
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 6, DECEMBER 2011 1627

Cross-Domain Semi-Supervised Learning Using
Feature Formulation

Xingquan Zhu, Member, IEEE

Abstract—Semi-Supervised Learning (SSL) traditionally makes
use of unlabeled samples1 by including them into the training set
through an automated labeling process. Such a primitive Semi-
Supervised Learning (pSSL) approach suffers from a number of
disadvantages including false labeling and incapable of utilizing
out-of-domain samples. In this paper, we propose a formative
Semi-Supervised Learning (fSSL) framework which explores hid-
den features between labeled and unlabeled samples to achieve
semi-supervised learning. fSSL regards that both labeled and un-
labeled samples are generated from some hidden concepts with la-
beling information partially observable for some samples. The key
of the fSSL is to recover the hidden concepts, and take them as new
features to link labeled and unlabeled samples for semi-supervised
learning. Because unlabeled samples are only used to generate
new features, but not to be explicitly included in the training set
like pSSL does, fSSL overcomes the inherent disadvantages of
the traditional pSSL methods, especially for samples not within
the same domain as the labeled instances. Experimental results
and comparisons demonstrate that fSSL significantly outperforms
pSSL-based methods for both within-domain and cross-domain
semi-supervised learning.

Index Terms—Cross domain learning, machine learning, semi-
supervised learning, transfer learning.

I. INTRODUCTION

S EMI-SUPERVISED Learning (SSL) [1], [2] represents a
class of machine learning techniques that utilize unlabeled

samples to boost the learning on a labeled set (referred to as
the “target set” in this paper). Intuitively, as labeling training
samples is often subject to a significant amount of human
labor or costs, whereas cheap unlabeled samples can be easily
collected with trivial efforts, it makes sense to utilize unlabeled
samples in the learning process to boost the model performance.
Traditionally, SSL problems are solved through an iterative
labeling and learning process, where some automated “labeling
agents” trained from labeled samples are used to generate
class labels for unlabeled samples, with aggregated training set
(containing both genuinely and automatically labeled samples)
being used to further improve the labeling agents. The iterative

Manuscript received August 26, 2010; revised January 6, 2011 and April 20,
2011; accepted May 5, 2011. Date of publication June 27, 2011; date of
current version November 18, 2011. This work was supported by the Australian
Research Council (ARC) Future Fellowship under Grant No. FT100100971.
This paper was recommended by Associate Editor S.-F. Su.

The author is with the Faculty of Engineering and Information Tech-
nology, University of Technology, Sydney, NSW 2007, Australia (e-mail:
xqzhu@it.uts.edu.au).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2011.2157999

1In this paper, sample and instance are interchangeable terms.

labeling and learning process normally repeats a number of
times until some stopping criteria are satisfied. In some situ-
ations, all unlabeled samples are included into the training set
with a pseudo-class label assigned to each unlabeled sample.
The final models trained from the aggregated training set are
used for predictions.

Many methods [1], [2] exist for semi-supervised learning
by using mechanisms, such as expectation maximization (EM)
principles, graph-based label propagation [6], or orthogonal
neighborhood-preserving projection [22], to determine proper
class labels for unlabeled samples. All these methods, in a
narrow sense, share a striking similarity in their design: in-
cluding unlabeled samples into the training set by assigning a
class label to each of them. As a result, unlabeled samples can
be directly integrated into the training process in the original
feature space. In this paper, we call this approach “primitive
semi-supervised learning” (pSSL) mainly because unlabeled
samples are included into the training set in a primitive instance
form (i.e., original feature space). Alternatively, if an unla-
beled samples is linked to the training process through some
transformed feature space, we call such approaches formative
semi-supervised learning (fSSL). Under this definition, most
existing algorithms, such as Co-Training [5], [16], common
component [28], ASSEMBLE [30], SemiBoost [29], and Trans-
ductive SVM [40] all belong to pSSL because they explore
the connection between labeled and unlabeled samples in the
original feature space.

Traditional pSSL approaches, in practice, suffer from at least
two disadvantages. First, since the class labels of the unlabeled
samples are automatically determined without verification, the
labeling process may introduce a certain amount of mislabeled
samples into the training set. Secondly, pSSL intuitively as-
sumes that all unlabeled samples are from the same domain
as the target set. So the class labels of the target set are able
to represent unlabeled samples. This assumption, in practice,
is too strong for applications involving samples from relevant,
but non-identical, domains. For example, assume the learning
objective of a labeled training set is to differentiate images of
three types of animals including mammal, bird, and reptile (i.e.,
a three-class classification problem), it is possible that some
unlabeled images may only contain natural scenery, fish, or
amphibian, so neither of the existing class labels (mammal,
bird, and reptile) can be used to properly label them. As a
result, the labels of the target set are insufficient for labeling
samples in the auxiliary set.2 Including an unlabeled sample,
in its primitive form, into the training set, like pSSL does, is
inappropriate for this type of applications, because any class

2 In this paper, a target set denotes a labeled sample set whereas an auxiliary
set denotes an unlabeled set.

1083-4419/$26.00 © 2011 IEEE

1628 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 6, DECEMBER 2011

label assigned to the unlabeled image would be incorrect and
therefore introduce error/noise [20] to the training data.

The inherent disadvantages of the existing pSSL approaches
motivate the proposed fSSL design. fSSL considers that both
labeled and unlabeled samples are generated from some hidden
concepts with labeling information partially observed (i.e.,
labeling information is available for partial samples). The
key of the fSSL is to discover the hidden concepts, and
use them as new features to link unlabeled samples to the
target set to support semi-supervised learning. Because this
approach formulates new features to capture correlations be-
tween labeled and unlabeled samples, we name it formative
SSL. The main technical challenge of fSSL is summarized as
follows.

1) Data Models: Because unlabeled samples (possibly from
different domains of the target set) may enrich the target
set, proper data models are needed to combine labeled
and unlabeled samples for learning.

2) Conceptual Correlations: As the volumes of the labeled
and unlabeled samples can be arbitrarily large, proper
designs are needed to summarize instance-level corre-
lations and generate high-level conceptual correlations,
which can be used as the key to link labeled and unlabeled
samples.

3) Feature Formulation: As including unlabeled samples
in their primitive forms into the training set (like pSSL
does) is not an option for us, new features capable of
describing unlabeled samples are needed to boost the
learning on the target set.

In this paper, we propose an fSSL framework to address
the above challenges. fSSL uses an affinity matrix as the data
model to combine labeled and unlabeled samples for analysis
(Challenge 1). Probabilistic latent semantic [3] is further
applied to the affinity matrix to derive hidden concepts
(conceptual correlations) behind instance-level correlations
(Challenge 2). At the final stage, the posterior probabilities of
the hidden concepts with respect to each labeled sample are
used as new features to integrate unlabeled samples into the
target set for learning (Challenge 3). The inherent advantage of
fSSL, in comparison with pSSL, is twofold.

• False Labeling Immunization: fSSL uses unlabeled sam-
ples to formulate new features for semi-supervised learn-
ing. As a result, there is no risk of including mislabeled
samples into the training set. Although new features may
also contain erroneous values (or some non-informative
values from the learning task perspective), since attribute
errors are essentially less harmful than class label errors
[20], fSSL is much less vulnerable to data errors and has a
much lower risk of performance loss than pSSL.

• Cross-Domain Learning: fSSL does not need to assign a
class label for each unlabeled sample (whereas most pSSL
methods do). As a result, even if unlabeled samples are
from different domains of the labeled samples, fSSL is still
able to integrate them into the training process to boost the
learning on the target set.

The remainder of the paper is structured as follows.
Section II briefly reviews related work in the area. The

data model and hidden feature formulation are introduced in
Section III, followed by Section IV which presents the tech-
nical details of the fSSL framework. Experimental results
are reported in Section V, and we conclude the paper in
Section VI.

