess subgraphs discovered
from MGP to represent graphs for learning.

The above two problems are closely related to each other.
In order to build the MGP, the reliable negative bags should be
first identified. In other words, MGP needs reliable negative
bags to be selected from the unlabeled bag set. Nevertheless,
the reliable negative graph bags are selected based on sub-
graph features. On the other hand, the discriminative power
of subgraph features, which is used to represent graphs into
vector space, is directly dependent on the quality of graphs in

the MGP. Accordingly, an optimization framework is proposed
to alternately optimize the subgraph feature selection and the
selection of reliable negative graph bags.

1) Optimization Framework: Assume that each bag Bi from
the training bag set B uses wi to represent its confidence
weight. The collected graphs in MGP, which can be denoted
by G = {Ĝ1, . . . , Ĝj, . . . , Ĝp} and p indicates the number of
graphs in the MGP, can be obtained by using the weight values
of the bags. Each Ĝj in G has a weight ŵj, which is deter-
mined by the related bag. Let Sg denote the total subgraph set
explored from graph set G. The proposed learning task aims
to extract a number of discriminative subgraphs (i.e., features)
g, (g ⊆ Sg) to represent graphs, and also uses the confidence
weight vector ŵ to build the MGP for training classifiers. To
achieve this goal, we use an objective function J (g, ŵ) in (1)
to estimate the subgraph feature dependency of g given the
weight ŵ. In (1), |·| denotes the cardinality of a set, and m
denotes the number of subgraphs selected from Sg

(
g�, ŵ�

) = arg max
g⊆Sg,ŵi∈(0,1]

J (
g, ŵ

)
s.t. |g| ≤ m. (1)

In order to maximize the objective function J (g, ŵ), we
can utilize the graph confidence weight to find subgraph
features which maximally separate graphs in MGP. To this
end, the subgraph feature set should comply to the following
constraints.

1) Weighted Must-Link: For two graphs selected from the
MGP, if they have the same label, they should have a
high similarity in the feature space. In addition, consider-
ing each graph in puMGL is assigned with a confidence
weight, denoted by ŵi, the subgraph features should
make sure that graphs with similar weight values are
close to each other.

2) Weighted Cannot-Link: Graphs with different labels
should be separated from each other, as far as possi-
ble. Meanwhile, two graphs with different classes but
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Fig. 3. Confidence weight embedding aims to 2 discover optimal subgraphs
to 1 represent graphs to a 3 new space with the following constraints:
graphs with the same label are close to each other, especially for graphs with
similar confidence weights (e.g., two blue balls with their flags 3 and 4),
and graphs with different labels are separated from each other, especially
for graphs with similar confidence weights (e.g., two balls with their flags 1
and 3). The process starts from (a) use instance distributions (b) to discover
optimal subgraphs, and (c) further represents (d) graphs in vector space.

similar weight value should also be separated far way
from each other [29], [30].

Combining the above constraints, the subgraph feature
estimation J (g, ŵ) is formulated as

J (
g, ŵ

) = 1

2

∑

i,j

Kg

(
Ĝi, Ĝj

)
Ŵi,j. (2)

In (2), Ŵi,j embeds weight value information between Ĝi

and Ĝj selected from MGP. Kg(Ĝi, Ĝj) calculates the graph
distance between Ĝi and Ĝj, with subgraph feature set g being
used to represent each graph in the vector space [detailed
in (3)].

The above optimization problem can be treated as a nonlin-
ear nonconvex issue, which is difficult to solve. An alternative
approach is to optimize the two variables g and ŵ in an alter-
native way. In the following, we first explain subgraph feature
g selection and weight updating ŵ, and then combine two parts
to form a closed-loop framework.

2) Subgraph Features: In order to describe subgraph fea-
ture exploration, we introduce the following notations in the
description.

1) X̂ : X̂ can be denoted by X̂ = [ x̂1, . . . , x̂p] =
[ f g1

, . . . , f gs
]	 ∈ {0, 1}p×s, which indicates the fea-

ture representation matric of the graphs in MGP, with
a row vector representing a single graph representation.

Besides, f gk
= [ f Ĝ1

gk , . . . , f
Ĝp
gk ]	 (gk ∈ Sg) is an indicator

vector based on MGP, i.e., {Ĝ1, . . . , Ĝp}, where f Ĝi
gk = 1

iff gk ⊆ Ĝi and f Ĝi
gk = 0, otherwise.

2) A and B: A = {(i, j)|yiyj = 1} represents the pairwise set
under weighted must-link constraint from G with B =
{(i, j)|yiyj = −1} indicating pairwise set for weighted
cannot-link constraint.

a) Confidence weight embedding: In order to take full
advantage of the confidence weight information of graphs,
we propose an embedding strategy, as shown in Fig. 3. In
summary, the embedding process is to utilize weighted label
distributions to help find informative subgraph features to
represent graphs.

In order to calculate Ŵi,j in (2), we employ a radial basis
kernel function to estimate the Ŵi,j = 〈ŵiyi, ŵjyj〉. Moreover,

Kg(Ĝi, Ĝj) can be formulated as

Kg =
{
−∥

∥Dgx̂i −Dgx̂j
∥
∥2/|A|, yiyj = 1∥∥Dgx̂i −Dgx̂j

∥∥2/|B|, yiyj = −1.
(3)

In (3), Dg (i.e., a diagonal matrix) can be represented
as diag(d(g)), where diagonal elements indicate subgraphs g
which are selected from the set Sg for further graph represen-
tation. d(g)i = I(gi ∈ g) denotes the vector representation of
each graph by using an indicator function I(·), which returns
value 1 iff the condition (i.e., gi ∈ g) is satisfied. In addi-
tion, we use M = [Mij]p×p as a confidence weight embedded
matrix to the conversion of formulas, where Mij = {−Ŵi,j/|A|,
yiyj = 1; Ŵi,j/|B|, yiyj = −1}. Accordingly, (2) can be
rewritten as follows:

J (
g, ŵ

) = 1

2

∑

i,j

∥∥Dgx̂i −Dgx̂j
∥∥2

Mi,j

= tr
(
D	g X̂ (D−M)X̂	Dg

)

