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Mining With Noise Knowledge:
Error-Aware Data Mining

Xindong Wu and Xingquan Zhu

Abstract—Real-world data mining deals with noisy information
sources where data collection inaccuracy, device limitations, data
transmission and discretization errors, or man-made perturba-
tions frequently result in imprecise or vague data. Two common
practices are to adopt either data cleansing approaches to enhance
the data consistency or simply take noisy data as quality sources
and feed them into the data mining algorithms. Either way may
substantially sacrifice the mining performance. In this paper, we
consider an error-aware (EA) data mining design, which takes
advantage of statistical error information (such as noise level and
noise distribution) to improve data mining results. We assume that
such noise knowledge is available in advance, and we propose a
solution to incorporate it into the mining process. More specifi-
cally, we use noise knowledge to restore original data distributions,
which are further used to rectify the model built from noise-
corrupted data. We materialize this concept by the proposed EA
naive Bayes classification algorithm. Experimental comparisons
on real-world datasets will demonstrate the effectiveness of this
design.

Index Terms—Classification, data mining, naive Bayes (NB),
noise handling, noise knowledge.

I. INTRODUCTION

R EAL-WORLD data are dirty, and therefore, noise han-
dling is a defining characteristic for data mining research

and applications. A typical data mining application consists of
four major steps: data collection and preparation, data transfor-
mation and quality enhancement, pattern discovery, and inter-
pretation and evaluation of patterns (or postmining processing)
[22], [30]. In the Cross Industry Standard Process for Data
Mining framework [31], [45], this process is decomposed into
six major phases: business understanding, data understanding,
data preparation, modeling, evaluation, and deployment. It is
expected that the whole process starts with raw data and finishes
with the extracted knowledge. Because of its data-driven na-

Manuscript received April 25, 2006; revised February 25, 2007. This work
was supported by the National Science Foundation of China under Grant
60674109. An earlier version of this paper was published in the Proceedings
of the 2006 IEEE International Conference on Granular Computing (GRC),
Atlanta, GA, 2006. The new content added here, compared with the conference
version of this paper, includes Sections 3.4, 4.4, and 5.2, Tables 1 and 2,
and numerous revised paragraphs. This paper was recommended by Associate
Editor J. Wu.

X. Wu is with the School of Computer Science and Information Engi-
neering, Hefei University of Technology, Hefei 230009, China, and also with
the Department of Computer Science, University of Vermont, Burlington,
VT 05405 USA (e-mail: xwu@cs.uvm.edu).

X. Zhu is with the Department of Computer Science and Engineering,
Florida Atlantic University, Boca Raton, FL 33431 USA (e-mail: xqzhu@
cse.fau.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCA.2008.923034

ture, previous research efforts have concluded that data mining
results crucially rely on the quality of the underlying data,
and for most of the data mining applications, the process of
data collection, data preparation, and data enhancement cost
the majority of the project budget and also the developing
time circle [2], [31]. However, data imperfections, such as
erroneous or inaccurate attribute values, still commonly exist in
practice, where data often carry a significant amount of errors,
which will have negative impact on the mining algorithms
[1]. In addition, existing research on privacy-preserving data
mining [3], [4] often uses intentionally injected errors, which
are commonly referred to as data perturbations, for privacy-
preserving purposes, such that sensitive information in data
records can be protected, but knowledge in the dataset is still
available for mining. As these systematic or man-made errors
will eventually deteriorate the data quality, conducting effective
mining from data imperfections becomes a challenging and real
issue for the data mining community.

Take the problem of supervised learning as an example,
where the task is to form decision theories that can be used
to classify previously unlabeled (test) instances accurately. In
order to do so, a learning set D which consists of a number
of training instances, i.e., (xn, yn), n = 1, 2, . . . , N , is given
in advance, from which the learning algorithm can construct a
decision theory. Here, each single instance (xn, yn) is charac-
terized by a set of M attribute values xn = 〈a1, a2, . . . , aM 〉
and one class label yn, yn ∈ {c1, c2, . . . , cL} (the notation of
all the symbols is explained in Table I). The problems of data
imperfections rise from the reality that attribute values xn

and class label yn might be corrupted and contain incorrect
values. Under such circumstances, incorrect attribute values and
mislabeled class labels thus constitute attribute and class noises.
Extensive research studies have shown that the existence of
such data imperfections is mainly responsible for inferior deci-
sion theories [1], [23], [24], and eliminating highly suspicious
data items often leads to an improved learner [5], [6], [25], [26]
(compared with the one learned from the original noisy dataset),
because of the enhanced data consistency and less confusion
among the underlying data. Such elimination approaches are
commonly referred to as data cleansing [7], [27], [28]. Data
cleansing methods are effective in many scenarios, but some
problems are still open.

1) Data cleansing only takes effect on certain types of
errors, such as class noise. Although it has been demon-
strated that cleansing class noise often results in better
learners [5], [6], for datasets containing attribute noise or
missing attribute values, no evidence suggests that data
cleansing can lead to improved data mining results.

1083-4427/$25.00 © 2008 IEEE
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TABLE I
SYMBOLS USED IN THIS PAPER

2) Data cleansing cannot result in perfect data. As long
as errors continuously exist in the data, they will most
likely deteriorate the mining performance in some ways
(although exceptions do exist). Consequently, the need
for developing error-tolerant data mining algorithms has
been a major concern in the area [2], [24], [29].

3) Data cleansing cannot be unconditionally applied to
any data sources. For intentionally imposed errors, such
as privacy-preserving data mining, data cleansing cannot
be directly applied to cleanse the imputated (noisy) data
records because privacy-preserving data mining intends
to hide sensitive information by data randomization. Ap-
plying data cleansing to such data could lead to informa-
tion loss and severely deteriorate the final results.

4) Eliminating noisy data items may lead to information
loss. Just because a noisy instance contains erroneous
attribute values or an incorrect class label, it does not
necessarily mean that this instance is completely useless
and therefore needs to be eliminated from the database.
More specifically, it might be true that eliminating class
noise from the training dataset is often beneficial for an
accurate learner [1], but for erroneous attribute values,
we may not simply eliminate a noisy instance from the
dataset since other correct attribute values of the instance
may still contribute to the learning process.

5) The traditional data mining framework [22], [30],
[31] (without error awareness) isolates data cleansing
from the actual mining process. Under a cleansing-
based data mining framework, data cleansing and data
mining are two isolated independent operations and have
no intrinsic connections between them. Therefore, a data
mining process has no awareness of the underlying data
errors.

In addition to data cleaning, many other methods, such as
data correction [7] and data editing [8], have also been used to
correct suspicious data entries and enhance data quality. Data
imputation [9], [32]–[36] is another body of work which fills
in missing data entries for the benefit of the subsequent pattern
discovery process. It is obvious that data cleansing, correction,
or editing all try to polish the data before they are fed into
the mining algorithms. The intuition behind such operations is

straightforward. Enhancing data consistency will consequently
improve the mining performance. Although this intuition has
been empirically verified by numerous research efforts [6],
[7], [28], [40], in reality, new errors may be introduced by
data polishing, and correct data records may also be falsely
cleansed, which lead to information loss (as demonstrated in
[6, Table 18], where cleansed data lead to inferior decisions).
As a result, for applications like medical or financial domains,
users are reluctant to apply such tools to their data directly,
unless the process of data cleansing/correction is under a direct
supervision of domain experts, or a copy of the original data is
kept separately, such that there is always a chance to turn back
to the original data [39].