II. RELATED WORK

By considering labeled and unlabeled samples in within-
domain or cross-domain learning environments, the proposed
research is closely related to three research areas, including:
1) semi-supervised learning; 2) transfer learning; and 3) self-
taught learning.

Semi-Supervised Learning: Because labeling is a labor in-
tensive and possibly costly process [37], whereas unlabeled
samples are readily available for many applications, semi-
supervised learning [1], [2] has been popularly used in many
applications, including text classification [33] and content-
based video/image retrieval [22], [23], [35]. To utilize unlabeled
samples for semi-supervised learning, common practices are to:
1) explicitly label unlabeled samples and include them into the
training set to train a classification model; or 2) use unlabeled
samples to help tune parameters for generative models. For
example, Co-Training [5] is one of the most classical semi-
supervised learning methods which builds classifiers from dif-
ferent views of the labeled samples to label unlabeled instances
according to the predictions from trained classifiers. Blum and
Chawla [6] proposed to build graph structures based on the
pairwise relationships between labeled and unlabeled samples,
and employed graph mincuts to partition the graph in a way
that minimizes the number of similar pairs of samples sharing
different labels. Similar graph-based semi-supervised learning
method has also been investigated [32] through a generative
model which uses graph propagation to estimate conditional
probabilities and uses linear regression to estimate class priori
probabilities. Tang et al. [27] proposed a graph-based semi-
supervised learning model which considers correlations be-
tween labeling concepts to improve annotation performance
for video databases (whereas most existing approaches regard
labeling concepts to be independent of each other). In many
model-based parametric learning systems, semi-supervised
learning is used to help estimate the parameters of the underly-
ing model. For example, Dong and Bhanu [23] proposed a user
directed semi-supervised expectation-maximization algorithm
for mixture parameter estimation, and they have demonstrated
that semi-supervised model parameter estimation can handle
two basic aspects of a content-based image retrieval system:
the changing (image insertion or removal) nature of a database
and user queries. Transductive SVM [40] is another type of
method in this category, which includes unlabeled samples into
the objective function in searching for an optimal solution for
classification. While methods in this category do not require an
explicit assignment of the class labels for unlabeled samples,
the parameter searching process does the labeling in an implicit
way such that the estimated parameters are supposed to gener-
ate the “best” models. For traditional semi-supervised learning,
one assumption commonly made is that both labeled and unla-
beled samples share the same (or similar) distributions, whereas
in many cases we may encounter situations where labeled and
unlabeled samples are collected from different domains. For

ZHU: CROSS-DOMAIN SSL USING FEATURE FORMULATION 1629

example, in document classification, it is possible that labeled
samples are collected from domains such as “artificial intelli-
gence,” whereas unlabeled samples are collected from different
(but relevant) domains such as “computational biology.” On
the other hand, in image retrieval systems, it is also possible
that labeled samples belong to two categories such as “build-
ing” versus “scenery,” whereas unlabeled samples are actually
collected from relevant categories, such as “animal,” which
belongs to neither categories of the labeled images. In fact,
the above issues have been partially observed in a number of
semi-supervised learning works, where the main focus is to
regard the cross-domain learning as a sample selection bias
problem. For example, Chawla and Karakoulas [7] empirically
studied the selection bias problem for semi-supervised learning
and provided empirical results to answer questions such as the
effect of the size of the labeled and unlabeled sets, the data
imbalance and noise issues. Similarly, Attenberg and Provost
[25] recently studied the effect of data imbalance for label
acquisition and suggested alternative solutions for applying
human resources to build classification models under extreme
class imbalance. In summary, although a large number of
works exist for utilizing unlabeled samples to support semi-
supervised learning, to the best of our knowledge, none of the
existing SSL methods offers solutions to explicitly handle situ-
ations where labeled and unlabeled samples are from different
domains.

Transfer Learning [9], [10], [13], [21]: Addresses the prob-
lem of using knowledge (or information) gained from one
domain (namely the auxiliary domain) to improve the learning
on a target domain on which labeled training samples are
expensive or difficult to acquire. Common solutions for transfer
learning are to adjust sample weights [9] or to employ feature
selection to adjust sample distributions or feature values so
data from auxiliary domain can be used to assist the learning
for the target domain. Other approaches use locally weighted
ensemble framework [21] to combine multiple models for
transfer learning, with the weight values dynamically adjusted
according to each local model’s prediction power on the test
data. Zhu et al. [36] uses sample weighting to solve transfer
learning in an incremental learning setting. In addition to the
sample weighting or feature transferring, other cross domain
learning methods build consensus regularization model [24]
to train classifiers, by considering local data in one domain
and the prediction consensus with classifiers trained from other
domains. Multi-task learning [26] addresses the problem of
learning a task together with other related tasks simultaneously,
where all tasks normally share the same domain information.
For traditional transfer learning, cross-domain learning, or
multi-task learning, samples from both auxiliary and target
domains are assumed to be suitably labeled and are subject
to different sample distributions or feature representations. In
comparison, fSSL enables the integration of unlabeled samples
from different domains to advance the transfer learning. It can
essentially solve the transfer learning problem by extracting
hidden concepts between target and auxiliary sets as new
features.

Self-Taught Learning [11], [15]: Represents a special type
of learning task whose purpose is to transfer knowledge from
unlabeled samples (presumably from different domains of the
target set) through unsupervised feature construction. In other

words, self-taught learning does not have the assumption that
unlabeled data follows the same class labels or generative dis-
tribution as the labeled data (which is a general assumption that
most SSL methods employ). One prerequisite of the self-taught
learning is that both labeled and unlabeled samples should be
decomposed into some base vectors [12], to represent high-
level features of the data. For example, in self-taught learning
[15], the sparse coding [12] was used to decompose each image
patch (i.e., a small region of the image) into a sparse weighted
combination of a set of base vectors (which are shared across
different patches). This is similar to Fourier transformation or
Wavelet transformation where input signal is decomposed into
some weighted combinations of the base functions (e.g., sine
or cosine functions for Fourier transformation). Although such
base vectors are available for image data, there is, unfortunately,
no base vector available for generic datasets. Due to such
limitations, the solutions proposed in [15] are only applicable
for image data, but cannot be applied to generic data, which
normally do not have shared coding bases. In comparison, the
proposed fSSL framework can easily handle any type of data
for self-taught learning.

III. DATA MODEL AND HIDDEN FEATURE FORMULATION

Assume L = {l1, l2, . . . , l|L|} and U = {u1, u2, . . . , u|U |}
each denotes a set of |L| labeled and |U | unlabeled instances,
where each labeled instance li = {xi, yi} contains a set of
feature values xi and a class label yi, and each unlabeled
instance uj = {xj} only contains feature values but has no
class label. In this paper, we also refer to L and U as a “target
set” and an “auxiliary set,” respectively. The aim of semi-
supervised learning is to build prediction models from labeled
samples in the target set L, by leveraging information from
auxiliary set U , to predict samples in a test set, which are
assumed to be sampled from the same domain as the target
set L. Different from generic semi-supervised learning which
assumes that target and auxiliary sets have the same domain,
in our problem definition, we do not restrict target set L and
auxiliary set U to have the same domain. If L and U are from
different domains, we refer to the problem as cross-domain
semi-supervised learning.

To explicitly characterize the relationships between labeled
and unlabeled samples, we consider that both labeled (L)
and unlabeled samples (U) are generated from a generative
model showing in Fig. 1. More specifically, the generative
model assumes that behind the observable (labeled and unla-
beled) samples, some hidden concepts z1, z2, . . . , zk exist to
determine the whole sample generation process, with instance
generation following a three-step procedure,

• Pick a hidden concept zk with probability P (zk).
• Generate a labeled instance li, given concept zk, with

probability P (li|zk).
• Generate an unlabeled instance uj , given concept zk, with

probability P (uj |zk).