= tr
(
D	g X̂LX̂	Dg

)

=
∑

gk∈g

f	gk
Lf gk

(4)

where D, as a diagonal matrix, is generated from M with
Di,i =∑

j Mij. The operator tr(·) is the trace of a given matrix.
Moreover, L is a Laplacian matrix, denoted by [Li,j]p×p =
D−M. By using function z(gk, L) to denote the f	gk

Lf gk
, the

original optimization problem in (1) can be translated to max-
imize the sum of z(gk, L) with respect to optimal subgraph
set g as

max
g

∑

gk∈g

z(gk, L) s.t. g ⊆ Sg, |g| ≤ m. (5)

3) Subgraph Exploration:
Definition 5 (puScore): Given a PU graph bag set B, with

M denoting the related confidence weight embedding matrix.
L = D−M is a Laplacian matrix. For a given subgraph gk ∈ Sg,
its informativeness score can be estimated as follows:

r(gk) = z(gk, L) = f	gk
Lf gk

. (6)

In (6), L is a positive semi-definite Laplacian matrix [31],
and f gk

is a nonnegative vector with binary value 0 or 1. For
a given subgraph gk ∈ Sg, the formula r(gk) = f	gk

Lf gk
is

greater than or equal to zero. In this case, the solution to the
optimization problem in (5) is to select top-m subgraph fea-
tures g = {g1, . . . , gm} from Sg according to their descending
order [e.g., r(g1) ≥ r(g2) ≥ · · · ≥ r(gs)] of the subgraph
puScore.

One straightforward solution to identify the final optimal
subgraph set is to employ an exhaustive enumeration strat-
egy, which enumerates all subgraphs of a given graph and
calculates its puScore for ranking. Nevertheless, the number
of subgraph candidates increases exponentially with respect to
the size of the search space (i.e., the graph set collected from
the graph bag set). The huge runtime consumption makes any
greedy subgraph searching methods impractical for real-world
learning tasks. Accordingly, we apply gSpan [26], which is
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an efficient subgraph mining approach based on depth-first
search (DFS) strategy, to find subgraph feature candidates.
gSpan establishes a lexicographic order to encode each graph,
through which all frequent subgraphs are discovered. Some
recent graph classification approaches [13], [31] incorporate
constraints to prune the search space of gSpan. In this paper,
we derive a puScore upper bound so as to prune the DFS code
tree (i.e., subgraph searching space) as:

Theorem 1 (Upper Bound of puScore): Given two sub-
graphs gk, gk

′ ∈ Sg, g′k is a supergraph of gk (i.e., g′k ⊇ gk).
The puScore value g′k (r(g′k)) is bounded by r̂(gk), i.e.,
r(g′k) ≤ r̂(gk), where r̂(gk) is defined as follows:

r̂
(
g′k

) �= f	gk
L̂f gk

(7)

where the matrix L̂ is defined as L̂ij
�= max(0, Lij).

Proof:

r
(
g′k

) = f	g′k Lf g′k =
∑

i,j:Ĝi,Ĝj∈G(g′k)

Lij (8)

where G(g′k)
�= {Ĝj|g′k ⊆ Ĝj, 1 ≤ j ≤ p}. Since gk is the

subgraph of g′k (i.e., g′k ⊇ gk), according to the anti-monotonic

property, we have G(g′k) ⊆ G(gk). Besides, L̂ij
�= max(0, Lij),

so L̂ij ≥ Lij and L̂ij is greater than or equal to zero. Thus, (8)
can be rewritten as

r
(
g′k

) =
∑

i,j:Ĝi,Ĝj∈G(g′k)

Lij ≤
∑

i,j:Ĝi,Ĝj∈G(g′k)

L̂ij

≤
∑

i,j:Ĝi,Ĝj∈G(gk)

L̂ij = f	gk
L̂f gk
= r̂(gk). (9)

Thus, for any g′k ⊇ gk, r(g′k) ≤ r̂(gk).
From (6), we can obtain that if r̂(gk) ≤ τ , for any g′k ⊇ gk,

we have r(g′k) ≤ r̂(gk) ≤ τ . This upper bound can be utilized
to prune DFS code tree in gSpan by using branch-and-bound
pruning. Together with the proposed confidence embedding
discussed in Section IV-B2a, the complete subgraph feature
exploration approach is listed in Algorithm 1. In summary,
the algorithm enumerates subgraph features by searching the
whole DFS code tree. If a current subgraph gk is infrequent,
both gk and its related subtree will be discarded (lines 4 and 5).
If not, the puScore of the gk [i.e., r(gk)] will be calculated
based on the matrix L, which embeds the confidence weight
distribution information. If r(gk) is greater than the minimum
puScore in g as τ , or the size of g is less than m (i.e., g is not
full), gk will be selected as one item in g (lines 8 and 9). If
g overflows, one subgraph with the smallest puScore value is
removed to maintain its size (lines 10 and 11). Subsequently,
the upper bound pruning module will check if r̂(gk) is less
than the threshold τ . If so, it means that the puScore value of
any supergraph g′k of gk (i.e., g′k ⊇ gk) will not be greater than
τ . Therefore, the subtree rooted from gk is safely pruned. If
r̂(gk) is indeed greater than the threshold τ , the search process
will sequentially visit nodes from the subtree of gk (lines 13
and 14).

