Combining Structured Node Content and Topology Information
for Networked Graph Clustering

TING GUO and JIA WU, University of Technology, Sydney
XINGQUAN ZHU, Florida Atlantic University, Fudan University
CHENGQI ZHANG, University of Technology, Sydney

Graphs are popularly used to represent objects with shared dependency relationships. To date, all existing
graph clustering algorithms consider each node as a single attribute or a set of independent attributes, with-
out realizing that content inside each node may also have complex structures. In this article, we formulate
a new networked graph clustering task where a network contains a set of inter-connected (or networked)
super-nodes, each of which is a single-attribute graph. The new super-node representation is applicable to
many real-world applications, such as a citation network where each node denotes a paper whose content
can be described as a graph, and citation relationships between papers form a networked graph (i.e., a super-
graph). Networked graph clustering aims to find similar node groups, each of which contains nodes with
similar content and structure information. The main challenge is to properly calculate the similarity between
super-nodes for clustering. To solve the problem, we propose to characterize node similarity by integrating
structure and content information of each super-node. To measure node content similarity, we use cosine
distance by considering overlapped attributes between two super-nodes. To measure structure similarity,
we propose an Attributed Random Walk Kernel (ARWK) to calculate the similarity between super-nodes.
Detailed node content analysis is also included to build relationships between super-nodes with shared in-
ternal structure information, so the structure similarity can be calculated in a precise way. By integrating
the structure similarity and content similarity as one matrix, the spectral clustering is used to achieve
networked graph clustering. Our method enjoys sound theoretical properties, including bounded similari-
ties and better structure similarity assessment than traditional graph clustering methods. Experiments on
real-world applications demonstrate that our method significantly outperforms baseline approaches.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Data Mining
General Terms: Algorithms, Experimentation, Performance
Additional Key Words and Phrases: Networked graphs, super-nodes, clustering, kernel, topology

ACM Reference Format:

Ting Guo, Jia Wu, Xingquan Zhu, and Chengqi Zhang. 2017. Combining structured node content and topology
information for networked graph clustering. ACM Trans. Knowl. Discov. Data 11, 3, Article 29 (March 2017),
29 pages.

DOI: http://dx.doi.org/10.1145/2996197

This research is partially sponsored by National Science Foundation under Grant No. ITP-1444949, and
by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher
Learning.

Authors’ addresses: T. Guo, J. Wu (corresponding author), and C. Zhang, Faculty of Engineering & Infor-
mation Technology, University of Technology Sydney, 81 Broadway, Ultimo, Sydney, NSW 2007, Australia;
emails: {ting.guo-1, jia.wu}@student.uts.edu.au, chengqi.zhang@uts.edu.au; X. Zhu, Department of Com-
puter & Electrical Engineering and Computer Science (CEECS), Florida Atlantic University, Boca Raton,
FL 33431; email: xzhu3@fau.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2017 ACM 1556-4681/2017/03-ART29 $15.00

DOI: http://dx.doi.org/10.1145/2996197

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

http://dx.doi.org/10.1145/2996197
http://dx.doi.org/10.1145/2996197

29:2 T. Guo et al.

1. INTRODUCTION

Many applications, such as protein interaction networks and citation networks, use
graphs to represent data entries (i.e., nodes) and their dependency relationships
(i.e., edges). Based on the graph representation, the role of graph clustering [Schaeffer
2007] is to partition vertices of a large graph into different clusters based on criteria
such as vertex connectivity, neighborhood similarity, and node/edge centrality scores
[Newman and Girvan 2004; Xu et al. 2007; Rattigan et al. 2007].

When using graphs to represent objects, existing methods mainly use two approaches
to describe node content: (1) node as a single attribute: Each node has only one attribute
(a single-attribute node) with an edge denoting relationship between two nodes. In
this article, we refer to this representation as a single-attribute graph (as shown in
Figure 3(a)). An obvious drawback of this representation is that one single attribute
cannot precisely describe the node content [Riesen and Bunke 2010]. For example, in
protein interaction networks, representing each protein as a single-attribute node in-
herently forbids the data representation model from describing detailed information
about the protein, such as protein sequence and structure information; (2) node as a
set of attributes: An alternative solution to enhance the node content representation
is to use a set of independent attributes to describe the node content (as shown in
Figure 3(b)). This representation is commonly referred to as an Atiributed Graph
[Cheng et al. 2011; Xu et al. 2014; Cai et al. 1990]. In protein interaction networks,
this is equivalent to representing each protein as a node with a set of attributes, such
as using amino acid sequences of the protein as the node content.

Both single-attribute graphs and attributed graphs emphasize on dependency struc-
ture between objections (i.e., nodes) but overlook internal structure inside each node,
where attributes/properties used to describe the node content may be subject to depen-
dency relationships as well. For example, in a protein interaction network, each node
represents one protein and edges denote protein interactions. It is known that each
protein’s biological function critically relies on its three-dimensional structure [Yap
et al. 2013], and using sequence is insufficient to describe a protein. Alternatively, we
can represent each protein as a graph, and edges between two proteins can denote their
interaction relationships. As a result, a protein interaction network can be represented
as a set of “networked graphs,” where each node of the network is itself a graph.