As the final outcome of the above instance generation
process, one obtains observable instance pairs (li, uj), i =
1, . . . , |L|, j = 1, . . . , |U | whereas hidden concept variables
zk, k = 1, . . . ,K are discarded. Notice that the generation of
the instances li and uj is conditionally independent, given a

1630 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 6, DECEMBER 2011

Fig. 1. Graphical generative model for labeled and unlabeled samples.

Fig. 2. Affinity matrix recording instance-level correlations between labeled
(row) and unlabeled (column) samples.

Fig. 3. Conceptual view of using hidden features to link unlabeled samples to
labeled instance for semi-supervised learning.

hidden concept zk. It is easy to derive conditional independence
formula as shown in

P (li, uj |zk) = P (li|zk)P (uj |zk). (1)

To explicitly capture the above data generation process,
we employ an instance–instance affinity matrix, as shown in
Fig. 2, to denote instance-level correlations between observed,
including labeled and unlabeled, samples. In Fig. 2, each row
li and each column uj denotes a labeled and an unlabeled
sample, respectively, and the value θ

uj

li
represents a measurable

correlation, such as Euclidean distance, between samples in the
corresponding column and row.

Assume a suitable method exists to discover hidden concepts
behind labeled and unlabeled samples, the posterior probability
of a concept zk with respect to each labeled sample li, p(zk|li),
can can formulate a new feature for li. Consequently, one can
transfer the original target set into the one shown in Fig. 3,
where a set of new features are added to the target set to
bridge the connection between each labeled instance li and
all unlabeled samples U for learning. As a result, the key
issue remaining is the calculation of posterior probabilities
p(zk|li), k = 1, . . . , K for each labeled sample li. This prob-

lem can be formulated as the probabilistic latent semantic [3]
extraction, which has been popularly used in natural language
processing.

A. Probabilistic Latent Sematic for Hidden
Concept Extraction

Assume the existence of an affinity matrix Θ ∈ R
|L|×|U |, the

joint probability of observing a labeled/unlabeled instance pair
(li, uj) is given by (2), where K denotes the number of hidden
hidden concepts zk underneath the data

P (li, uj) = P (li)P (uj |li) = P (li)
K∑

k=1

P (uj |zk)P (zk|li).

(2)

Applying Bayes’ rule to the conditional probability P (zk|li),
we have

P (zk|li) =
P (li|zk)P (zk)

P (li)
. (3)

Accordingly, one can formulate a new form for (2) as

P (li, uj) =
K∑

k=1

P (zk)P (li|zk)P (uj |zk). (4)

In fact, according to the conditional independence given in
(1), (4) can be interpreted as the marginal probability of the
joint probability P (li, uj , zk) over all concept zk, k = 1, . . . ,K
as given in

P (li, uj) =
K∑

k=1

P (zk)P (li, uj |zk) =
K∑

k=1

P (li, uj , zk). (5)

Assume the instance–instance affinity matrix Θ = θ
uj

li
, i =

1, . . . , |L|; j = 1, . . . , |U | denotes the normalized number of
times that a labeled instance li is observed with an unlabeled
instance uj (i.e., instance pairs with a higher correlation value
have a better chance of being observed simultaneously), the
total log likelihood over all instances pairs is denoted by

L = log P (L,U,Z) =
K∑

k=1

|L|∑

i=1

|U |∑

j=1

θ
uj

li
log P (li, uj , zk). (6)

According to the Maximum Likelihood principle, one can
determine posterior probabilities, such as P (zk|li), by maxi-
mizing the log-likelihood function given in (6). To solve the
problem, one can separate major variables in (6) into two
groups: 1) hidden variable Z; and 2) observable variables L
and U , and employ the EM process below to iteratively update
the variables to approach to the maximum.

• E-Step: Using observable variables L and U to estimate
the hidden variable as P (Z|L,U).

• M-Step: Using P (Z|L,U) to calculate conditional proba-
bilities P (L|Z) and P (U |Z), such that the expected total
log-likelihood defined in (6) can be maximized.

ZHU: CROSS-DOMAIN SSL USING FEATURE FORMULATION 1631

Following the above EM principle and using normalization
constraint that

∑K
k=1 P (zk|li, uj) = 1, rearrange (6) using con-

ditional independence given in (1) we have

L = log [P (Z,L,U)] = log [P (Z|L,U)P (L,U)]

=
K∑

k=1

|L|∑

i=1

|U |∑

j=1

θ
uj

li
log [P (zk|li, uj)P (li, uj)]. (7)

Using joint probability P (li, uj) as given in (4), we have

L = log [P (Z,L,U)]

=
K∑

k=1

|L|∑

i=1

|U |∑

j=1

θ
uj

li
{log [P (lI |zk)P (uj |zk)]

+ log [P (zk)]}P (zk|li, uj). (8)

From (8), one can devise an iterative EM procedure between:
1) P (zk|li, uj); and 2) P (zk), P (li|zk), and P (uj |zk), to max-
imize (8). According to Bayes’ rule, the conditional probability
P (zk|li, uj) is given in

P (zk|li, uj) =
P (li, uj |zk)P (zk)

∑K
t=1 P (li, uj |zt)P (zt)

. (9)

Rearrange (9) using (1), we have

P (zk|li, uj) =
P (li|zk)P (uj |zk)P (zk)

∑K
t=1 P (li|zt)P (uj |zt)P (zt)

. (10)

Given conditional probabilities P (zk|li, uj), one can de-
termine P (zk), P (li|zk), by maximizing (8) using Lagrange
multipliers with respect to the three constraints given in (11),
as shown in (12) where λk, μi, and νj are defined Lagrange
multipliers

K∑

z=1

P (zk) = 1;
|L|∑

i=1

P (li|zk) = 1;
|U |∑

j=1

P (uj |zk)=1 (11)

Λ(L, λ, μ, ν) =L+
K∑

k=1

λk (1−P (zk))+
|L|∑

i=1

μi (1−P (li|zk))

+
|U |∑

j=1

νj (1−P (uj |zk)) (12)

The critical values of (12) occur when its gradient is zero.
One can calculate the partial derivatives of (12) with respect to
P (zk), P (li|zk), and P (uj |zk), respectively, and set them equal
to zero. The results will lead to solutions for P (zk), P (li|zk),
and P (uj |zk) given as follows:

P (zk) =

∑|L|
i=1

∑|U |
j=1 θ

uj

li
P (zk|li, uj)

∑|L|
i=1

∑|U |
j=1 θ

uj

li

(13)

P (li|zk) =

∑|U |
j=1 θ

uj

li
P (zk|li, uj)

∑|L|
i=1

∑|U |
j=1 θ

uj

li
P (zk|li, uj)

(14)

P (uj |zk) =

∑|L|
i=1 θ

uj

li
P (zk|li, uj)

∑|L|
i=1

∑|U |
j=1 θ

uj

li
P (zk|li, uj)

. (15)

B. Hidden Feature Formulation

Following probability functions given in (10) and (13)–(15),
an EM process can be carried out to repetitively update (10)
and (13)–(15) for a number of iterations or until the algorithm
converges. After that, one can apply Bayes’ rule to the condi-
tional probabilities P (li|zk), i = 1, . . . , |L|, k = 1, . . . , K and
determine the posterior probability of zk with respect to each
labeled sample li as shown in

P (zk|li) =
P (li|zk)P (zk)

∑K
t=1 P (li|zt)P (zt)

. (16)

The posterior probabilities P (zk|li), k = 1, . . . , K thus form
K-dimensional hidden features for each labeled instance li.