Algorithm 1 ESE: Embedding Subgraph Exploration
Input:

G: A graph set in MGP with confidence weight ŵ
min_sup: The threshold of the frequent subgraph;
m: the number of subgraph features to be selected;

Output:
g = {g1, · · · , gm}: A set of subgraph features;

1: g = ∅, τ = 0;
2: while Recursively visit the DFS Code Tree in gSpan do
3: gk ← current visited subgraph in DFS tree of G ;
4: if freq(gk) < min_sup, then
5: return;
6: L← Apply ŵ to G and obtain the embedding matrix;
7: r(gk)← Apply L to compute puScore of subgraph gk;
8: if |g| < m or r(gk) > τ , then
9: g← g

⋃
gk;

10: if |g| ≥ m, then
11: g← g/arg mingi∈g r(gi);
12: τ = mingi∈g r(gi);
13: if r̂(gk) ≥ τ , then
14: Depth-first search the subtree rooted from node gk;
15: end while
16: return g;

4) Confidence Weight Optimization: By following the
above process, the optimal subgraphs g can be obtained. In
the next step, we resolve the second research subproblem to
optimize the confidence weight ŵ, which is identified by the
output probability from the classifier built on the MGP (we
use SVMs in our experiments). The technical details about
the construction of MGP will be explained in the subsequent
section, followed by the procedure of bag confidence weight
optimization.

a) Margin graph pool: In the proposed puMGL frame-
work, a number of most positive graphs from positive bag set
and least negative graphs from reliable negative graph bag
set are selected to form an MGP, through which the clas-
sifier is built to distinguish positive and negative bags. The
motivation of constructing MGP is the margin concept, where
samples near to the decision boundary play an important role
for differentiating samples in different classes. Specifically,
a confidence weight will be assigned to each unlabeled bag,
through which some reliable negative bags are identified to
construct MGP. During this process, a core issue is to find
proper models to assess graphs in the MGP. Fortunately, the
distribution in negative bag set is known, because graphs in
a negative bag are genuinely negative in the multi-graph set-
ting. Accordingly, a weighted kernel density estimator [32] is
employed to model the distribution of negative instances (rep-
resentation by a given subgraph set) in reliable negative bags
as follows:

p
(
x|X−) = 1

∑
i n−i

∑

i,j

K
(

wxx, wjx
−
i,j

)
(10)

where wx represents the weight value of the bag which con-
tains graph x. x−i,j indicates the graph representation of the jth
graph in the ith reliable negative bag with n−i graphs. K, as
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Algorithm 2 CWO: Confidence Weight Optimization
Input:

B = B+ ∪Bu: An graph bag data set;
g: subgraph features; G: A graph set inMGP;

Output:
ŵ: A set of confidence weight for MGP;
// Unlabeled Bag Weight Optimization:

1: X̂ ← Apply g to G to obtain subgraph feature vectors.
2: H← Apply X̂ to build the classifier.
3: for each bag Bi in Bu do
4: for each graph Gi,j in Bi do
5: xi,j ← Apply g to Gi,j to obtain its feature vector.
6: pi,j ← Apply H to xi,j and estimate probability;
7: end for
8: wi ←∑ni

j pi,j/ni;
9: end for

// MGP Weight Optimization:
10: B− ← Apply w to Bu to form reliable negative bag set.
11: D← Generate a distribution from B− via Eq. (10).
12: ŵ← Apply D to B+, B− and update G via Eq. (11).
13: return ŵ;

a Gaussian kernel function, is adopted to estimate the sim-
ilarity between two instances (i.e., the vector representation
of two graphs). X− denotes the set, consisting of the graph
feature representation vectors in reliable negative bags B−.
Accordingly, the most positive pattern or least negative pattern
xρ

i in MGP can be formulated as

xρ
i = arg min

xi,j∈Xi,j=1,...,ni
p
(
xi,j|X−

)
(11)

where Xi denotes the feature vector set collected from all the
graph representation using subgraph set g in the ith bag.

b) Confidence weight updating: Arguably, not all initial
subgraphs have good discriminative power, because graphs in
MGP set are based on the initial random weight values. As the
learning process continues, the underlying subgraph feature set
will have a better quality, so the weights of all graphs in the
unlabeled set should be updated according to the re-evaluation
results derived from the classifier trained from MGP. This is
because a few unlabeled graphs, which are further selected to
be reliable negative set, may not be negative because subgraph
features are not reliable in a previous iteration. In this case,
the confidence weight updating strategy will make the reliable
negative set more accurate, through which the quality of mined
subgraph feature set can also be improved. In our problem
setting, the positive bags are given (i.e., the related conference
weight value is set to 1.0), so only the weights of unlabeled
bags need to be evaluated. By doing so, we can ensure that
reliable negative set will have continuously improved quality,
and also avoid introducing noise to positive bags.

For a bag containing a set of graphs, the following strategy
will be designed to calculate its probability of being negative.
We first utilize the approach in [15] to calculate the probability

Algorithm 3 puMGL: PU Multi-Graph Learning
Input:

B = B+ ∪Bu: An graph bag data set;
min_sup: The threshold of the frequent subgraph;
m: the number of subgraph features to be selected;

Output:
The target class label yt of a test bag Bt.
// Training Phase:

1: Set the labels of the unlabeled bags Bu
j to be -1;

2: G ← Initialize MGP G by randomly selecting one graph
from each positive bag Bi ∈ B+ and each unlabeled bag
Bj ∈ Bu, respectively;

3: while not convergence for ŵ do
// Optimal Subgraph Features:

4: g← ESE(m, min_sup,G, ŵ); //Algorithm 1
5: G ← Apply g to represent the graphs in MGP G.

// Confidence Weight Optimization:
6: ŵ← CWO(B, g,G); //Algorithm 2
7: end while
8: g∗ ← g; ŵ∗ ← ŵ; // Optimal subgraphs and weights.

// Test Phase:
9: H∗ ← Apply g∗ and ŵ∗ to G to build the classifier.

10: xt,i ← Apply g∗ to each Gt,i in Bt to obtain its vector.
11: Yt ← Apply H∗ to each xt,i to predict its bag label;
12: return Yt;

of each graph in the bag by tackling the optimization problem

min
p

k∑

i

∑

j:j �=i

(
rρi,ρj pρj − rρj,ρipρi

)2

s.t. pρi ≥ 0,
∑

i

pρi = 1 (12)

where k represents the class number of the training set. In
puMGL setting, k is set to 2, i.e., positive (ρ1 = +1) and
negative (ρ2 = −1). rρi,ρj = P(y = ρi|y = ρi or ρj) denotes
the pairwise class probabilities of ρi and ρj. Besides, pρi is
the probability estimation of ρi. The value of pρ2 is used as the
confidence weight value for each graph in unlabeled set.