In this article, we refer to the above “networked graphs ” as a “super-graph,” where
each node of the network is itself a graph. A node of a super-graph is referred to as a
“super-node.” An example of this representation is shown in Figure 1.

Similarly, in a citation network, a node can represent a paper and edges denote
citation relationships between papers. Using one or multiple independent key-words/
attributes is insufficient to describe the content of a paper. Instead, we can represent
each paper as a graph with nodes denoting keywords and edges representing contextual
correlations between keywords (e.g., co-occurrence of keywords in different sentences
or paragraphs). Using linked keyword relationships to form a graph representation
for each paper has shown better performance than simple bag-of-words representa-
tion [Angelova and Weikum 2006]. As a result, the citation relationships between
papers form networked graphs, which can be referred to as a citation super-graph with
each super-node of the super-graph denoting a publication, and edges between two
super-nodes denoting their citation relationships. A super-graph example is shown in
Figure 2.

To find clusters from a large network, existing methods follow three common ap-
proaches: (1) Structure-based Clustering, which finds clusters based on node connec-
tivity only; (2) Attribute-based Clustering, which uses node attribute similarity to find
clusters; and (3) Structure and Attribute Clustering, which combines node attribute

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

Combining Structured Node Content and Topology Information 29:3

\ Molecular

Protein
Interaction
Network

Fig. 1. A conceptual view of a protein interaction network using networked graphs to denote interaction
relationships between proteins. Each protein is represented as a single-attribute graph to preserve its
detailed molecular structure information. Proteins form networked graphs with edges denoting protein
interaction relationships. Two interacted proteins may share functional or structure similarity [Yap et al.
2013]. In this article, the networked graphs is referred to as a “super-graph.” The node of a super-graph is
referred to as a “super-node,” which represents a single-attribute graph (e.g., a protein).

“ame Abstract B —
fiaet: The goal of graph clustering is fo P %
—— parfton verticeg in alarge graphinte |- — — — — = — — = A—eu
N S difforent olusters based on various criteria '\\'{t;\l
C}‘ﬁ/ %, such ag verfex connectivity or neighborhood R T
» . G /
<
£
3 P
o Abstract = /e
&\00 _> _______ | :
C\\’& ed; ® .
< % e — : .
© > Abstract 7 M~a
] -
P RRETET T (R , - a\ —

Fig. 2. An example of representing a scientific publication network as a super-graph (or networked graphs).
Each paper (left panel) cites a number of references. For each paper, its abstract (middle panel) can be
converted as a graph. So, each paper denotes a super-node, and the citation relationships between papers

form a super-graph (right panel).

similarity and node connectivity to find clusters. In summary, node connectivity-based
methods calculate node similarity by considering the number of paths between two
nodes to keep densely connected components in clusters. Examples include normalized
cut [Shi and Malik 2000], modularity [Newman and Girvan 2004], and structure den-
sity [Xu et al. 2007]. Attribute-based methods group nodes based on node content (i.e.,
attributes) and relationships [Tian et al. 2008; Yin et al. 2005]. Structure/attribute
clustering method combines both structure and attribute to partition nodes in a large
graph into groups [Cheng et al. 2011; Xu et al. 2014; Zhou et al. 2009].

All above methods are, unfortunately, inapplicable to clustering networked graphs
(or super-graph) mainly because they either consider structure similarity in the

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

29:4 T. Guo et al.

network or attribute similarity between nodes, but have no solution to take internal
structure inside each super-node for clustering. Indeed, super-nodes may share some
overlapped/intersected structure, which provides useful knowledge to assess the
similarity between super-nodes for clustering. In addition, the inter-connected struc-
ture between super-nodes also provides useful structure information for clustering.
The structure dependency within and between super-nodes require a new clustering
approach to take structure node inside the super-nodes and topology structure between
super-nodes for super-graph clustering.

To apply traditional graph clustering methods to a super-graph, a simple solution
is to consider the whole graph in each super-node as a single attribute (i.e., nodes are
the same only if they contain exactly the same graph structure). This solution only
uses the graph structure similarity without considering node content similarity, which
privies important information for clustering. On the other hand, one can also consider
each node in the super-node as an independent attribute, so each super-node can be
regarded as a set of attributes (i.e., discarding structure information inside each super-
node). After that, existing Attributed Graph Clustering methods [Zhou et al. 2009]
can be applied for super-graph clustering. This solution, however, ignores the internal
structure information inside each super-node.

To build clustering models for a super-graph, the main challenge is to properly calcu-
late the similarity between super-nodes by considering attributes and internal struc-
tures inside each super-node, and inter-connectivity among super-nodes. The complex
super-node structure, where each node is itself another graph, makes clustering for
networked graphs a very challenging problem. More specifically,

—Similarity between super-nodes: Because each super-node is a graph, over-
lapped/intersected graph structures between two super-nodes reveal their similarity
and relationships. In order to support super-graph clustering, we must properly as-
sess similarity between super-nodes, by taking node structure and node attribute
into consideration.