On the other hand, all previous efforts on data cleansing,
editing, and correction have been primarily focused on en-
hancing the data quality for the benefit of the subsequent
mining process, and little attention has been paid to address the
challenge of unifying data quality and data mining to achieve
an improved mining result. In other words, if we can make
data mining algorithms aware of the underlying data errors, the
mining process may adjust and rectify the model produced from
the noisy data. This, however, raises two nontrivial concerns:
1) What kind of data quality or error information is available
for data mining? and 2) how can such information be integrated
into the mining process?

It is obvious that instance-based error information (i.e., in-
formation about which instance and/or which attribute values of
the instance are incorrect) is difficult to get and unavailable with
trivial endeavors, although a substantial amount of research has
been trying to address this issue from different perspectives.
However, there are many cases in reality that statistical error
information of the whole database is known a priori.

1) Information transformation errors. Information trans-
formation, particularly wireless networking, often raises a
certain amount of errors in communicated data. For error
control purposes, the statistical errors of the signal trans-
mission channel should be investigated in advance and
can be used to estimate the error rate in the transformed
information.

2) Device errors. When collecting information from differ-
ent devices, the inaccuracy level of each device is often
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available, as it is part of the system features. For example,
fluorescent labeling for gene chips in microarray experi-
ments usually contains inaccuracy caused by sources such
as the influence of background intensity [10]. The values
of collected gene chip data are often associated with a
probability to indicate the reliability of the current value.

3) Data discretization errors. Data discretization is a gen-
eral procedure of discretizing the domain of a continuous
variable into a finite number of intervals [46], [47]. Be-
cause this process uses a certain number of discrete val-
ues to estimate infinite continuous values, the difference
between the discrete value and the actual value of the
continuous variable thus leads to a possible error. Such
discretization errors can be measured in advance and,
therefore, are available for a data mining procedure [41].

4) Data perturbation errors. As a representative example
of artificial errors, privacy-preserving data mining inten-
tionally perturbs the data; thus, private information in
data records can be protected, but knowledge conveyed
in the datasets is still minable. In such cases, the level
of errors introduced is certainly known for data mining
algorithms [3], [4], [42].

The availability of the aforementioned statistical error in-
formation directly leads to the question of how to integrate
such information into the mining process. Most data mining
methods, however, do not accommodate such error information
in their algorithm design. They either take noisy data as quality
sources or adopt data cleansing beforehand to eliminate and/or
correct the errors. Either way may considerably deteriorate the
performance of the succeeding data mining algorithms because
of the negative impact of data errors and the limitations and
practical issues of data cleansing. The aforementioned observa-
tions raise an interesting and important concern on error-aware
(EA) data mining, where previously known error information
(or noise knowledge) can be incorporated into the mining
process for improved mining results.

In this paper, we report our recent research efforts toward
this goal. We will propose an EA data mining framework which
accommodates noise knowledge to enhance data classification
accuracy. By using naive Bayes (NB) classification to materi-
alize our idea, our experimental results on real-world datasets
from University of California, Irvine (UCI) machine learning
database repository [20] will demonstrate that such an EA data
mining procedure is superior to cleansing-based data mining
and can significantly improve data mining results in noisy
environments when the statistical error information is provided
beforehand.

II. RELATED WORK

Mining with noisy data has always been an active research
topic for data mining [5]–[9], [13], [14], [23], [24], [26], [28].
As most data mining algorithms crucially depend on the quality
of their input data to produce reliable models, a general consen-
sus among data mining practitioners is that low-quality data of-
ten lead to wrong decisions or even ruin the projects (“garbage
in, garbage out”) [2]. In supervised learning, noise usually takes
two forms, namely, class noise and attribute noise, depending

on whether the errors (inconsistency, contradiction, or missing
values) are introduced to the class label or the attributes [1].
Existing endeavors from data preprocessing [5]–[7] and data
quality [11] perspectives have come up with many solutions
such as class noise identification [5], [6], erroneous attribute
value location [12] and correction [7], missing attribute value
imputation [8], [9] and acquisition [13], and editing training
instances for instance-based learning [14]. An essential goal of
all these efforts is to enhance the quality of the training data
so that it can possibly benefit the mining process. Although
data cleansing is a very useful tool, in practice, it has to be
carefully applied to the data, as careless data cleansing may
deteriorate the mining performance, due to reasons such as
information loss incurred by incorrect data elimination, cor-
rection, or editing. For example, in the class noise elimination
approach developed by Brodley and Friedl [6], it is possible
that a cleansed dataset may lead to an inferior learner (in [6,
Table 18], a learner built from the cleansed dataset is inferior
to the one from the original noisy dataset). Similarly, in data
warehousing applications, one popular data cleansing technique
is data merge and purge [40] which identifies and removes
duplicated data records from databases such that they may not
bias an analysis. However, a recent report [39] suggests that
“in many cases the records in the two databases may include
some information that is unique to each, so just deleting one
of the duplicates is not always a good option as it can lead to
valuable data loss.” Therefore, “it is best to add corrections to
the database while retaining the original data in a separate field
or fields so that there is always the chance of going back to the
original information” [39].

It is true that no data processing effort can result in perfect
data, and in reality, most algorithms would still have to conduct
knowledge discovery from noisy sources, regardless of whether
they have noise-handling mechanisms or not. The problem of
learning in noisy environments has been the focus of much
attention in data mining, and most inductive learning algorithms
have a mechanism for noise handling. For example, pruning in
decision trees is designed to reduce the chance that the trees are
overfitting to noise [15]. A common practice in reducing the
noise impact is to adopt some thresholding measures to remove
poor knowledge drawn from noisy data. Although simple, this
mechanism has generated very impressive results. For example,
Integrative Windowing [17] adopts good rule selection criteria
to reduce noise impact, and instance-based learning algorithms
[18] select representative prototypes to remove poor training
samples. It is clear that in these algorithm designs, the existence
of noise has been taken into consideration, but they still follow
the same direction as data cleansing and have not realized that
noise knowledge, if carefully utilized, can be beneficial for the
mining process. Different from the existing research efforts,
our objective is to let a data mining process be aware of the
underlying data errors and make use of this information instead
of simply removing or correcting data errors.

Recent research in privacy-preserving data mining has raised
an issue of perturbing data entries to protect privacy and main-
tain data mining performance, where randomization is a pop-
ular mechanism for this purpose. The intuition behind it is to
intentionally introduce errors (often in the form of randomness)
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into sensitive data entries and to reveal randomized information
about each record in exchange for not having to reveal the
original records to anyone [3], [4]. Although the data records
were modified, the imposed randomness was controlled so that
knowledge in the dataset is still minable, with a little sacrifice
in performance. Such a randomization procedure requires a
compromise between the levels of privacy that the system tries
to protect and the mining performance from the perturbed data.

1) As randomization can eventually ruin useful knowledge
in the dataset, the level of perturbations should be well
controlled to avoid making a perturbed dataset totally
useless.

2) The distribution of the errors is available for both data-
base managers and data mining practitioners, as without
this information, the mining results would deteriorate
significantly. For example, normally distributed data per-
turbations are often adopted for numerical attributes.