For a graph Gi,j ∈ Bu
i , its probability of being classified

as negative is denoted by pi,j. Meanwhile, the corresponding
confidence weight for the bag Bi � Gi,j can be calculated as
wi = ∑ni

j pi,j/ni (i.e., the confidence bag weight w update).
Accordingly, unlabeled bags with high confidence weights are
considered as reliable negative bags to further construct MGP.
In addition, the weight vector consisting of all confidence
weights ŵi for each graph collected from MGP is denoted
by ŵ. Algorithm 2 outlines the confidence weight optimiza-
tion with two major parts including unlabeled bag confidence
weight optimization followed by MGP updating.

C. puMGL Algorithm

We can now utilize solutions in Sections IV-B2 (subgraph
features) and IV-B4 (confidence weight optimization), respec-
tively, to optimize the evaluation criterion in (2). The complete
procedures of the proposed puMGL framework are listed in
Algorithm 3. For initialization, the labels of unlabeled bags
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are set to be −1, and the affiliated confidence weights wj are
randomly set within (0, 1]. After that, puMGL initializes the
MGP by randomly selecting one graph from each positive bag
B+i and each unlabeled bag B−j , respectively. By doing so, we
intend to make the initial instance distributions in MGP sim-
ilar to the bag distributions, and avoid some bags dominating
the MGP (lines 1 and 2).

During the while loop, because graphs in MGP have no fea-
ture values in the vector space, puMGL first explores initial
subgraph features using Algorithm 1 (line 4). Because sub-
graphs in the first loop is not optimal due to the random initial
weights used to construct MGP, we can use subgraph features
to transfer graphs in MGP into vector space, and train SVM
classifiers to classify graphs in unlabeled bags. As a result,
the confidence weight w can be updated and help obtain bet-
ter confidence weight ŵ for MGP in the next iteration (line 6).
By iteratively running the producers “subgraph feature opti-
mization” (Algorithm 1) and “confidence weight optimization”
(Algorithm 2), the optimal subgraph set g∗ and confidence
weights ŵ∗ can be obtained (line 8), until no further change
occurs in the confidence weight ŵ.

During the testing phase, the feature representation xt,i for
all graphs Gt,i in test bag Bt based on g∗ will be classified
by the model H∗ to obtain its bag label yt under the MGL
setting. A bag is classified as positive only if one or multiple
graphs inside the bag are classified as positive, and negative
otherwise (lines 9–11).

The runtime complexity of puMGL is mainly attributed
to the alternating optimization between: 1) subgraph feature
optimization and 2) confidence weight optimization. For the
former, the calculation of puScore will cost O(p2), with p
representing the size of MGP. The subgraph mining based on
puScore will take O(l(p)+s·p2), where s is the number of sub-
graphs, with l being the function based on the total number
of vertices and edges in MGP. For the later, the construc-
tion of the MGP has the complexity of O(log p · p · n−), with
n− denoting the number of graphs in reliable negative bags.
The confidence weight updating will cost O(p2+ nu), with nu

denoting the number of graphs in unlabeled bags. Assume the
number of iterations during the training process is M, the total
runtime complexity of puMGL is M× (O(l(p)+ s ·p2+ log p ·
p · n− + p2 + nu) ≤ O(l(p)+ s · p2 · n− + nu)).

V. EXPERIMENTS

A. Benchmark Data Sets

1) Bio-Pharmaceutical Data: For bio-pharmaceutical
activity test, labeling individual molecules (which are
commonly represented as graphs) is expensive and time-
consuming [33]. To reduce labeling costs, molecular group
activity prediction can be used to investigate activities of
a group (i.e., bag) of molecules. Moveover, for molecular
activity detection on a given disease, emphasis can be focused
on molecules whose outcomes are active (i.e., positive) with
respect to certain testing conditions. In this case, detailed
investigations, on individual graph, are carried out on active
molecule group only (i.e., a positive bag).

In this section, we report multi-graph learning task
for chemical compound anti-cancer activity prediction on

“nonsmall cell lung” cancer. The anti-cancer activity pre-
diction cancer screening data sets [i.e., National Cancer
Institute (NCI)] are commonly used as a graph classification
benchmark (http://pubchem.ncbi.nlm.nih.gov). Each NCI data
set belongs to a bio-assay task for anti-cancer activity predic-
tion, where each chemical compound is a graph, with atoms
representing nodes and bonds as edges. We build a multi-
graph data set with PU graph bags by using NCI data set with
ID 1. To build active molecule bag (i.e., a bag with multi-
ple graphs), we randomly select 1–4 active graphs and several
inactive graphs to form an active bag. An unlabeled bag is
formed by randomly selecting a number of inactive graphs to
form a bag. The number of graphs in each bag varies from 1
to 10. In total, we build 300 positive bags with 1460 graphs
and 300 unlabeled bags with 1640 graphs.

2) Online Product Recommendation Data: Online product
recommendation learning task includes beer review data set
collected from http://snap.stanford.edu/data/ (Stanford Large
Network Dataset Collection). The data set includes reviews
of different brand of beer products in Amazon.com. Each
review report consists of the following information, includ-
ing beer ID, reviewer ID, product score (varying from 1 to
5), and reviewers’ detailed comments [34]. Because each beer
brand may receive multiple reports from different review-
ers, we regard that a beer product is potentially interesting
to certain customers, if one or more core characters of the
beer, such as “durability” or “affordability” commented in
the reports are very good (i.e., the received average review
score is ≥ 4). On the other hand, if all review scores are
< 4, it implies that this beer product is not favored by cus-
tomers. Our goal is to utilize the information in the review
reports for online product recommendation. More specifically,
to represent detailed comment texts as graphs, a fuzzy cog-
nitive map [35] approach is employed to build the graph,
where the nodes denote keywords with edges representing
the relationships between keywords [29]. During the graph
construction, edges with its correlation coefficient less than
0.006 are removed. We select 600 beer products as the bench-
mark data set, where each beer consists of approximately 1–10
reviews. In summary, we obtain 300 favored products (i.e.,
positive bags) with 1756 comments (i.e., graphs) and 300 unfa-
vored products (not favored by customers) with 1528 graphs
as unlabeled graph bags.