IV. FORMATIVE SEMI-SUPERVISED LEARNING

Following the data model and the hidden feature formu-
lation, Algorithm 1 lists the main procedure of the pro-
posed fSSL learning framework. Given a labeled target set
L and an unlabeled auxiliary set U , fSSL first calculates the
instance–instance affinity matrix Θ ∈ R

|L|×|U | by using mea-
sures such as Euclidean distance or cosine distance. In addition,
because hidden concept extraction only requires the affinity
matrix Θ, fSSL can also support semi-supervised learning for
heterogeneous sample sets (i.e., labeled and unlabeled samples
have different feature representations) as long as one can prop-
erly determine their (dis)similarities.

After the calculation of the Θ, another important step is to
determine the number of hidden concepts K. According to the
generative model in Fig. 1, the number of hidden concepts is
closely related to the number of categories of the labeled and
unlabeled samples. Assume instances in L and U are i.i.d with
their labels randomly discarded during the sample generation
process, it is sufficient to set K to any number greater than the
total number of classes of the target set. On the other hand, since
fSSL eventually uses the posterior probabilities of each hidden
concept zk, P (zk|li), k = 1, . . . , K, as new features for li, it is
necessary to limit the number of hidden concepts and control
the total number of new feature dimensions (because learning
from high-dimensional data is an identified machine learning
challenge). By taking the above two factors into consideration,
we empirically set hidden concept number K equal to two times
the number of classes of the target set. In Section V-B, we will
report the performance of fSSL with respect to different number
of hidden concepts and justify the selection of the K value for
generic datasets.

After the determination of the hidden concept number K,
the solutions proposed in Section III are employed to extract
hidden concepts and calculate posterior probabilities, as given
in (16), for each labeled sample li. A new training set L′ is

1632 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 6, DECEMBER 2011

formed, through which a classifier �(L′) is trained to classify a
test instance x.

Algorithm 1 fSSL: formative Semi-Supervised Learning

Require: (1) A labeled set L = {l1, . . . , li, . . . , l|L|} (i.e.,
target set) where li = {xi, yi}; and

(2) An unlabeled set U = {u1, . . . , uj , . . . , u|U |}
(i.e., auxiliary set) where uj = {xj}.

Θ ∈ R
|L|×|U | ← Instance–Instance Affinity Matrix(L,U)

ClassNum ← Target-Set-Class-Number(L)
K ← 2 × ClassNum
P (li|z1), . . . , P (li|zK)← Hidden-Concept-Extraction

(Θ,K) // EM process between (10) and (13)–(15).
for each labeled instance li ∈ Ldo

for each hidden concept zkk = 1, . . . ,Kdo
P (zk|li)←Instance-Concept Posterior Probability.// (16)

end for
end for
F ← P (z1|li), . . . , P (zK |li) // Hidden feature formulation
L′ ← Form new training set using L and F
�(L′) ← train classifier from L′

========= TEST PHASE =========
for each test instance xdo

Δx ← find x’s nearest neighborhood in L
F ′

x ← estimate hidden features using (17)
x′ ← x ∪ F ′

x: form new instance
�(L′, x′): classify

end for
return prediction accuracy

A. Test Phase

Notice that although classifier �(L′) is trained from the
transferred target set L′ with newly formulated features, a test
sample x, however, does not have corresponding feature values.
This is because a test sample was not included in the affinity
matrix Θ, the posterior probabilities P (zk|x), k = 1, . . . , K
of x are therefore not immediately available. On the other
hand, including each test instance x into the affinity matrix
as Θ′ ← Θ ∪ x and solving Θ′ for each test instance x are
heavily time consuming, because it involves an iterative EM
process (we obviously cannot afford to repeat the whole process
for each single test instance). Alternatively, we can use a less
expensive procedure to estimate P (zk|x) by using x’s nearest
neighborhood Δx in L.

According to the Bayes’ Rule, the posterior probability
P (zk|x) is the product between the priori probability P (zk)
and the conditional probability (or likelihood) P (x|zk), divided
by the priori probability P (x). Because P (x) is a constant for
any concepts zk, P (zk|x), k = 1, . . . ,K are only determined
by P (x|zk)P (zk), as shown in the graphical model in Fig. 4(a).
Because P (x|zk) denotes the likelihood of instance x given
a hidden concept zk, we can use x’s nearest neighborhood
Δx in the original target set L to estimate P (x|zk), as shown
in Fig. 4(b). Consequently, assume x’s nearest neighborhood
Δx contains |Δx| instances, the calculation of P (zk|x) can
be estimated by using the average of all samples in Δx as∑|Δx|

ı,lı∈Δx
(P (lı|zk)P (lı|x)P (zk)/|Δx|). As a result, the poste-

rior probability P (zk|x), k = 1, . . . , K is given by (17), where

Fig. 4. Graphical models for estimating posterior probability P (zk|x).
(a) Calculate P (zk|x) using conditional probability P (x|zk), which is unavail-
able. (b) Estimate P (zk|x) using x’s nearest neighborhood Δx in L, whose
conditional probabilities P (Δx|zk) are available.

P (x|lı) denotes the likelihood of the test instance x given a
labeled sample lı, which can be replaced by the correlation or
Euclidean distance between x and lı

P (zk|x) =
P (x|zk)P (zk)

∑K
t P (x|zt)P (zt)

=

∑|Δx|
ı,lı∈Δx

P (lı|zk)P (x|lı)P (zk)

|Δx|
∑K

t

∑|Δx|
ı,lı∈Δx

P (lı|zt)P (x|lı)P (zt)
(17)

After the calculation of the posterior probabilities P (zk|x), k =
1, . . . , K, x is transferred into a new form x′ fully compatible
with the classifier �(L′) for prediction.

V. EXPERIMENTAL RESULTS

A. Experimental Settings

We implement the fSSL framework using Java platform
and WEKA machine learning tool [18]. The source code of
the whole framework, including benchmark datasets, can be
downloaded from our web site3. Since fSSL is independent
of the learning algorithms, we collect and report results using
four learning algorithms, including C4.5 [14], Naive Bayes,
SVM [8], and Transductive SVM [40]. All experimental results
reported in the paper are based on 5 times 10-fold cross-
validation.

Benchmark Data: For evaluation purposes, we use 11
benchmark datasets from UCI machine learning repository [4],
and a high-dimensional gene expression dataset as our test
bed. The domain information of the 12 benchmark datasets,
including data characteristics, are listed in Table I. To generate
labeled L and unlabeled U subsets for within-domain or cross-
domain learning, we randomly split each dataset into two
subsets, with the size of the first (L) and the second (U) subsets
being α × 100% and (1 − α) × 100% of the size of the original
dataset, respectively. For within-domain learning, L and U are
randomly split across all class labels, whereas for cross-domain
learning, L and U are split based on different sets of class
labels, with the test set having the same domain as the labeled
set L. The similar approach has also been popularly used in as-
sessing the algorithm performance for transfer learning across
different domains [9] (Detailed procedures on cross-domain
benchmark data generation are elaborated in Section V-B).
For unlabeled set U , we simply discard class labels of all
instances in U , and treat them as unlabeled samples (in other
words, we know genuine class labels of each unlabeled sample,

3fSSL source code: http://www-staff.it.uts.edu.au/ xqzhu/fssl/index.html

ZHU: CROSS-DOMAIN SSL USING FEATURE FORMULATION 1633

TABLE I
BENCHMARK DATA SETS AND DOMAIN INFORMATION

and can restore the labeling information of the sample, if
necessary, to assess the algorithm performance).