For categorical attributes, Du and Zhan [4] adopted random-
ized response techniques to scramble the original data entries
for privacy-preserving data mining. This method assumes that
attributes contain binary values only, and the values are col-
lected in such a way that the information providers tell the truth
about all their answers to sensitive questions with the probabil-
ity θ and that they tell the lie about all their answers with the
probability 1 − θ. For example, if the original attribute values
were a1 = 1, a2 = 1, and a3 = 0, then there are θ chances
that all these values remain unchanged (users telling the truth),
and there are 1 − θ chances that all values were flipped to
a1 = 0, a2 = 0, and a3 = 1 (users lying). The assumption of
this approach, however, is too strong as it assumes that once
users decided to lie, they will lie on all questions, which is
hardly the case in practice. In fact, users may randomly tell
the truth or lie on each single question, i.e., lying on attribute
a1 but telling the truth on attribute a2 or vice versa. Thus,
the perturbation introduced to each attribute (question) may
be totally independent. In our system, we consider realistic
cases where perturbations are randomly and independently
introduced to each attribute.

III. EA DATA MINING FOR NB

A. NB Classification

In supervised learning, each instance is described by a vector
of attribute values. A set of instances with their classes are
provided as the training data, where each instance in the training
data is denoted by a vector of attribute values xk and a class
label yk, i.e., Ik = (xk, yk). Given a test instance In with an
unknown class label yn, i.e., In = (xn, ?), the learner is asked
to predict In’s class label according to the evidence provided
by the training data.

By assuming that P (Y = cl|In) denotes the probability that
example In belongs to class cl, the Bayes theorem can be
used to optimally predict the class label of a previously unseen
example In, given a set of training examples in advance. Ac-
cording to Bayes theorem, the expected classification error can
be minimized by choosing the maximal posterior probability,

i.e., arg maxl{P (Y = cl|In)}. Given an example In, the Bayes
theorem provides a method to compute P (Y = cl|In) with

P (Y = cl|In) =
P (Y = cl) · P (X = xn|Y = cl)

P (X = xn)
. (1)

By assuming that attributes xn = 〈a1, a2, . . . , aM 〉 are con-
ditionally independent given the class label, the conditional
probability in (1), i.e., P (X = xn|Y = cl), can be decom-
posed into the product P (a1|cl) × P (a2|cl) × · · · × P (aM |cl),
where M is the number of attributes of the dataset. Then, the
probability that an example In belongs to class cl is given by

P (Y = cl|In) =
P (Y = cl) ·

∏M
i=1 P (X = ai|Y = cl)

P (X = xn)
(2)

which can be rewritten as (3) to avoid the product of the condi-
tional probability

∏M
i=1 P (X = ai|Y = cl) quickly vanishing

to zero.

P (Y =cl|In)∝ log (P (Y =cl))+
M∑
i=1

log (P (X =ai|Y =cl)) .

(3)

The (naive and strong) conditional independence assumption
renders a classifier, i.e., an NB classifier, obtained by using
the discriminant function in (2). The conditional independence
assumption embodied in (2) makes the NB classifiers very
efficient for large datasets because an NB classifier does not
use attribute combinations as a predictor and can be constructed
by only one scan of the dataset with a linear time complexity.
Although the assumption of conditional independence among
attributes is often violated in reality, the classification perfor-
mance of NB is surprisingly good compared with other more
complex classifiers [19], particularly when dealing with noisy
datasets [37] (in Section IV-B, we will also demonstrate that, on
average, NB is indeed more robust to data errors compared with
C4.5 decision trees [15]). Because of these nice features, NB
has been popularly applied to solve many real-world problems,
including text classification [43] and mining housekeeping
genes from biological data [38].

In noisy environments, erroneous attribute values will change
conditional probabilities P (X|Y = cl), l = 1, . . . , L, and then
deteriorate NB’s performance. The objective of EA data mining
for NB classification is to let the NB be aware of the overall
characteristics of the underlying data errors and then attempt
to restore the original conditional probabilities and improve an
NB classifier. In the case that errors exist in the class label as
well, the same approach should be adopted to restore priori
probability P (Y = cl), l = 1, . . . , L.

Throughout this paper, error and noise are two equivalent
terms that we use to denote erroneous (incorrect) values of the
training examples, and errors or noise that we define here do
not include missing values.

B. Data Distribution Restoration for NB

Assume that the previously known noise level in attribute ai

is denoted by pi and that noise in each attribute is uniformly
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Fig. 1. Random value transformation for the attribute value aij .

distributed. A noise level pi indicates that for any particular
attribute value, for example, aij , it has a pi probability of
being randomly corrupted to any other values ai1, . . . , aiMi

,
including itself. Thus, for any two values aij and aik, aij has a
pi/Mi probability of being changed to aik and vice versa. Such
a random transformation model for attribute value aij is shown
in Fig. 1.

Given a dataset D with |D| instances, assume that it was
corrupted from an error-free dataset E (which does not exist).
Let |Dij | and |Eij | denote the numbers of instances in D and E,
respectively, which contain the attribute value aij . When noise
is uniformly distributed, as shown in Fig. 1, for any attribute ai,
the relationship between |Dij | and |Eij |, j = 1, 2, . . . ,Mi, can
be expressed as

|Di1| = |Ei1| ·
(

1 − pi +
pi

Mi

)
+ · · · + |Eij | ·

pi

Mi
+ · · ·

+ |EiMi
| · pi

Mi

· · ·

|Dij | = |Ei1| ·
pi

Mi
+ · · · + |Eij | ·

(
1 − pi +

pi

Mi

)
+ . . .

+ |EiMi
| · pi

Mi

· · ·
|DiMi

| = |Ei1| ·
pi

Mi
+ · · · + |Eij | ·

pi

Mi
+ · · ·

+ |EiMi
| ·

(
1 − pi +

pi

Mi

)
. (4)

Equation (4) can be written in a matrix form as

A · X = B (5)

where

A =


1 − pi + pi

Mi
· · · pi

Mi
· · · pi

Mi

· · ·
pi

Mi
· · · 1 − pi + pi

Mi
· · · pi

Mi

· · ·
pi

Mi
· · · pi

Mi
· · · 1 − pi + pi

Mi

 B =


|Di1|
· · ·
|Dij |
· · ·
|DiMi

|

 .

As we hold the corrupted dataset D, we can easily calculate
the value of |Dij |, j = 1, . . . ,Mi (the number of instances in
D which contain the attribute value aij). Because noise level pi

is known as well, (5) is just a set of linear functions consisting

of Mi variables |Eij |, j = 1, . . . ,Mi, and Mi functions, which
can be easily solved to estimate |Eij |, i.e., the number of
instances in E which contain the attribute value aij .

The results from (5) can only estimate the number of in-
stances with respect to (w.r.t.) each attribute value, regardless
of the class label. This information is not sufficient to solve our
problem, as NB needs to estimate the conditional probability
given a particular class Y = cl, P (X|Y = cl). For this purpose,
we transform (5) by pushing constraints onto the class labels.

By assuming that the number of instances in E, which
contain the attribute value aij and the class label cl, is denoted
by |Ecl

ij |, and the same type of instances in the corrupted dataset
D is denoted by |Dcl

ij |, (5) can be rewritten as follows:

A · (X1 + X2 + · · · + Xl + · · · + XL)

= B1 + B2 + · · · + Bl + · · · + BL (6)

where

Xl = [ |Ecl
i1| |Ecl

i2| . . . |Ecl

iMi
| ]

Bl = [ |Dcl
i1| |Dcl

i2| . . . |Dcl

iMi
| ]T

B = B1 + B2 + · · · + BL.