3) Content-Based Image Retrieval Data: The benchmark
images are collected from Corel data set [36]. All images
are preprocessed by VLFeat system (http://www.vlfeat.org/)
to obtain image regions, with each region being converted to
a graph. By doing so, each image can be regraded as a bag of
graphs. For an individual region, a state-of-the-art superpixel-
based method, simple linear iterative clustering [8], is applied
to convert the region to a graph, where each node corresponds
to one superpixel and each edge represents the adjacency rela-
tionship between superpixels. For each region, it consists of a
number of superpixels, denoted by the RGB-color histogram.
We utilize 16-bins per channel to generate 4096-dimensional
histograms. Although one can use histogram features to
represent the image region, this feature representation for
each superpixel will ignore structure information in images.
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Therefore, a clustering process is applied to all superpixels to
generate a multi-graph representation for image. In our experi-
ments, the superclass “cats,” including three subclasses “tiger,”
“lion,” and leopard is regarded as positive images (300 bags
with 2679 graphs). In addition, 300 images from all animals
are randomly selected as unlabeled bags, with 2668 segments
(i.e., graphs) in total.

4) Scientific Publication Data: The DBLP data set
consists of bibliography data in computer science
(http://dblp.uni-trier.de/xml/). Each record in DBLP is a
paper containing attributes such as abstract, authors, year,
venue, title, and references. To build a puMGL task, we
select papers published in Machine Learning and Artificial
Intelligence conferences (AI: IJCAI, UAI, NIPS, ECML,
AAAI, ICML, COLT, ACL, KR, and IJCNN) as positive
bags and randomly select papers from all fields, including
computer vision, multimedia, and pattern recognition etc.,
as unlabeled bags. A multi-graph bag representation is used
to represent a research paper. More specifically, each paper
is converted to an undirected graph by using the correlation
of keywords in the abstract with edges denoting keyword
correlations. Because each reference cited in this paper
also represents a graph, a bag is formed by using graphs
built from this paper and references cited in this paper. The
graph representation for abstract is similar to the above
online product data set. Notice that positive bags (i.e., AI)
and unlabeled bags (e.g., computer vision, multimedia, and
pattern recognition) may have overlapped research topics,
which helps build a challenging puMGL learning task. In our
experiments, we choose 600 papers which correspond to 600
bags, with each paper containing 1–10 references. Among all
600 bags (papers), 300 papers in the AI field are selected as
positive bags (with 1756 references cited in 300 AI papers).
The remaining 300 papers are unlabeled (randomly selected
from all fields). As a result, the total number of graphs in PU
bags are 1756 and 1755, respectively.

B. Experimental Settings

To validate the effectiveness of the proposed puMGL frame-
work, we use F-score= 2× P× R/(P+ R), which combines
recall R and precision P, as our performance measure. F-score
is popularly used to evaluate the performance of PU learn-
ing in previous researches [15]–[17]. We employ LibSVM as
the learning algorithm to train classifiers from MGP. For all
data sets, 70% of graph bags are used as training set, and the
remaining bags are used as testing set. To validate the perfor-
mance of puMGL with different numbers of positive bags, we
randomly choose r×100% (from 10% to 70%) bags that have
positive labels as positive bags, and combine remaining posi-
tive bags and all other bags as unlabeled set. Unless specified
otherwise, the size of subgraph features m is set to 60, with
r being 0.4, and min _sup (i.e., minimum support threshold)
as 8% for online product review, 3% for region-based image,
15% for NCI bio-pharmaceutical activity test, and 4% for the
DBLP Scientific Publication data set. In addition, all reported
results are based on the mean accuracy over ten times. All
experiments are carried out on a Linux cluster node with an
Intel Xeon @3.33 GHz CPU and 3 GB fixed memory size.

C. Baseline Methods

Because no existing methods are available to solve the pro-
posed research problem, we use the following two types of
baselines for comparative studies. More specifically, bag-level
approaches first use some informative subgraphs to represent
graphs in the bag set, so a multi-graph bag is transferred to
an MI bag. After that, an existing PU learning strategy [17] is
applied to MI bags for learning. Meanwhile, for graph-level
methods, we propagate multi-graph bag label to all graphs
inside the bag, so all positive bags are converted to positive
graphs. After that, the proposed puMGL can be solved by
using an existing positive and unlabeled graph learning (puGL)
method [15].

1) Bag-Level Methods: For this baseline approach, we first
select a number of top-k frequent subgraphs to represent
graphs as feature instances, and then convert the multi-graph
learning problem to a positive and unlabeled MI learning
(puMIL) task. This problem, however, still does not have effec-
tive solution. Accordingly, we employ puMIL to directly train
MI classifiers by treating unlabeled bags as negative bags,
with an additional penetration strategy [17]. More specifically,
to handle the lack of the negative bag set, puMIL randomly
includes a number of positive graph bags (i.e., “spies”) into
the unlabeled set, with the whole temporary bag set being
regarded as pseudo-negative bags. After that, an MILR [20] is
trained for classification, with the output probability estima-
tion results being used to help construct reliable negative bag
set. At the final stage, once the algorithm converges, an MI
classier MISVM [37] is trained to construct the classifier for
classification.

2) Graph-Level Methods: Because genuine labels of graphs
in a positive bag are unknown, graph-level methods directly
propagate bag labels to all graphs inside each bag. By doing
so, the puMGL problem is converted to a graph learning with
only puGL task. After that, graph-level approaches build a
PU graph classifier [15] to classify all graphs in a test bag.
During the iterative process, all graphs inside unlabeled bags
are initially treated as reliable negative graphs, through which
a dependency evaluation for subgraph features is proposed for
optimization. A test bag is classified as positive if one or more
graphs inside the bag is classified as positive, and negative
otherwise.