Benchmark Methods and Settings: For comparison pur-
poses, we implement two benchmark semi-supervised learning
algorithms including Co-Training [5] and Transductive SVM
[40] (we use SVMlight[39] with default parameter settings,
except the kernel types, for Transductive SVM). Because Trans-
ductive SVM is based on support vector machines which can-
not accommodate any other learning algorithms, in following
sections, we first report results using Co-Training-based pSSL
for generic learning algorithms (including including C4.5 [14],
Naive Bayes, and generic SVM [8]). In the last section of the
experiments, we comparatively study fSSL and Transductive
SVM for both within- and cross-domain semi-supervised learn-
ing. For Co-Training-based pSSL method, we exactly follow
the design in [5] and randomly partition the original features
into to two non-overlapping views with nearly the same number
of features for each view. We train one classifier from each
view, and determine the label of an unlabeled sample according
to its predicted class labels from the two classifiers. In our
implementation, unless specified otherwise, Co-Training labels
15% of unlabeled samples in 50 iterations and includes labeled
samples into the training set. Our results in Fig. 7 will show that
due to the inherent false labeling risk, labeling more samples
does not necessarily provides better results for Co-Training, and
most of times, we actually observe performance loss if more
samples are included into the training set.

In addition to the fSSL and pSSL methods, we also report
the results of two baseline approaches, lower-bound (denoted
by L-Bound) and upper-bound (denoted by U-Bound). For
lower-bound, a classifier is trained from the labeled set L only,
and for upper-bound, a classifier is trained from the aggregation
of both labeled L and unlabeled U sets, by assigning genuine
class label back to each unlabeled samples (recall that we
know genuine class labels of all unlabeled samples). Clearly,

lower-bound provides a baseline to indicate the minimum ac-
curacy a classifier can achieve, whereas upper-bound provides
an ideal situation to demonstrate pSSL’s optimal performance
under assumption that all unlabeled samples are perfectly
labeled.

In our experiments, the instance–instance affinity matrix Θ
is calculated by using Euclidean distance as the similarity
measure. The maximum number of EM repetitions is set to be
1000, with a possible early termination if differences between
two consecutive rounds are sufficiently small. The detailed
parameter settings for fSSL is studied in the next subsection.

B. Parameter Settings for FSSL

Key parameters of the proposed fSSL framework include:
1) K: the number of hidden concepts; and 2) |Δx|: the size
of the nearest neighborhood used to estimate the posterior
probabilities of each test instance x, as defined in (17). In
Algorithm 1, we empirically set the number of hidden concepts
as twice the number of classes of a dataset, whereas an im-
portant issue is to study the selection of these parameters and
investigate the sensitivity of the algorithm performance with
respect to different parameters, such that users can determine
suitable parameter values for new datasets.

In Fig. 5(a)–(c), we report the performance (i.e., the predic-
tion accuracies) of the fSSL with respect to different number
of hidden concepts K and different sizes of nearest neighbor-
hood, where each figure shows results for one dataset and all
three figures represent results for datasets with two, four, and
11 classes, respectively.

Overall, the results in Fig. 5(a)–(c) suggest the follow-
ing three major observations: 1) The system performance is
moderately sensitive to the number of hidden concepts Z, and
is relatively stable to the sizes of nearest neighborhood (except
for Vowel dataset). For example, for Car dataset as shown in
Fig. 5(b), the best algorithm performance (88.62%) is achieved

1634 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 6, DECEMBER 2011

Fig. 5. Prediction accuracies (showing in the z-axis) with respect to the numbers of hidden concepts (zk, k = 1, . . . , K) and the sizes of the nearest
neighborhood (using C4.5 as the learning algorithm). The number of concepts K varies from 1 to 20 for TTT and Car datasets, and from 1 to 40 for Vowel
dataset. The size of nearest neighborhood varies from 1 to 15 for all datasets. (a) TTT: 2 classes. (b) Car: 4 classes. (c). Vowel: 11 classes.

TABLE II
WITHIN-DOMAIN SSL RESULTS. A † INDICATES A t-TEST SIGNIFICANT, COMPARED TO pSSL, AT THE 0.05 LEVEL. THE SIZES OF THE LABELED AND

UNLABELED SETS ARE 0.25% × 100% AND 0.75 × 100% OF THE ORIGINAL DATAS ET. pSSL (CO-TRAINING) LABELS 0.15% × 100% OF UNLABELED

SAMPLES IN 50 ROUNDS. THE ACCURACY OF THE METHOD (AMONG LOWER-BOUND, pSSL, AND fSSL) WITH THE HIGHEST VALUE IS BOLDFACED

when the number of concepts is 10 and the number of nearest
neighbors is 2; 2) As the size of the nearest neighborhood
grows, a general trend is that the algorithm performance will
deteriorate, especially for the setting with a large number of
concepts; and 3) Assume the size of the nearest neighborhood
is suitably selected for a dataset, the best algorithm performance
is achieved when the number of hidden concepts is about twice
the number of classes. Indeed, while fSSL directly uses hidden
concepts to formulate new features, for a small number of
hidden concepts (say one or two concepts), the new features
do not provide much information to differentiate samples from
different classes. In an extreme case, if only one hidden con-
cept is specified, this feature along provides almost no useful
information at all, because all samples are assigned to the same
concept. In Fig. 5 the results show that the accuracies remain
the same for one hidden concept regardless of the size of the
nearest neighborhood, which asserts that the new feature, for
one hidden concept, does not provide much useful information
for learning. On the other hand, when the number of hidden
concepts is relatively large, the new features become very
sparse which makes them unsuitable for differentiating samples
different classes. In an extreme case, assume the number of
hidden concepts is the same as the number of labeled samples,
each labeled sample is most likely going to be assigned to one
individual concept. Such sparse features, in practice, provide no
value for learning at all, not to mention that the increase feature

dimensions may actually bring negative impact to the learning
algorithm.

In summary, the above experimental results suggest that for
generic datasets, one can select the number of concepts to be
one or twice the number of classes. Meanwhile, one can select
a relatively small size of nearest neighborhood for posterior
probability estimation for test instances. For experiments in
the remaining sections, the size of the nearest neighborhood
is set as one, because 1 − kNN has been proven to have its
asymptotic error rate at most twice of the Bayes error [34].
In addition, the number of hidden concepts is set as twice the
number of classes for each dataset.

C. Within-Domain Learning Results Comparison

To compare the performance of fSSL and pSSL for semi-
supervised learning on samples within the same domain, we
randomly split labeled and unlabeled sets with different size
ratios, across all classes. The mean accuracies over 5 time
10-fold cross validations are reported in Table II and Fig. 6.
The former shows detailed accuracy comparisons of 0.25:0.75
splitting for labeled and unlabeled sets (i.e., L and U sets
are 0.25 × 100% and 0.75 × 100% of the original dataset,
respectively) and the latter reports the accuracies with respect
to different sizes of L sets on the Vowel and Car datasets.

ZHU: CROSS-DOMAIN SSL USING FEATURE FORMULATION 1635

Fig. 6. Prediction accuracies with respect to different sizes (α) of labeled
set L. The x-axis denotes the size of the labeled set α, and the y-axis shows
the prediction accuracies (using C4.5 as the learning algorithm). (a) Vowel: 11
classes. (b) Car: 4 classes.

The results in Table II and Fig. 6 show that comparing to
pSSL and lower-bound, fSSL can receive significant perfor-
mance gain on most datasets, where the accuracy gain can be
as much as 10% or higher. Such improvement can be observed
across all three types of learning algorithms and different sizes
of labeled sets. For high-dimensional data (e.g., Lymph dataset
with 4026 dimensions) when using C4.5 as the learning algo-
rithm, fSSL can still outperform pSSL and L-Bound, whereas
for NB and SVM, the performance of fSSL remains the same
as the L-Bound. This observation asserts that the size of the
original feature dimension is not a barrier for fSSL to claim
benefits for high-dimensional data. Despite of the existing high-
dimensional features, new features formulated by using fSSL
can still provide useful information to help improve the learner
performance, especially for unstable learners, such as decision
tree methods like C4.5.