Equation (6), however, is unsolvable, as there are L · Mi

variables (|Ecl
ij |, l = 1, . . . , L, j = 1, . . . ,Mi, i ∈ [1,M ]) but

Mi functions only, although we know exactly the values of
B1, . . . , BL. An alternative is to decompose (6) into a series of
linear functions associated to each single class, as denoted by

A · X1 = B1

A · X2 = B2

· · ·
A · XL = BL

X1 + X2 + · · · + XL = X.

(7)

The rationale of (7) lies in the assumption that errors are
randomly and independently distributed across all attributes;
thus, instances in each class suffer from almost the same level of
errors. Once the number of instances is large enough, estimating
the attribute value distribution from an instance subset or from
the whole dataset does not bring much difference. In the case
that errors exist in the class label as well, the decomposed
equations in (7) may still hold, as long as noise is randomly
distributed across all classes.

Since (7) estimates the attribute value distributions w.r.t. each
class, it may possibly result in higher estimation errors for
classes with a very limited number of examples. Considering a
binary-class dataset where the class containing the least number
of instances is defined by the minority class and the other class
is defined by the majority class, because the minority class has
a very limited number of instances, it is hard to assess whether
noise in this small number of instances indeed complies with
the transformation model in Fig. 1. As a result, for the minority
class, the estimated values (|Ecl

ij |, l = 1, . . . , L, j = 1, . . . ,Mi)
can be seriously biased. Although we cannot do much to
improve this shortfall, NB has inherently accommodated this
issue. In (1), the priori probability P (cl) also takes part in the fi-
nal decision, and the final decision error is the product between
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Fig. 2. EA-NB classification model.

the bias of the conditional probability Bias(P (X|Y = cl)) and
the priori probability P (cl). Although classes with a small
number of training examples may have a larger Bias(P (X|Y =
cl)), they actually have less P (cl). Consequently, the bias from
the minority classes can be controlled and should not bring a
large impact to the final results.

C. EA-NB Classification

With the aforementioned analysis, we can estimate the
value of the original attribute distribution (|Ecl

ij |, l = 1, . . . , L,
j = 1, . . . ,Mi, i = 1, . . . ,M), w.r.t. the constraint of each
class cl, l = 1, . . . , L. This value can be directly used as the
conditional probability P (X|Y = cl). As NB assumes that all
attributes are conditionally independent given the class label,
we can repeat the same process for each attribute and use the
estimated conditional probabilities for final classification. The
pseudocode of the whole algorithm is shown in Fig. 2.

Because the EA-NB model in Fig. 2 processes each attribute
independently, errors inside each attributes are also considered
independently. In other words, even if different attributes suffer
from different levels of errors, EA-NB would still be able to
restore data distributions for each of them.

D. Data Distribution Restoration From a General
Transformation Model

The transformation model in Fig. 1 assumes that errors
are uniform across all attribute values, and data distributions
are consequently restored from a similar model to solve our
problem. In reality, errors can be biased toward some specific
attribute values, i.e., some attribute values tend to be more
error prone than others. We illustrate, in this section, that as
long as the statistical error information across different attribute
values is known in advance, EA-NB can still be applied to solve

Fig. 3. General transformation model for the attribute value aij .

the problem. More specifically, given an attribute ai with Mi

values ai1, ai2, . . . , aiMi
, assuming that errors across the Mi

attribute values are nonuniform and that an attribute value aij

has qi
jk probability of being corrupted as another value aik,

as shown in Fig. 3, then for any particular attribute value
aij , its probability of remaining the same value unchanged
is qi

jj = 1 − (qi
j1 + · · · + qi

jk + · · · + qi
jMi

), k �= j. A general
transmission matrix qi for attribute ai can then be denoted by
(8), where the diagonal elements denote the probabilities that
an attribute value remains the same value unchanged.

qi =


qi
11, . . . , q

i
1k, . . . , qi

1Mi

. . .
qi
k1, . . . , q

i
kk, . . . , qi

kMi

. . .
qi
Mi1

, . . . , qi
Mik

, . . . , qi
MiMi

 (8)

where

qi
jj = 1 −

(
qi
j1 + · · · + qi

jk + · · · + qi
jMi

)
,

j = 1, . . . ,Mi, k �= j. (9)
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Considering (8) and the data restoration model in (4), we can
easily derive a data restoration model, as denoted by

|Di1| = |Ei1| · qi
11 + · · · + |Eij | · qi

1j + · · · + |EiMi
| · qi

1Mi

· · ·

|Dij | = |Ei1| · qi
j1 + · · · + |Eij | · qi

jj · · · + |EiMi
| · qi

jMi

· · ·

|DiMi
| = |Ei1| · qi

Mi1
+ · · · + |Eij |

· qi
Mij

+ · · · + |EiMi
| · qi

MiMi
. (10)

Because the statistical error information is assumed to be
available in advance, (10) can be transformed into a set of linear
functions as the ones shown in (5) [the difference is that matrix
A is now given by (8)]. Thus, the approach that we discussed in
Section III-B can still be used to solve the problem. However,
different from the error model in Fig. 1, the model in Fig. 3
indicates that the overall error rate for attribute ai is determined
by the error rate w.r.t. each attribute value aij , along with
the percentage of instances having different attribute values.
From (10), we can directly estimate the number of instances
w.r.t. each attribute value aij , |Eij |. Based on all estimated
values, we can denote the overall error rate of attribute ai,
pi, by (11), where N is the total number of instances in
the training set, and qi

jj = 1 − (qi
j1 + · · · + qi

jk + · · · + qi
jMi

),
j = 1, . . . ,Mi, k �= j. The expression pi is given in (11), shown
at the bottom of the page.

The model in (8) can be reasonably relaxed by assuming
that transformation probability values between two attribute
values aij and aik are symmetric, i.e., qi

jk = qi
kj , which leads

to a symmetric qi matrix. In Section IV-D, we will report
experimental results from the general transformation model and
assess the algorithm performance under circumstances such as
a data transformation model is slightly and severely inaccurate.

IV. EXPERIMENTAL EVALUATIONS

To evaluate the performance of the proposed EA-NB clas-
sification design, we implemented both NB and EA-NB. In
our implementation, most NB classifications are based on the
discriminant function in (2), and in the case that class distri-
butions of the dataset become undistinguishable (e.g., when
datasets have many attributes), we use (3) instead. We evaluate
our approach on ten benchmark datasets from the UCI database
repository [20], where each numerical attribute is discretized
with equal-width discretization approach. Although other com-
plex discretization methods [46], such as equal frequency or
supervised discretization algorithms [47], are reported to have
a better performance than equal-width discretization, since

we are interested in the relative improvement of EA-NB in
comparison with NB, we believe that the impact of the inferior
discretization model can be ignored as long as we are using the
same discretization method for both EA-NB and NB. For this
reason, we chose a simple equal-width discretization method
instead where each attribute was discretized into a fixed number
of bins (ten bins in our experiments).

The main characteristics of our benchmark datasets and their
tasks are described in Table II. The number of instances in
these datasets varies from about 100 (zoo) to about 50 000
(adult), and the number of attribute values varies from 6 (car)
to 60 (splice), which gives us a chance to observe EA-NB’s
performance from different perspectives, e.g., the performance
on very sparse to relatively dense datasets.