We also implement a positive naive Bayes (PNB) [38] based
puMGL approach. PNB uses the probability-based Bayesian
estimation technique to obtain a set of reliable negatives for
further learning. On the other hand, it is also possible to treat
the proposed multi-graph PU learning as one-class problem,
by simply discarding all unlabeled data. In this case, one-class
SVM [39] can be applied for classification.

D. Experimental Results

1) Classification Performance Comparisons With Respect
to Different r Values: Fig. 4 reports the classification results
(i.e., F-score) with r values varying from 10% to 70% on four
different data sets. Overall, the results show that one-class-
based approach is unsatisfactory for identifying subgraphs for
puMGL, largely because one-class learning does not consider
useful information in unlabeled bags but only intends to
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(a) (b) (c) (d)

Fig. 4. F-score comparisons with respect to different r values. (a) NCI bio-pharmaceutical activity. (b) Online product review. (c) Corel region-based image.
(d) DBLP scientific publication.

(a) (b) (c) (d)

Fig. 5. F-score comparisons with respect to different m values. (a) NCI bio-pharmaceutical activity. (b) Online product review. (c) Corel region-based image.
(d) DBLP scientific publication.

model the distributions of positive samples. Since genuine
positive graphs are unknown in multi-graph setting, samples
used to train the one-class classifier are inherently error prone
and have many mislabels which significantly deteriorates its
performance.

Furthermore, when r value increases, all F-score values
improve, mainly because a higher percentage of positive bags
provide more information for deriving discriminative subgraph
features from graphs in the bags. When the number of positive
bags is small, i.e., the corresponding percentage r is less than
30%, puMIL, puGL, and PNB achieve the competitive per-
formance. Nevertheless, for large r values, puGL can achieve
a superior performance compared to puMIL and PNB. This
is possibly because that the increase number of positive bags
provide enough knowledge to help dynamically extract infre-
quent subgraphs with discriminative capability for multi-graph
classification, whereas puMIL and PNB just carry out fre-
quent subgraph feature selection in a static way. Obviously,
puMGL has the best performance compared to other base-
lines, especially with a small number of positive bags (e.g.,
r ≤ 20%). This indicates that puMGL can effectively unitize
useful information in unlabeled set.

2) Classification Performance Comparisons With Respect
to Different m Values: Furthermore, we also demonstrate the
performance of puMGL by varying the size of the subgraph
set from 20 to 100, as shown in Fig. 5. Similarly, one-class-
based approach has the worst performance, which confirms
that only utilizing one-class data in the training process cannot
result in satisfactory discriminative models. With the increase
of subgraph number m, the learning performance also continu-
ously improves. This is mainly because that a larger number of
subgraphs potentially provide more useful features for graph
representation. Meanwhile, PNB and puMIL both achieve a
high learning performance gain with an increase number of
m, but these two baselines are inferior to the best perfor-
mance achieved by puGL. For example, on DBLP scientific

publication data set, puMIL outperforms PNB when the r
value is less than 40, as shown in Fig. 5(d). As the r value
continuously increases, PNB shows significant superiority over
puMIL. However, they are all inferior to the proposed puMGL,
especially when the number of selected subgraphs is greater
than 40. The above analysis demonstrates that puMGL is capa-
ble of handling the classification of complicated objects for
bio-pharmaceutical activity test.

3) Effectiveness of MGP: A main component in the
puMGL framework is the utilization of MGP, consisting of
most positive patterns and least negative patterns from pos-
itive and reliable negative bag set, respectively. As a result,
MGP can utilize those samples, which are close to the deci-
sion boundary, to improve the underlying classifier’s learning
performance.

To validate the quality of MGP, and check whether informa-
tive subgraphs are indeed included in MGP, we examine all
most positive patterns by using a region representation, and
report the results in the first row of Fig. 6. The results show
that the subgraph pattern g discovered from MGP is indeed
shared by four images in the first row (i.e., the body part of
the leopard). This observation indicates that MGP is capable
of exploring important regions, with common structure pat-
terns, to represent complicated objects for classification. On
the other hand, our experiments also show that not all regions
from MGP have good representation capability. In other words,
some selected regions (e.g., #10 in the second row in Fig. 6)
are not genuinely “positive” due to the interference of the
object’s surrounding environment or other factors [40].

4) Efficiency of the Pruning Strategy: To evaluate the effi-
ciency of the pruning module of puMGL as described in
Section IV-B3, we implement a UpuMGL approach with no
pruning module and compare its runtime performance with
puMGL, through which we can demonstrate the efficiency of
the pruning module. UpuMGL first exploits gSpan to mine
a frequent subgraph set, and then finds the optimal subgraph
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Fig. 6. Some “most positive patterns” examples explored by using the proposed MGP framework. Each item in MGP corresponds to one region (e.g., #5 in
the image on the left corner), which is selected under the criterion proposed in Section IV-B4. The objective of building MGP is to mine subgraph feature
(e.g., g as shown in the first row) with high puScore for further learning. Example of less positive examples are also reported in the second row.

(a) (b) (c) (d)

Fig. 7. Average CPU runtime for puMGL versus unpruned UpuMGL with different min_sup under a fixed number of subgraphs m = 60 on (a) online
product review, (b) Corel region-based image, (c) NCI bio-pharmaceutical activity, and (d) DBLP scientific publication data set, respectively.

features by using the same criteria as puMGL. In Fig. 7(a)–(d),
we report the average CPU runtime performance with respect
to different minimum support min_sup values (the number
of selected subgraphs is fixed to 60) on the above four data
sets, respectively. The results show that, as the min_sup values
increase, the runtime of both puMGL and UpuMGL decreases,
mainly because a large min_sup value will reduce the number
of candidates for validation. puMGL demonstrates much better
runtime performance than its unpruned version. This is mainly
attributed to the pruning module, as shown in Algorithm 1,
to dynamically prune the candidate set for better runtime
efficiency.