Interestingly, by including new features into the target set, we
frequently observe that fSSL can even outperform the upper-
bound which denotes the best accuracy a learner can achieve on
the whole dataset (assuming all unlabeled samples are perfectly
labeled). The moral seems to be that new features provide
some “fresh” knowledge the original feature space incapable

Fig. 7. Prediction (ACC) and labeling (Lab) accuracies of the Co-Training
with respect to the percentage of samples to be labeled and included in the
training set. The x-axis denotes the labeling percentage and the y-axis shows
the prediction (solid lines) and labeling (dashed lines) accuracies. Each dataset
corresponding to two lines with the same color and same style (α = 0.25 and
using C4.5).

of conveying, even if all samples are included into the training
set. We believe that the reason behind is twofold,

• Although training instance number plays an important role
for a learner to derive correct decision concepts, the sep-
arability of the underlying data may be improved if some
new features are included to transfer data into some higher
(compared to the original) dimensional spaces, through
which the same learner can achieve a better accuracy.
Just like kernel machines [38] which transfer data into
high-dimensional space and claim better separability for
learning, fSSL also transfers data into a higher-
dimensional space with new features containing additional
knowledge gained from unlabeled samples.

• As many datasets contain redundant instances, increasing
training set size, although potentially helpful, may deterio-
rate the learner performance. This can be easily verified by
the results in Table II, where models trained from random
subsets even outperform the upper-bound (e.g., The Credit
dataset with NB). The separability of the new features, in
practice, can be more powerful than simply adding new
training samples, not to mention that pSSL may actually
include mislabeled samples.

For most datasets we observed, the accuracies of pSSL are
only marginally better than the lower-bound. This suggests that
pSSL has very limited capability of utilizing unlabeled samples.
The main disadvantage of the traditional pSSL methods, as we
discussed in Section I, stems from the mislabeling risks and
mishandling of the out-of-domain samples. Notice that class
labels play vital roles for learners to derive correct decision
concepts, including mislabeled samples into the training set
may severely deteriorate the learner performance [20]. To val-
idate the hypothesis, in Fig. 7 we report the the prediction and
labeling accuracies of Co-Training with respect to different per-
centages of samples to be labeled and included in the training
set. As we can see, pSSL’s average labeling accuracy is between
50% to 90%, which implies that a large portion of unlabeled
samples are falsely labeled and included in the training set as
noise. As a result, we can observe significant accuracy drop for
datasets, such as Car, Kr-vs-Kp, and Vowel, when instances are
continuously labeled and included in the training set.

1636 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 6, DECEMBER 2011

TABLE III
CROSS-DOMAIN SSL RESULTS. A † INDICATES A t-TEST SIGNIFICANT,

COMPARED TO pSSL, AT THE 0.05 LEVEL. pSSL (CO-TRAINING) LABELS

0.15% × 100% OF UNLABELED SAMPLES IN 50 ROUNDS. THE CLASSES

USED TO SPLITTING TARGET VERSUS AUXILIARY SETS ARE CAR: {ACC,
GOOD, VGOOD VERSUSUNACC}, DIGITS: {0, 2, 4, 6, 8 VERSUS 1, 3, 5, 7,

9}, LETTER: {A, E, H, R VERSUS B, F, K}, SEGMENT: {BRICKFACE,
FOLIAGE, WINDOW VERSUSSKY, CEMENT, PATH, GRASS}, AND VOWEL:

{hid, hEd, hAd, hYd, hOd, hUd VERSUS hId, had, hod, hud, hed}

Although fSSL may also introduce incorrect values to the
hidden features, errors in the attributes are generally much less
harmful than class label errors [20]. In the worst scenario, as-
sume the newly formulated features contain nothing but random
values, the impact of the random features can be easily reduced
by most learning algorithms (such as C4.5) because many of
them have an internal procedure to select informative attributes
for learning.

D. Cross-Domain Learning Results Comparison

In the second set of experiments, we compare algorithm
performance for cross-domain semi-supervised learning. To
simulate cross-domain learning tasks, we separate class labels
of the original dataset into two subsets, SetA and SetB , with
each of them treated as the classes of the target set and the
auxiliary set, respectively. For each instance in the original set,
if its class label belongs to SetA we will assign it to the target
set, otherwise, it is assigned to the auxiliary set with its class
label discarded.

In Table III, we report the results on five selected datasets
(since a target set must contain at least two classes and an
auxiliary set should have at least one class, the cross-domain
learning can only be carried out on datasets with at least three
classes). Overall, it is observed that fSSL is effective for cross-
domain semi-supervised learning on majority datasets.

Comparing to the within-domain learning, we observe that
the performance gain between each method and the baseline
(lower-bound) actually decreases. This suggests that instances
from one domain has relatively limited value for another
domain, assume two domains are relatively isolated. Indeed,
imagining a target task in distinguishing “Tiger” from “Bird,”
it might be helpful to provide some unlabeled images with
grass, forest (background information for tiger images) and
ocean, and sky (background information for bird images). Such
auxiliary information can help determine that a “Tiger” is more
closely related to one type of auxiliary images than others, and
vice versa. On the other hand, providing unlabeled samples,
such as mathematical formula or handwriting pictures, or the
extreme case some pure black/white images, adds very little
information to help distinguish “Tiger” and “Bird,” mainly be-
cause they are essentially not related to the underlying learning
tasks. Determining to which degree that one domain can be

beneficial to another domain [17] or when unlabeled data can be
helpful for supervised learning [19], [31] is vitally important for
cross-domain semi-supervised learning. Research on this issue
is, however, beyond the coverage of this paper.

In summary, the results reported in this section conclude
that fSSL provides an effective platform to utilize unlabeled
samples for semi-supervised learning. Significant performance
gains can be observed, across different learning algorithms, for
within-domain or cross-domain semi-supervised learning.

E. Comparisons Between FSSL and Transductive SVM

While the above results have demonstrated the perfor-
mance of fSSL for both within-domain and cross-domain
semi-supervised learning, the comparisons are made with Co-
Training, which does not necessarily represent the state of the
art semi-supervised learning algorithms. In this subsection, we
compare the performance of fSSL with Transductive SVM (de-
noted by TrSVM) in the setting that transductive support vector
machines [40] are used as the underlying learning algorithm.

Transductive SVM can be viewed as standardized SVM
with an additional regularization term to account for unlabeled
training data [2]. In short, assume a training set contains |L| la-
beled examples {(xi, yi)}|L|

i=1, yi ∈ {1,−1} and |U | unlabeled

samples {(xi)}|L|+|U |
i=|L|+1. The decision function of generic SVM

has the following form:

fθ(x) = w · Φ(x) + b (18)

where θ = (w, b) are the parameters of the learning models,
and Φ(·) denotes the kernel function in the feature space. The
objective of the Transductive SVM is to solve optimization
problem as defined by

min
1
2
‖w‖2 + λ1

|L|∑

i

Loss (yi × fθ(xi))

+ λ2

|L|+|U |∑

i=|L|+1

Loss (|fθ(xi)|) (19)

where Loss(x) = max(0, 1 − x) defines the classical hinge
loss function for labeled samples, and Loss(|x|) = max(0, 1 −
|x|) is the symmetric hinge loss function for unlabeled sample.
λ1 and λ2 are parameters specified by the users. Different
from Co-Training-based SSL methods which directly assign
class labels to unlabeled samples (with potential mislabeling
risks), Transductive SVM, on the other hand, directly includes
unlabeled samples into the objective function without requiring
class labels for them [as defined in the third term of (19)].