The datasets in the UCI database repository have been care-
fully examined by domain experts; thus, they do not contain
much noise (at least we do not know which instances and
which attribute values are erroneous). For comparative studies,
we adopt both the random corruption model in Fig. 1 and
the general transformation model in Fig. 3 to manually inject
errors into the attributes, and then, we observe the performance
of different methods on corrupted datasets. For simplicity,
majority of the experimental results are based on the random
corruption model in Fig. 1 (thus, we do not need to take care of
the transformation probabilities across different attribute values
but to simply specify a noise level value for each attribute). For
a more extensive comparison, in Section IV-D, we will also
report the general transformation model-based (Fig. 3) results
from two datasets.

With random corruption model in Fig. 1, given a noise level
pi, an attribute value aij has a chance of pi to be changed
to any other random value (including itself). Thus, the actual
noise level in ai is pi − pi/Mi, which is always lower than
the designed value. With the same noise level pi, the more
the number of attribute values, the higher the overall noise
level in the attribute. As we assume that noise is uniformly
distributed among all attribute values, it would bring a much
smaller impact on attributes with a large number of values than
those that have, for example, only two attribute values. On the
other hand, to estimate the original attribute distribution from
a corrupted dataset, a higher estimation accuracy is expected
from the attribute with a smaller number of attribute values
compared with other attributes in the same dataset. The reason
is that when the number of attribute values increases, it will be
more and more difficult to generate a truly random distribution
across all values, given a limited number of training examples.
Thus, the noisy dataset might be biased and does not comply
with the intended error distributions. We will discuss this part
of the results in Section IV-A.

With the general transformation model in Fig. 3, the actual
noise level in an attribute ai is determined by (11). In our
experimental results in Section IV-D, we follow (8) and control

pi =
|Ei1| ·

(
1 − qi

11

)
+ · · · + |Eij | ·

(
1 − qi

jj

)
+ · · · + |EiMi

| · (1 − qi
MiMi

)
N

(11)
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TABLE II
BENCHMARK DATASETS USED FOR EVALUATION

TABLE III
CLASSIFICATION ACCURACY COMPARISON

the transformation matrix and then use EA-NB to restore the
original data distributions and build an NB classifier.

The majority of our experiments are designed to assess the
performance of the proposed EA-NB in noisy environments
in comparison with the original NB classifiers trained from
the same dataset. For each experiment, we perform a tenfold
cross validation ten times and use the average accuracy as
the final result. In each run, the dataset is randomly (with a
proportional partitioning scheme) divided into a training set
and a test set. The error corruption model was applied to
the training set, and this corrupted dataset was used to build
the NB and EA-NB classifiers. All the learners are tested

on the test set to evaluate their performance. In the follow-
ing sections, we will mainly analyze the results on several
representative datasets. The summarized results are reported
in Table III.

A. Attribute Value Distribution Estimation

We first conduct an empirical study to assess the proposed ef-
fort in estimating the original attribute value distribution |Ecl

ij |,
as it is the key to ensure EA-NB’s success. For this purpose,
we adopt the following two approaches to characterize the
estimation errors: a global estimation error and an estimation
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error w.r.t. the number of attribute values, which are defined in
(12) and (13), respectively.
Global estimation error:

OrgGlbErr =
1

L · M

L∑
l=1

M∑
i=1

 1
Mi

Mi∑
j=1

∥∥Ecl
ij | − |Dcl

j

∥∥
EstGlbErr =

1
L · M

L∑
l=1

M∑
i=1

 1
Mi

Mi∑
j=1

∥∥∥Ecl
ij | − |Ẽcl

ij

∥∥∥
 (12)

Estimation error w.r.t. the number of attribute values:

OrgAttErr(n) =
1

L · M(n)

L∑
l=1

M∑
i=1

 1
Mi

Mi∑
j=1

∥∥Ecl
ij | − |Dcl

ij

∥∥
Ai∈Ω(n)

EstAttErr(n) =
1

L · M(n)

L∑
l=1

M∑
i=1

 1
Mi

Mi∑
j=1

∥∥∥Ecl
ij | − |Ẽcl

ij

∥∥∥


Ai∈Ω(n)

(13)

where Ω(n) = {Ai|Mi = n, i = 1, . . . , M}, and M(n) is the
number of attributes in the subset Ω(n).

As defined by (11), OrgGlbErr indicates the average dif-
ferences between the distributions of the clean dataset (Ecl

ij )
and the corrupted dataset (Dcl

ij) w.r.t. the class cl. EstGlbErr
represents the average differences between the estimated distri-
butions (Ẽcl

ij ) and the distribution of the clean dataset (Ecl
ij ).

This value indicates, on average, how close is the estimated
distribution to the true value. Meanwhile, we also adopt an
error w.r.t. the number of attribute values to characterize the
estimation error from the attributes with different numbers
of attribute values. Given a value n, we first build a subset
Ω(n), which consists of all attributes with their attribute value
number equaling to n, and the number of attributes in Ω(n)
is denoted by M(n). EstAttErr(n) therefore calculates the
estimation errors from the attributes with the same number of
values. We hope that this measure can help us explore what
types of attributes are more difficult for estimation.

We use mushroom dataset as our testbed. The reason is
twofold: 1) The instance number in mushroom (more than
8000) is good enough to simulate the random corruption, as a
small number of instances often cannot capture randomization
effectively, and 2) the number of attribute values in mushroom
varies from 2 to 12, which is perfect to assess the estimation
error for attributes with different numbers of attribute values.

Fig. 4 shows the global estimation errors from the mushroom
dataset at different noise levels pi. As noise continuously in-
creases, the differences between the original and the corrupted
datasets (OrgGlbErr) linearly increase. With the proposed ef-
fort, we can certainly reduce the amount of errors, where
the improvement could be as significant as ten times better
(e.g., when pi = 0.2, OrgGlbErr and EstGlbErr are equal to
0.196 and 0.019, respectively). When noise becomes radical,
EstGlbErr value slightly deteriorates. One possible reason is
that randomness has dominated the corrupted dataset D, and it

Fig. 4. Global estimation error (mushroom dataset).

Fig. 5. Estimation error w.r.t. the number of attribute values (Pi = 0.3,
mushroom dataset).

eventually impacts on the restoring procedures which work on
D. However, even if with 90% of attribute noise, the errors of
the restored distribution can still be three times less than those
of the unprocessed corrupted dataset D.

We present the estimation error w.r.t. the number of attribute
values in Fig. 5, where the number of attribute values varies
from 2 to 12 (except 5 and 11, as the mushroom dataset does
not have attributes with these two numbers of values), and the
noise level pi is set to 0.3. As we can see, the effectiveness of
the proposed effort can be observed from all types of attributes,
regardless of how many possible values they have. Because
actual noise level in the dataset is pi − pi/Mi, theoretically,
the more the number of attribute values, the higher level the
noise is actually contained in the dataset, given the same noise
level pi. However, Fig. 5 shows that the impact from this factor
does not appear to be significant, as OrgAttErr(n) does not
show any trend of increase across all the values of n. This
indicates that the variance of noise, which is caused by different
numbers of attribute values, can be ignored. On the other hand,
EstAttErr(n) in Fig. 5 shows a clear trend of increase as the
number n becomes larger. This trend can be further verified
in Fig. 6, where we compare the results at three noise levels
(pi = 0.1, 0.3, and 0.5). This indicates that restored distribu-
tions for attributes with a large number of attribute values can
be less accurate in comparison with the attributes with a small
number of possible values. As with a large number of attribute
values, the corruption model has more choices in flipping the
attribute value, which will ultimately bring more difficulty to
the restoration process. In Figs. 5 and 6, the abnormal value
from n = 7 was caused by the only attribute containing missing
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Fig. 6. Estimation error comparison w.r.t. the number of attribute values
(mushroom dataset).

values, which is the stalk root, which contains seven possible
values (including the missing value).