VI. CONCLUSION

This paper investigated a novel puMGL task for repre-
senting and classifying complicated objects containing rich
content and structure information. In the proposed multi-graph
representation, the object for classification is a graph bag,
whose class label is only available at the bag level. We
argued that many applications involve multi-graph learning
with only PU bags, where the lack of feature-vector repre-
sentation for graphs and the unavailability of negative bags
make the learning problem very challenging. In order to tackle
the challenges, we proposed an iterative optimization frame-
work to carefully select some graphs to form MGP which
contains positive graphs and reliable negative graphs. After
that, a set of discriminative subgraph features are extracted
from MGP to represent graphs for multi-graph classification.
Experiments and comparisons on real-world tasks demon-
strated that the proposed MGP-based puMGL framework
significantly outperforms baseline methods.

REFERENCES

[1] J. Cao, Z. Wu, J. Wu, and H. Xiong, “SAIL: Summation-based incre-
mental learning for information-theoretic text clustering,” IEEE Trans.
Cybern., vol. 43, no. 2, pp. 570–584, Apr. 2013.

[2] D. Song, F. Sun, and L. Liao, “A hybrid approach for content extraction
with text density and visual importance of DOM nodes,” Knowl. Inf.
Syst., vol. 42, no. 1, pp. 75–96, 2015.

[3] X. Zhu, X. Li, and S. Zhang, “Block-row sparse multiview multilabel
learning for image classification,” IEEE Trans. Cybern., vol. 46, no. 2,
pp. 450–461, Feb. 2016.

[4] O. Frunza, D. Inkpen, and T. Tran, “A machine learning approach
for identifying disease-treatment relations in short texts,” IEEE Trans.
Knowl. Data Eng., vol. 23, no. 6, pp. 801–814, Jun. 2011.

[5] T. G. Dietterich, R. H. Lathrop, and T. L. Lozano-Pérez, “Solving the
multiple instance problem with axis-parallel rectangles,” Artif. Intell.,
vol. 89, nos. 1–2, pp. 31–71, 1997.

[6] Z.-H. Zhou, M.-L. Zhang, S.-J. Huang, and Y.-F. Li, “Multi-instance
multi-label learning,” Artif. Intell., vol. 176, no. 1, pp. 2291–2320, 2012.

[7] J. Amores, “MILDE: Multiple instance learning by discriminative
embedding,” Knowl. Inf. Syst., vol. 42, no. 2, pp. 381–407, 2015.

[8] R. Achanta et al., “SLIC superpixels compared to state-of-the-art super-
pixel methods,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11,
pp. 2274–2282, Nov. 2012.

[9] S. Pan, J. Wu, and X. Zhu, “CogBoost: Boosting for fast cost-sensitive
graph classification,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 11,
pp. 2933–2946, Nov. 2015.

[10] J. Wu et al., “Multi-graph-view subgraph mining for graph classifica-
tion,” Knowl. Inf. Syst., pp. 1–26, Sep. 2015, doi: 10.1007/s10115-015-
0872-1.

[11] M. Flores-Garrido, J.-A. Carrasco-Ochoa, and J. F. Martínez-Trinidad,
“AGraP: An algorithm for mining frequent patterns in a single graph
using inexact matching,” Knowl. Inf. Syst., vol. 44, no. 2, pp. 385–406,
2015.

[12] S. Pan, J. Wu, X. Zhu, and C. Zhang, “Graph ensemble boosting for
imbalanced noisy graph stream classification,” IEEE Trans. Cybern.,
vol. 45, no. 5, pp. 954–968, May 2015.

[13] X. Yan, H. Cheng, J. Han, and P. S. Yu, “Mining significant graph
patterns by leap search,” in Proc. SIGMOD, Vancouver, BC, Canada,
2008, pp. 433–444.

[14] H. Cheng, X. Yan, J. Han, and P. S. Yu, “Direct discriminative pattern
mining for effective classification,” in Proc. ICDE, Cancún, Mexico,
2008, pp. 169–178.



WU et al.: puMGL 829

[15] Y. Zhao, X. Kong, and P. S. Yu, “Positive and unlabeled learning for
graph classification,” in Proc. ICDM, Vancouver, BC, Canada, 2011,
pp. 962–971.

[16] X. Li and B. Liu, “Learning to classify texts using positive
and unlabeled data,” in Proc. IJCAI, Acapulco, Mexico, 2003,
pp. 587–592.

[17] B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu, “Building text classifiers
using positive and unlabeled examples,” in Proc. ICDM, Melbourne, FL,
USA, 2003, pp. 179–188.

[18] F. Briggs, X. Z. Fern, and R. Raich, “Context-aware MIML instance
annotation: Exploiting label correlations with classifier chains,” Knowl.
Inf. Syst., vol. 43, no. 1, pp. 53–79, 2015.

[19] M. Wang, Y. Gao, K. Lu, and Y. Rui, “View-based discriminative prob-
abilistic modeling for 3D object retrieval and recognition,” IEEE Trans.
Image Process., vol. 22, no. 4, pp. 1395–1407, Apr. 2013.

[20] S. Ray and M. Craven, “Supervised versus multiple instance learn-
ing: An empirical comparison,” in Proc. ICML, Bonn, Germany, 2005,
pp. 697–704.

[21] K. Zhou, X. Gui-Rong, Q. Yang, and Y. Yu, “Learning with positive and
unlabeled examples using topic-sensitive PLSA,” IEEE Trans. Knowl.
Data Eng., vol. 22, no. 1, pp. 46–58, Jan. 2010.

[22] B. Liu, W. S. Lee, P. S. Yu, and X. Li, “Partially supervised classifica-
tion of text documents,” in Proc. ICML, Sydney, NSW, Australia, 2002,
pp. 387–394.

[23] J. T. Zhou, S. J. Pan, Q. Mao, and I. W. Tsang, “Multi-view
positive and unlabeled learning,” in Proc. ACML, Singapore, 2012,
pp. 555–570.

[24] N. An et al., “Toward detection of aliases without string similarity,” Inf.
Sci., vol. 261, pp. 89–100, Mar. 2014.

[25] K. Riesen and H. Bunke, “Graph classification by means of Lipschitz
embedding,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 6,
pp. 1472–1483, Dec. 2009.

[26] X. Yan and J. Han, “gSpan: Graph-based substructure pat-
tern mining,” in Proc. ICDM, Maebashi City, Japan, 2002,
pp. 721–724.