In our experiments, we first apply TrSVM to the training set
L and train a classifier from labeled samples, with the accuracy
of this classifier denoted by “TrSVML.” In the second method,
we apply TrSVM to both labeled and unlabeled training sam-
ples, with the accuracy of the classifier denoted by TrSVML+U .
In the third method, we use fSSL to formulate new features, and
apply TrSVM to the transferred training samples (i.e., TrSVM
is used as the learning algorithm) with the accuracy of the
classifier denoted by “TrSVMfSSL.” In the four method, we
restore class labels of all unlabeled samples (recall that the class

ZHU: CROSS-DOMAIN SSL USING FEATURE FORMULATION 1637

TABLE IV
EXPERIMENTAL COMPARISONS BETWEEN fSSL AND TRANSDUCTIVE

SVM FOR WITHIN-DOMAIN SEMI-SUPERVISED LEARNING. TrSVML,
TrSVML+U , AND TrSVMfSSL, EACH DENOTES THE ACCURACYOF

APPLYING TRANSDUCTIVE SVM LEARNING ALGORITHM TO LABELED

SAMPLES (L), LABELED PLUS UNLABELED (L + U) SAMPLES, AND

TRANSFERRED LABELED SAMPLES USING fSSL, RESPECTIVELY. A †
INDICATES A t-TEST SIGNIFICANT, COMPARED TO TrSVML+U , AT THE

0.05 LEVEL. BECAUSE TRANSDUCTIVE SVM CAN ONLY HANDLE BINARY

CLASSIFICATION PROBLEMS, WE ONLY REPORT RESULTS ON

FIVE BINARY CLASSIFICATION DATAS ETS (LINEAR AND

POLYNOMIAL DENOTE LINEAR KERNEL AND

POLYNOMIAL KERNEL, RESPECTIVELY)

label of each instance was discarded to generate an unlabeled
instance, so we know the genuine class label of each unlabeled
sample) and aggregated all samples to form a training set. We
apply TrSVM to the aggregated training set, with the accuracy
of the classifier dented by “TrSVMAll,” which simulates the
best accuracy a TrSVM can possibly achieve, if all unlabeled
samples are suitably labeled.

In Table IV, we report within-domain semi-supervised learn-
ing results on five binary classification problems (please note
Transductive SVM, as implemented in SVMlight[39], can only
handle binary classification problems). In all experiments, the
size of the labeled and unlabeled sets are 25% and 75% of
the original dataset. To observe algorithm performance with
respect to different types of kernel functions, we employ two
types of kernels, linear kernel and polynomial kernel, in our
experiments. When employing TrSVM to unlabeled samples
only, linear kernel outperforms polynomial kernel for 2 out
of 5 datasets. This observation asserts that the accuracies of
SVM classifiers are sensitive to the type of kernels selected in
the objective function. A carefully selected kernel can improve
the performance gain for as much as 10%. Meanwhile, the
effectiveness of fSSL can be observed for both linear and
polynomial kernels, and the results are consistent to the within-
domain learning results as we reported in Table II.

Because Transductive SVM directly includes unlabeled sam-
ples into the objective function without explicitly assigning a
class label to each unlabeled sample, we expect that a TrSVM
classifier trained from labeled and unlabeled samples (i.e.,
TrSVML+U) should outperform a TrSVM classifier trained
from labeled samples only (i.e., TrSVML). In practice, this is
not always the case. Although we do observe TrSVML+U to
have significant performance gain from one dataset (Credit),
its improvement on the rest of the datasets is rather marginal.
In fact, when comparing TrSVML versus TrSVML+U one can
observe that TrSVML+U appears to be highly unstable and may
result in severe performance loss for some datasets, whereas
for TrSVMfSSL there is normally no noticeable performance
loss, even if its results is not better than TrSVML. In three out
of five datasets, we observed TrSVMfSSL to be statistically
significantly better than TrSVML+U .

Fig. 8. Experimental comparisons between fSSL and Transductive
SVM for cross-domain semi-supervised learning. TrSVML, TrSVML+U ,
TrSVMfSSL, each denotes accuracy of applying Transductive SVM learning
algorithm to labeled samples (L), labeled plus unlabeled (L + U) samples,
and transferred labeled samples using fSSL, respectively. A ∗ indicates a
t-test significant, comparing TrSVMfSSL to TrSVML+U , at the 0.05 level.
Because Transductive SVM can only handle binary classification problems,
classes used to splitting target and auxiliary sets are Car: {good, vgood versus
unacc, acc}, Digits: {0, 1 versus 2, 3, 4, 5, 6, 7, 8, 9}, Letter: {B, R versus A,
E, F, H, K}, Segment: {bickface, cement versus sky, foliage, window, path,
grass}, Vowel: {hid, hId versus hEd, hAd, hYd, had, hOd, hod, hUd, hud, hed},
Wine: {1, 2 versus 0}, and Zoo: {bird, invertebrate versus mammal, reptile,
fish, amphibian, insect}. For comparison purposes, the actual accuracies of
Voweland Wine data sets are the accuracies showing in the figure minus 20.

For cross-domain semi-supervised learning, as shown in
Fig. 8, TrSVMfSSL is a clear winner, where the performance of
the Transductive SVM can deteriorate significantly when unla-
beled samples are directly included into the learning process
(like TrSVML+U does). Indeed, while TrSVML+U does not
directly assign class labels to unlabeled instances, the third
term defined in (19), which accounts for the loss incurred
by unlabeled samples, actually employs an implicit labeling
process to calculate the loss of each unlabeled samples. In other
words, the loss value as defined by max(0, 1 − |w · Φ(xi) + b|
for each unlabeled instance xi, i = |L| + 1, . . . , |L| + |U |, im-
plicitly labels each unlabeled samples through the arithmetical
max(0, ·), depending on the loss of each unlabeled sample with
respect to the current model θ = (w, b). So the optimization
process is to find the best model θ with minimum objective
value as defined by (19). As a result, TrSVML+U , in our
definition, still falls into the primitive SSL category, and would
inherently bear the same disadvantages as pSSL. For some
datasets, such as Vowel as shown in Fig. 8, the performance
loss of the TrSVML+U can be quite dramatic. By using new
feature formulation, fSSL provides effective way to support
Transductive SVM for cross-domain semi-supervised learning,
where the performance of fSSL (denoted by TrSVMfSSL)
mostly outperforms Transductive SVM classifiers trained from
labeled samples, even for data with very high dimensionality.

VI. CONCLUSION

In this paper, we proposed a semi-supervised learning frame-
work which uses feature formulation to combine labeled and
unlabeled samples for learning. We argued that the major disad-
vantage of the traditional semi-supervised learning is twofold,
including: 1) false labeling of the unlabeled samples may
introduce a significant amount of noise into the training set;
and 2) cross-domain samples cannot be properly labeled for

1638 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 6, DECEMBER 2011

learning. Alternatively, we seek to formulate hidden features,
using labeled and unlabeled samples, to boost the learning on
the target set. To achieve the goal, we regard that labeled and
unlabeled samples share some hidden concepts during the in-
stance generation process. Our goal is to discover shared hidden
concepts, based on the observed instance pairs, and use them as
new features to link labeled and unlabeled samples for learning.
The main contribution of the paper, compared to other existing
work, is threefold: 1) a new view of semi-supervised learning
via hidden concept-based instance generation process; 2) a new
model for integrating labeled and unlabeled samples via hidden
feature formulation; and 3) a framework for supporting cross-
domain semi-supervised learning.

REFERENCES

[1] O. Chapelle, B. Scholkopf, and A. Zien, Semi-Supervised Learning.
Cambridge, MA: MIT Press, 2006.