In summary, our empirical study here indicates that the
proposed effort can indeed estimate the original data distrib-
ution from noise-corrupted datasets, which essentially assures
the performance of EA-NB. In addition, we observed that the
noise variance caused by different numbers of attribute values,
under the same level of random corruption, does not bring
much impact and, therefore, can be ignored. Meanwhile, as the
number of attribute values increases, it will continuously bring
more difficulty to our algorithm and result in higher estimation
errors.

B. Classification Accuracy Comparisons Under a Uniform
Corruption Model

To evaluate the performance of EA-NB under a uniform
corruption model (Fig. 1), we design the following experiments.
Given a dataset E, we first train an NB classifier and denote
its classification accuracy by “Original.” We then introduce a
certain level of noise into E to build a corrupted dataset D
and learn another NB classifier from D with its performance
denoted by “Corrupted.” With D and a noise level pi, we can
build an EA-NB classifier, which is represented as “EA-NB.”
Since in noisy environments, data cleansing is often adopted to
enhance data quality and improve the classification accuracy,
we therefore apply a data cleansing method [5] on D to remove
all misclassified examples, and we build another NB classifier
from the cleansed dataset. The performance of this NB classifier
is expressed as “Cleansing.”

We compare the performance of the aforementioned four
classifiers at different noise levels pi ∈ [0.1, 0.5] and report
the detailed results from four representative datasets in Fig. 7,
where the x-axis represents the noise level pi, and the y-axis
indicates the classification accuracy. The summarized results
from six other datasets are reported in Table III. To justify
the performance of the NB classifier implemented by ourselves
and to show that NB is indeed robust in noisy environments,
we also report the results of C4.5 in Table III so that we
can comparatively study NB and EA-NB. To ensure that the
observations we made are statistically significant, we report
the t-test results (p-value) between the accuracies of NB and
EA-NB by using accuracies from a ten-time cross validation. A

statistically significant difference (less than 5%) is marked in
bold text in Table III.

As shown in Fig. 7, errors have a negative impact on the
learners built from noisy datasets. This is a common sense as
corrupted datasets no longer reveal genuine data distributions
and will confuse the NB classifiers from making correct deci-
sions. It is worth noting that different datasets react differently
to the same level of noise. A small portion of noise can seriously
deteriorate an NB learner (e.g., for the car and splice datasets
in Fig. 7), or a significant amount of noise may still do not
have much impact at all (e.g., for the adult and nursery datasets
in Table III). We believe that this is an intrinsic feature of a
dataset, which is determined by factors such as the instance
numbers and the complexity of the concepts in the dataset.
Meanwhile, as NB is a typical statistical learner, noise normally
does less harm to it compared with other nonstatistical learning
mechanisms (as shown in Table III, where C4.5 usually dete-
riorates much faster than NB). Generally, for a dataset with a
large number of instances and containing a significant amount
of redundancy, the existence of errors does less harm, as the
genuine data distributions can be restored from just a small
portion of the data. On the other hand, for a dataset with a very
limited number of instances and when each instance appears to
be necessary for classification, adding a small amount of errors
can make considerable changes to the NB classifier because
errors in this case can easily modify data distributions and
confuse NB learners. Overall, our observation concludes that
NB is relatively robust to data errors compared with its other
peer C4.5. This conclusion is consistent with the observations
from [37].

When noise is introduced to the attributes, data cleansing is
not an effective solution to improve data mining performance.
For many datasets that we used, the learners trained from the
cleansed dataset “Cleansing” are inferior to the ones trained
from the original noisy datasets “Corrupted,” where the results
of “Cleansing” can be as worse as 7% less than the accuracy of
“Corrupted” (the absolute accuracy difference). This complies
with the previous observations from Quinlan [16]. The negative
impact of data cleansing may come from two possible reasons:
1) Removing suspicious instances, which do not comply with
the existing model, may inevitably eliminate good examples
and incur information loss, and 2) just because some attribute
values are erroneous, it does not necessarily mean that the
whole instance is useless, and many other attribute values of the
noisy instance may still benefit the learning theory; therefore,
it cannot be simply removed. The impact of these two factors
becomes extremely clear if the accuracy of the underlying
learner is low, as shown in Fig. 7(d). If a learner has only
50% accuracy, it means that half of the removed instances are
actually good, and this explains the reason why data cleansing
may introduce information loss.

When incorporating statistical error information for the EA-
NB classification, we can achieve, on average, a good improve-
ment in the classification accuracy (as shown in “EA-NB” and
“Corrupted”). Take the car dataset in Fig. 7(a) as an example,
where the accuracy of EA-NB is 10% higher than the learner
from the corrupted dataset. Similar results can be observed
from many benchmark datasets, where EA-NB, on average,
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Fig. 7. Classification accuracy comparison. (a) Car dataset. (b) Splice dataset. (c) Mushroom dataset. (d) Glass dataset.

performs better than a learner built from corrupted datasets.
From 3 × 6 = 18 observations in Table III, we can find that
12 out of the 18 observations are statistically significant. Be-
cause EA-NB has higher mean accuracy on these 12 observa-
tions, it is safe for us to conclude that EA-NB is significantly
better than NB on these datasets. The results from Fig. 7 and
Table III suggest that the higher the noise level in the datasets,
the more improvement can be observed (when the noise level
is less than 50%). This indicates that although data errors
continuously bring an impact to the learning theory, having a
data mining process aware of the data errors can reduce noise
impact and enhance mining results.

Because EA-NB relies on the statistical error information
to ensure the success of the algorithm, a limited number of
training instances may be insufficient to restore the original
data distribution. For this purpose, we intentionally selected
three datasets with a small number of instances (glass, wine,
and zoo). Our results from glass (214 examples and 7 classes),
wine (178 examples and 3 classes), and zoo (101 instances
and 7 classes) indicate that even with a very limited number
of instances, the proposed effort can still function well and
achieve impressive results. The performance of EA-NB is not
just determined by the total number of training examples in
the dataset but also relies on the number of attribute values
for each attribute. Take the zoo dataset as an example. If
we evenly divide 101 instances by seven classes, each class
would only have about 15 instances on average. An attribute
with five attribute values would have three instances for each
attribute, respectively. This would lead to a severe bias for EA-
NB to estimate the original data distribution even if we know

the parameters of the data transformation model perfectly. In
reality, the 15 nominal attributes of zoo are all Boolean, and
the first two classes contain about 60.4% of instances in the
dataset, which makes an accurate data restoration for EA-NB
possible. In short, our results from the three spare datasets
indicate that it is possible for the EA data mining to receive a
good performance on small datasets, although the nature of EA
data mining suggests that it prefers datasets with a relatively
large number of training examples.

C. Classification Performance Under Inexact Noise Levels

EA-NB considers the noise level pi as priori knowledge
given by users. In reality, a user-specified pi value may be
different from the actual noise level in the dataset. If a tiny
difference between the user-specified value and the actual
noise level in the database would bring a considerable impact
to the system performance, we should then find solutions to
enhance the robustness of our algorithm. For this purpose, we
adopt the following approach to perturb the user-specified noise
level pi.