[27] M. Wang et al., “Unified video annotation via multigraph learning,”
IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 5, pp. 733–746,
May 2009.

[28] X. Yang, M. Wang, and D. Tao, “Robust visual tracking via multi-graph
ranking,” Neurocomputing, vol. 159, pp. 35–43, Jul. 2015.

[29] J. Wu, X. Zhu, C. Zhang, and Z. Cai, “Multi-instance multi-graph
dual embedding learning,” in Proc. ICDM, Dallas, TX, USA, 2013,
pp. 827–836.

[30] J. Wu, X. Zhu, C. Zhang, and P. S. Yu, “Bag constrained structure pattern
mining for multi-graph classification,” IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 10, pp. 2382–2396, Oct. 2014.

[31] X. Kong and P. S. Yu, “Semi-supervised feature selection for
graph classification,” in Proc. KDD, Washington, DC, USA, 2010,
pp. 793–802.

[32] Z. Fu, A. Robles-Kelly, and J. Zhou, “MILIS: Multiple instance learning
with instance selection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33,
no. 5, pp. 958–977, May 2011.

[33] J. Wu, S. Pan, X. Zhu, and Z. Cai, “Boosting for multi-graph
classification,” IEEE Trans. Cybern., vol. 45, no. 3, pp. 416–429,
Mar. 2015.

[34] J. J. McAuley and J. Leskovec, “From amateurs to connoisseurs:
Modeling the evolution of user expertise through online reviews,” in
Proc. WWW, Rio de Janeiro, Brazil, 2013, pp. 897–908.

[35] X. Luo, Z. Xu, J. Yu, and X. Chen, “Building association link network
for semantic link on Web resources,” IEEE Trans. Autom. Sci. Eng.,
vol. 8, no. 3, pp. 482–494, Jul. 2011.

[36] J. Li and J. Z. Wang, “Real-time computerized annotation of pictures,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 6, pp. 985–1002,
Jun. 2008.

[37] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector
machines for multiple-instance learning,” in Proc. NIPS, Whistler, BC,
Canada, 2003, pp. 577–584.

[38] F. Denis, R. Gilleron, and M. Tommasi, “Text classification from positive
and unlabeled examples,” in Proc. IPMU, Montpellier, France, 2002,
pp. 1927–1934.

[39] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, “Estimating the support of a high-dimensional
distribution,” Neural Comput., vol. 13, no. 7, pp. 1443–1471,
2001.

[40] K. Wang, N. An, B. N. Li, Y. Zhang, and L. Li, “Speech emotion recog-
nition using Fourier parameters,” IEEE Trans. Affect. Comput., vol. 6,
no. 1, pp. 69–75, Jan./Mar. 2015.

Jia Wu received the Ph.D. degree in com-
puter science from the University of Technology
Sydney (UTS), Sydney, NSW, Australia.

He is currently a Research Associate with the
Centre of Quantum Computation and Intelligent
Systems, UTS. His current research interests include
data mining and machine learning. Since 2009, he
has published over 20 refereed journal and confer-
ence papers, such as in the IEEE TRANSACTIONS

ON KNOWLEDGE AND DATA ENGINEERING, the
IEEE TRANSACTIONS ON CYBERNETICS, Pattern

Recognition, IJCAI, the IEEE International Conference on Data Mining, SDM,
and CIKM, in the above areas.

Shirui Pan received the Ph.D. degree in com-
puter science from the University of Technology
Sydney (UTS), Sydney, NSW, Australia.

He is a Research Associate with the Centre
of Quantum Computation and Intelligent Systems,
UTS. He has published over 20 research papers
in top-tier journals and conferences, including
the IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, the IEEE TRANSACTIONS

ON CYBERNETICS, Pattern Recognition, IJCAI, the
IEEE International Conference on Data Mining,

SDM, CIKM, PAKDD, and IJCNN. His current research interests include
data mining and machine learning.

Xingquan Zhu (SM’12) received the Ph.D.
degree in computer science from Fudan University,
Shanghai, China.

He is an Associate Professor with the Department
of Computer and Electrical Engineering and
Computer Science, Florida Atlantic University,
Boca Raton, FL, USA, and a Distinguished Visiting
Professor (Eastern Scholar) with the Shanghai
Institutions of Higher Learning. His current research
interests include data mining, machine learning, and
multimedia systems. Since 2000, he has published

over 200 refereed journal and conference papers in the above areas.
Dr. Zhu was a recipient of two Best Paper Awards and one Best Student

Paper Award. He was an Associate Editor of the IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING from 2008 to 2012. He has been an
Associate Editor of the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING since 2014.

Chengqi Zhang (SM’95) received the Ph.D. degree
from the University of Queensland, Brisbane, QLD,
Australia, in 1991, and the D.Sc. degree (higher
doctorate) from Deakin University, Geelong, VIC,
Australia, in 2002.

Since 2001, he has been a Professor of
Information Technology with the University of
Technology Sydney (UTS), Sydney, NSW, Australia,
and the Director of the UTS Priority Investment
Research Centre for Quantum Computation and
Intelligent Systems since 2008. His current research

interests include data mining and its applications.
Prof. Zhang is the General Co-Chair of KDD 2015 in Sydney, the Local

Arrangements Chair of IJCAI 2017 in Melbourne, VIC, Australia, and a fellow
of the Australian Computer Society.

Xindong Wu (F’11) received the Ph.D. degree
in artificial intelligence from the University of
Edinburgh, Edinburgh, U.K.

He is a Professor of Computer Science with
the University of Vermont, Burlington, VT, USA,
and a Yangtze River Scholar with the School of
Computer Science and Information Engineering,
Hefei University of Technology, Hefei, China. His
current research interests include data mining and
big data analytics.

Prof. Wu is the Steering Committee Chair of
the IEEE International Conference on Data Mining and the Editor-in-
Chief of Knowledge and Information Systems. He was the Editor-in-Chief
of the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

from 2005 to 2008. He is a fellow of the American Association for the
Advancement of Science.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