[2] X. Zhu, “Semi-Supervised Learning Literature Survey,” Univ. Wisconsin-
Madison, Madison, WI, Tech. Rep. Comp. Sci. TR 1530, 2007.

[3] T. Hofmann, “Unsupervised learning by probabilistic latent semantic
analysis,” Mach. Learn., vol. 42, no. 1/2, pp. 177–196, Jan. 2001.

[4] A. Asuncion and D. Newman, UCI Machine Learning Repository, 2007.
[5] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with

co-training,” in Proc. COLT , 1998, pp. 92–100.
[6] A. Blum and S. Chawla, “Learning from labeled and unlabeled data using

graph mincuts,” in Proc. ICML, 2001, pp. 19–26.
[7] N. Chawla and G. Karakoulas, “Learning from labeled and unlabeled data:

An empirical study across techniques and domains,” J. Artif. Intell. Res.,
vol. 23, no. 1, pp. 331–366, Jan. 2005.

[8] C. Chang and C. Lin. (2008). LIBSVM—A Library for Support
Vector Machines. [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/
libsvm/

[9] W. Dai, Q. Yang, G. Xue, and Y. Yu, “Boosting for transfer learning,” in
Proc. ICML, 2007, pp. 193–200.

[10] C. Do and A. Ng, “Transfer learning for text classification,” in Proc. NIPS,
Vancouver, BC, Canada, 2005, pp. 299–306.

[11] K. Huang, Z. Xu, I. King, M. Lyu, and C. Campbell, “Supervised self-
taught learning: Actively transferring knowledge from unlabeled data,” in
Proc. IJCNN, 2009, pp. 481–486.

[12] H. Lee, R. Raina, A. Teichman, and A. Ng, “Exponential family sparse
coding with application to self-taught learning,” in Proc. IJCAI, 2009,
pp. 1113–1119.

[13] S. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2009.

[14] J. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann, 1993.

[15] R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng, “Self-taught learning:
Transfer learning from unlabeled data,” in Proc. ICML, Corvallis, OR,
2007, pp. 759–766.

[16] S. Goldman and Y. Zhou, “Enhancing supervised learning with unlabeled
data,” in Proc. ICML, 2000, pp. 327–334.

[17] M. Rosenstein, Z. Marx, L. Kaelbling, and T. Dietterich, “To transfer or
not to transfer,” in Proc. NIPS Workshop Inductive Transf., 2005.

[18] I. Witten and E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques. San Mateo, CA: Morgan Kaufmann, 2005.

[19] A. Singh, R. Nowak, and X. Zhu, “Unlabeled data: Now it helps, now it
does’t,” in Proc. NIPS, 2008, pp. 1–8.

[20] X. Zhu and X. Wu, “Class noise vs. attribute noise: A quantitative
study of their impacts,” Artif. Intell. Rev., vol. 22, no. 3/4, pp. 177–210,
Nov. 2004.

[21] J. Gao, W. Fan, J. Jiang, and J. Han, “Knowledge transfer via multiple
model local structure mapping,” in Proc. KDD, 2008, pp. 283–291.

[22] T. Zhang, K. Huang, X. Li, J. Yang, and D. Tao, “Discriminative orthogo-
nal neighborhood-preserving projections for classification,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 40, no. 1, pp. 253–263, Feb. 2010.

[23] A. Dong and B. Bhanu, “Active concept learning in image databases,”
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 35, no. 3, pp. 450–466,
Jun. 2005.

[24] F. Zhuang, P. Luo, H. Xiong, Y. Xiong, Q. He, and Z. Shi, “Cross-
domain learning from multiple sources: A consensus regularization per-
spective,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 12, pp. 1664–1678,
Dec. 2010.

[25] J. Attenberg and F. Provost, “Why label when you can search?: Alter-
natives to active learning for applying human resources to build classi-
fication models under extreme class imbalance,” in Proc. KDD, 2010,
pp. 423–432.

[26] R. Caruana, “Multitask learning,” Mach. Learn., vol. 28, no. 1, pp. 41–75,
Jul. 1997.

[27] J. Tang, X. Hua, M. Wang, Z. Gu, G. Qi, and X. Wu, “Correlative lin-
ear neighbourhood propagation for video annotation,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 39, no. 2, pp. 409–416, Apr. 2009.

[28] D. Miller and S. Uyar, “A mixture of experts classifier with learning based
on both labeled and unlabeled data,” in Proc. NIPS, 1997, pp. 571–578.

[29] P. Mallapragada, R. Jin, A. Jan, and Y. Liu, “SemiBoost: Boosting
for semi-supervised learning,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 31, no. 11, pp. 2000–2014, Nov. 2009.

[30] K. Bennett, A. Demiriz, and R. Maclin, “Exploiting unlabeled data in
ensemble methods,” in Proc. KDD, 2002, pp. 289–296.

[31] T. Zhang and F. Oles, “A probability analysis on the value of unlabeled
data for classification problem,” in Proc. ICML, Stanford, CA, 2000,
pp. 1191–1198.

[32] J. He, J. Carbonell, and Y. Liu, “Graph-based semi-supervised learning as
a generative model,” in Proc. IJCAI, 2007, pp. 2492–2497.

[33] K. Nigam, A. Mccallum, S. Thrun, and T. Mitchell, “Text classification
from labeled and unlabeled documents using EM,” Mach. Learn, vol. 39,
no. 2/3, pp. 103–134, May/Jun. 2000.

[34] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Trans. Inf. Theory, vol. IT-13, no. 1, pp. 21–27, Jan. 1967.

[35] X. He, “Incremental semi-supervised subspace learning for image re-
trieval,” in Proc. ACM SIGMM, 2004, pp. 2–8.

[36] Z. Zhu, X. Zhu, Y. Guo, and X. Xue, “Transfer incremental learning for
pattern classification,” in Proc. ACM CIKM, 2010, pp. 1709–1712.

[37] X. Zhu, P. Zhang, X. Lin, and Y. Shi, “Active learning from stream
data using optimal weight classifier ensemble,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 40, no. 6, pp. 1607–1621, Dec. 2010.

[38] B. Schölkopf and A. Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA:
MIT Press, 2001.

[39] T. Joachims, “Making large-scale SVM learning practical,” in Advances
in Kernel Methods—Support Vector Learning, B. Schölkopf, C. Burges,
and A. Smola, Eds. Cambridge, MA: MIT Press, 1999.

[40] T. Joachims, “Transductive inference for text classification using support
vector machines,” in Proc. ICML, 1999, pp. 200–209.

Xingquan Zhu (M’04) received the Ph.D. degree in
computer science from Fudan University, Shanghai,
China, in 2001.

He is a recipient of the Australia ARC Future
Fellowship and a Professor of the Centre for Quan-
tum Computation & Intelligent Systems, Faculty of
Engineering and Information Technology, Univer-
sity of Technology, Sydney (UTS), Sydney, NSW,
Australia. Before joining the UTS, he was a tenure
track Assistant Professor in the Department of
Computer Science & Engineering, Florida Atlantic

University, Boca Raton, (2006–2009), a Research Assistant Professor in
the Department of Computer Science, University of Vermont, Burlington,
(2002–2006), and a Postdoctoral Associate in the Department of Computer Sci-
ence, Purdue University, West Lafayette, IN (2001–2002). His research mainly
focuses on data mining, machine learning, and multimedia systems. Since 2000,
he has published more than 110 referred journal and conference proceedings
papers in these areas. He is an Associate Editor of the IEEE TRANSACTIONS

ON KNOWLEDGE AND DATA ENGINEERING (2009 to present), and a Program
Committee Co-Chair for the 23rd IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2011) and the 9th International Conference on
Machine Learning and Applications (ICMLA 2010).