Given a noise level pi, we first use this value to con-
struct a noisy dataset D. When learning an EA-NB classi-
fier from D, we intentionally change the noise level pi as
pi + ϑ · d · pi, where ϑ is a random variable with a 50%
chance of equaling to +1 or −1, respectively, and d is an-
other random variable which controls the difference (the ab-
solute value) between the user-provided value and the genuine
noise level in attribute ai. This approach simulates situations
where users can only roughly guess the noise level in each



928 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 4, JULY 2008

Fig. 8. Classification performance comparisons under inexact noise levels (uniform transformation model). (a) Splice dataset. (b) Car dataset. (c) Krvskp dataset.
(d) Mushroom dataset.

attribute. Note that with the aforementioned perturbation, the
noise uncertainty range (ϑ · d · pi) is proportional to the ac-
tual noise level of attribute ai, such that the relative values
of the inexact noise levels for different noise levels (pi) are
consistent.

In Fig. 8, we show the results from four representative
datasets, namely, Krvskp, car, splice, and mushroom, with
different values of d. We set the value of d from 0 to 0.5, which
means that the perturbation amplitude varies from 0% to 50%
of the original noise level, and we provide the results at four
values, namely, 0, 0.1, 0.3, and 0.5 (as different d values do not
result in significant changes in Fig. 8(b), we ignore the result
from d = 0.3).

As shown in Fig. 8, when the user-specified noise level is
different from the actual noise level in the database, EA-NB
deteriorates for sure, as inaccurate noise knowledge misleads
EA-NB to build a biased model. For a slightly different noise
value, e.g., d = 0.1, the impact is not significant. However,
the higher the amplitude of the perturbation, the more severely
the system will deteriorate. Depending on the intrinsic char-
acteristics of each dataset, the deterioration of the system
performance varies significantly. Take datasets in Fig. 8 as
examples. When the maximum perturbation amplitude is 50%,
i.e., d = 0.5, the system from the car dataset deteriorates only
0.8% in its performance in comparison with the results without
any perturbation. On the other hand, with the same level of
perturbation, the results from Krvskp are almost totally ruined
and become approximately the same as the results from the
corrupted dataset. Determining what types of datasets are more
sensitive to such a perturbation is a nontrivial task and requires
intensive studies on the complexity of the underlying concepts,
the data redundancy, and the interactions among attributes,

which are beyond the coverage of this paper. However, our
observations from four representative datasets indicate that, as
long as user-specified values are close to the actual noise level
in the dataset (e.g., no more than 30%), the proposed effort can
still achieve impressive results and outperform a learner trained
from noise-corrupted datasets. This shows that EA-NB is pretty
robust in reality and can accommodate deviations in the users’
input for effective mining.

D. Classification Accuracy Comparison Under a General
Transformation Model

To assess EA-NB’s performance under a general transfor-
mation model, we design the following experiments. For any
attribute value aij of ai in the dataset, we first assume that its er-
ror rate is α · 100%, but the errors are not uniformly distributed
across all other attribute values. For this purpose, we randomly
choose another attribute value of ai (excluding aij), for exam-
ple, aik, and we assign a transformation probability α/2 to qi

jk,
i.e., qi

jk = α/2. This means that an instance containing value
aij has qi

jk = α/2 probability of being corrupted as value aik.
For any remaining attribute of ai (excluding aij and aik), for
example, ail, we assign a uniform transformation probability to
it, i.e., qi

jl = α/2(Mi − 2), which means that aij has a uniform
probability of qi

jl = α/2(Mi − 2) to be transformed to any
other attribute ail, l = 1, 2, . . . ,Mi, l �= j, l �= k. If an attribute
has two attribute values only, we will assign qi

jl = α to ensure
that the sum of the transformation probabilities is equal to one.
Take an attribute ai with four attribute values {1, 2, 3, 4} as an
example, where an attribute value has about α · 100% errors
on average. For an attribute value “one,” by assuming that we
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Fig. 9. Classification performance comparison under inexact noise levels (general transformation model). (a) Splice dataset. (b) Car dataset.

randomly select another attribute value “three” and assign α/2
to it, then the transmission matrix for a11 is denoted by

qi
1 = [1 − α, α/4, α/2, α/4]. (14)

We continue the same process for all other attribute values,
and eventually, the transmission matrix for attribute ai is
denoted by

qi = [ qi
1, qi

2, qi
3, qi

4 ]T . (15)

We generate this qi matrix in each run of the cross validation
and use it to corrupt the learning set. Because of the random
process in choosing the attribute value aik, the qi matrix in each
run of the cross validation is not the same. When restoring data
distribution, we also assume the existence of some uncertainties
in the user-specified qi matrix, which is given by

q̃i = [ qi
1, qi

2, qi
3, qi

4 ]T + [βi
1, βi

2, βi
3, βi

4 ]T (16)

where

βi
1 = [0, ϑ · d · α/4, ϑ · d · α/2, ϑ · d · α/4] (17)

q̃i
jj = 1 −

(
q̃i
j1 + · · · + q̃i

jk + · · · + q̃i
jMi

)
,

j = 1, . . . , Mi, k �= j. (18)

In (17), ϑ is a random variable with a 50% chance of equaling to
+1 or −1, respectively, and d is a random variable specified by
the user to control the accuracy of the user-specified q̃i matrix
(compared with the genuine transformation matrix qi). If d = 0,
the user-specified matrix q̃i is identical to the underlying data
transformation model qi. Because of the random process in
(17), the sum of the pertubated probabilities in each row of
q̃i may not be equal to one. Thus, we use (18) to ensure that
the sum of each attribute’s transformation probabilities is equal
to one.

In Fig. 9, we show the results from two datasets with different
parameter settings, where the x-axis (alpha value) denotes the
value of α. Comparing the curves of d = 0 in Fig. 9 with the
curves of d = 0 in Fig. 8(a) and (b), we can find that the results
from the general transmission matrix are slightly worse than
those from a uniform error corruption model. We believe that
this is mainly because the complexity of the underlying data
correction model (compared with the previous simple uniform

model) raises a new challenge for EA-NB to exactly restore
the original data distribution. In addition, when errors are no
longer uniformly distributed across all attributes, it might lead
to high estimation errors on some particular attribute values,
which might be more informative for classification (compared
with other attribute values). As a result, the overall classification
accuracy will drop accordingly. However, the results in Fig. 9
indicate that EA-NB is still capable of restoring the original
data distributions most of the time, unless the user-specified
model is severely inaccurate, such as d = 0.5, where the accu-
racy deterioration can be extremely severe for some datasets,
e.g., for the splice dataset which has 60 nominal attributes
where each has eight attribute values. This indicates that for a
general transmission model, the EA-NB has a high requirement
in terms of the accuracy of the model specified by the users,
and a carelessly specified model, which is significantly different
from the underlying data characteristics, may lead to inferior
decision models (compared with the ones built from the original
datasets).

V. DISCUSSION

A. Extension to Other Learning Algorithms

To demonstrate the idea of EA data mining, we have mate-
rialized an NB-based algorithm. We believe that the same idea
can be extended to many other learning algorithms, as long as
the learning algorithm is based on statistical data analysis to
induce decision theories, such as the most popular decision-tree
algorithms ID3/C4.5 [15], [16] and CART [21]. In this section,
we discuss the feasibility of extending the proposed design to
other algorithms.

For decision-tree construction, ID3/C4.5 and CART adopt
information gain, gain ratio, or the gini index, respectively, to
evaluate each attribute, and they select the most informative
attribute once a time to split data into smaller subsets. This
procedure is repeated until all instances in each subset belong
to one class or some stopping criteria are met. To ensure a good
performance, an accurate calculation of information gain and
gini index values is crucial, as incorrectly calculated values
lead to poor splitting and decrease the system performance.
With the statistical error information, we can restore the original
information gain or gini index values, which is similar to what
we have done with NB.
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Take the gini index in CART as an example. For a dataset
S with N instances and L classes, the gini index Gini(S) is
defined as Gini(S) = 1 −

∑L
l=1 f2

l , where fl is the relative
frequency of class l in S. With certain splitting criteria T ,
if we split S into two subsets S1 and S2 with sizes N1 and
N2, respectively, the gini index Gini(S, T ) is defined as

GiniSplit(S, T ) =
N1

N
Gini(S1) +

N2

N
Gini(S2). (19)

To find the “best” splitting attribute, we have to enumerate all
possible splitting points (determined by the attribute values) for
each attribute, produce a pair of subsets S1 and S2, and choose
the one with the smallest gini index for splitting.

In noisy environments, erroneous attribute values produce
incorrect class frequencies in the splitted subsets S1 and S2

and, therefore, damage the true gini index values. With error
information pi, we can estimate the original gini index values
through the following three steps.

1) Given a dataset S, for each class cl, l = 1, . . . , L, we
adopt (7) to estimate the attribute value’s original distri-
bution Ecl

ij , j = 1, . . . ,Mi; i = 1, . . . ,M .
2) Use (4) or (10) to estimate the original distribution of

attribute Ai, |Eij |, j = 1, . . . ,Mi.
3) The modified gini index of S, w.r.t. each possible split of

attribute Ai, is denoted by

GiniSplit(S, aij) =
|Eij |
N

(
1 −

L∑
l=1

|Ecl
ij |

|Eij |

)
+

N − |Eij |
N

×
(

1 −
L∑

l=1

∑Mi

k=1 |E
cl

ik|, k �= j

N − |Eij |

)
. (20)

4) Enumerate all possible splits for all attributes, and choose
the one with the smallest value for splitting.

We believe that the same approach is valid for information-
gain (or information-gain-ratio)-based algorithms as well.
However, because the statistical error information is not directly
beneficial for an accurate estimation of the genuine attribute
values of each particular instance, for algorithms like instance-
based learning [18], e.g., K-nearest neighbor classification,
where the decision is derived directly from each single instance
(instead of statistical information of the instances), the concept
of EA data mining might not be easily materialized.

B. Limitations of the Proposed Approach

The limitations of the proposed EA data mining design are
mainly derived from its dependence on the presumed error
model. This can be elaborated by the following two aspects.

First, both our uniform corruption model in Fig. 1 and
general transmission model in Fig. 3 are based on an assump-
tion that the statistical error information is given in advance,
which may not be always the case in reality, although we have
argued in Section I that such information is indeed available
in many applications. When such information is unavailable,
the applicability of the proposed design is invalid. Although

we have demonstrated that roughly guessed error information
may still lead to improved data mining results for EA-NB, our
experimental results in Fig. 9 indicated that EA-NB could de-
teriorate the system performance if the user-provided model is
severely biased or inaccurate. However, just like a cost-sensitive
learning algorithm [44] needs user-specified cost values, such
as misclassification cost or test cost, to fulfill its goal, the EA
data mining relies on the assumption that users are capable of
providing the statistical error models beforehand.

Second, the data distribution restoration models that we
proposed in Section III can only handle nominal attribute
values, and a data discretization process is thus needed for
numerical attributes. This leads to additional computations and
also suffers from potential information loss. This limitation, we
believe, can be overcome by using simple statistical analysis,
which is similar to the privacy-preserving data-mining-based
approaches [3]. For example, if we know in advance that errors
in each attribute comply with a normal distribution with a mean
µ and a standard deviation δ, such knowledge can be directly
used to restore the original distribution of the data, from which
accurate decision trees or NB models can be constructed (al-
though it is not feasible for us to accurately estimate the values
of each instance). The effectiveness of this type of solutions
has been evaluated by existing privacy-preserving data mining
algorithms [3].

There would be very little we can do if we know nothing
about the underlying data, and because of this, the proposed
EA data mining framework takes the assumption that the sta-
tistical error information is known beforehand. We argued in
Section I that in many applications, such information is avail-
able or can be easily acquired with trivial endeavors. Our results
in Section IV supported our solutions when the data errors
indeed comply with our assumptions. In addition, our results
also demonstrated that a slight violation of our assumption
does not lead to fatal results but may still receive a good
performance. Note that the traditional data mining framework
(without error awareness) separates the data preprocessing (data
enhancement) module from the succeeding mining process, and
this paper on EA data mining provides a new way to seamlessly
unify them into one framework. Future research may focus on
extending and materializing the idea of EA data mining to other
algorithms, such as support vector machines (in addition to the
ones we discussed in Section V-A), and on considering error
models which are closer to real-world applications.

VI. CONCLUSION

In this paper, we have proposed an EA data mining frame-
work which seamlessly unifies statistical error information and
a data mining algorithm for effective learning. The proposed
effort makes use of noise knowledge to modify the model built
from noise-corrupted data, and it has resulted in a substantial
improvement in comparison with the models built from the
original noisy data and the noise-cleansed data. The novel
features that distinguish the proposed effort from existing en-
deavors are twofold: 1) we unify noise knowledge and a general
data mining algorithm into a unique structure, whereas existing
data mining activities often have no awareness of the underlying
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data errors, and 2) instead of polishing noisy data, like many
cleansing-based approaches do, we take advantage of the noise
knowledge to polish the model trained from noisy data sources,
and therefore, the original data are well maintained.

While the solutions presented in this paper are based on the
NB classification only, incorporating noise knowledge into the
mining process for EA data mining is an essential idea that
we try to deliver here. Our experimental results indicated that
when data contain a certain level of erroneous attribute values,
data cleansing may not be a good solution to improve the data
mining performance due to reasons such as information loss
incurred by data cleansing. If statistical errors were known
in advance, the proposed EA data mining framework, which
utilizes noise knowledge to supervise the model construction,
demonstrated to be a promising solution to solve the problem,
as it can bridge the gap between the data imperfections and
the mining process to enhance the system performance and it
avoids possible information loss incurred by data cleansing.

Data mining from noisy information sources involves three
essential tasks [49]: noise identification, noise profiling, and
noise-tolerant mining. Data cleansing deals with noise identi-
fication. The EA data mining framework designed in this paper
makes use of the statistical noise knowledge for noise-tolerant
mining. Between noise identification and noise-tolerant mining,
how to profile the noise identified from the noisy data in a
given domain for the purpose of effective noise-tolerant mining
is another challenging problem. In [50], a specific type of
noise knowledge, which is called associative corruption rules,
is modeled and studied with experimental results. Like the
statistical error information used in this paper, the associative
corruption rules are also used to model nonrandom structured
noise. How to deal with different types of noise, namely,
random or structured, for noise-tolerant mining is still an open
research issue.
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