—Balancing structure and content similarities: The inter-connected structures between
super-nodes and the node content both play important, yet different, roles for clus-
tering. In an extreme case, two super-nodes in a super-graph may be linked through
an edge, but do not share any overlapped attributes (i.e., no content similarity); two
super-nodes may also have a significant portion of overlapped internal structures,
but not have an edge in between. Properly adjusting/combining graph structure and
node content similarity is crucial for achieving good clustering results.

—Information loss and computational costs: Traditional graph clustering methods are
not suitable for super-graph representation. If we simplify each super-node as one
single attribute (i.e., simplify Figure 3(c) as Figure 3(a)), the internal structure of
each super-node is discarded, resulting in information loss for graph representation.
We need a new design to preserve structure and node information in super-graphs for
efficient super-graph clustering. In addition, for a large network, it is computationally
inefficient to compare node structure similarities between every pair of super-nodes.
Finding computational efficient ways to calculate similarity between super-nodes,
without information loss, is a challenge.

The above challenges motivate the proposed research, which combines structured
content inside each super-node and network topology between super-nodes for net-
worked graph clustering. To minimize the computational cost, we first calculate simi-
larity between linked super-nodes, and further extend the similarity to all super-node
pairs by using matrix multiplication. For linked super-nodes, the node structure sim-
ilarity is obtained by using random walk kernel and the node attribute similarity is
obtained by using cosine distance. The combined similarity is used as the weight of the

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

Combining Structured Node Content and Topology Information 29:5

(a) (b) ©

Fig. 3. Examples of a single-attribute graph (a), an attributed graph (b), and a super-graph (i.e., networked
graphs) (c).

edge among linked super-nodes, so the similarity between any two super-nodes can be
calculated by counting weighted random walks between them. To balance the structure
and content similarities (challenge #2), some simple frequent sub-structures inside the
super-nodes are used to ensure that super-nodes with shared sub-structures will have a
tighter connection. The adjusted similarity matrix is fed into an iterative spectral clus-
tering to achieve super-graph clustering, where the weights of selected sub-structures
can be automatically adjusted iteratively with spectral clustering. Our method is based
on a well-understood random walk theorem and enjoys sound theoretical properties,
including bounded similarities combining node content and structure. Experiments
on real-world data demonstrate that our method significantly outperforms baseline
approaches.

The remainder of this article is structured as follows. Section 2 formulates the prob-
lem and presents the overall framework. Section 3 models the similarity between
super-nodes using structure and content information. The clustering algorithm is re-
ported in Section 4, followed by experiments in Section 5, and we conclude the article
in Section 7.

2. PROBLEM DEFINITION AND OVERALL FRAMEWORK
2.1. Problem Definition

Definition 2.1 (Single-Attribute Graph). A single-attribute graph is represented as
g = (U, E, Att,), where U = {uy,ug,...,u,} is a finite set of vertices, E C U x U
denotes a finite set of edges, and [: U — Att is a function from the vertex set U to the
attribute set Att = {a1, ag, ..., ay}. An attribute g; is a single symbol, such as a keyword,

to denote the node content. Att(g) = [a1(g) az(g), ..., an(g)] means the attribute vector,
where a;(g) = Y-, M(f(u;),a;) and

0. flu))#a

In Figure 4(a), each super-node (e.g., V1) is a single-attribute graph. An example of

Att(g) for V7 is shown in Figure 4(b).

Formally, a single-attribute graph g = (U, E, Att, f) can be uniquely described by its
attribute and adjacency matrix. The attribute matrix ¢ is defined by ¢, = 1 & @; €
f(u,), otherwise ¢,; = 0. The adjacency matrix 6 is defined by 6;; = 1 & (. u;) € E,
otherwise 6;; = 0.

Mf(uj),) = {17 fwj)=ao

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

29:6 T. Guo et al.

Vi ! Linked Super-Node Similarity ! Unlinked Super-Node Similarity ! Clustering ! Clustering Result
i - ! N . | . a I Heration | Vi
Lo] I Vi | P — 2P v, I Vi [12y Ve[Egw I
3 ‘ g e i g g \
Ve / ov+ [Dink(V1,Va)=waDaulV1,Va)+wsDseVi.Va)rwi] o 1) = % 11 D (Vi, Vi]!
I Yo, <V V> eBdgelr) !
.: P Va / i 1. Node attribute similarity T i .-,f.,l.;.;,‘:,(<ViVy>€Bdg i =
-:’d s : R EEE ‘ i 5
=" Vieg 1211 . L : -4
\ P 4 'l O Daviva | | . i E]
A “PvVva2 10211 i Super-graph S—REIT iy | O
".go' \ I'2, Node structure similarity I Similarty Matrix | s I
ey] - - FIT _ e § !
A I Vi ;qo.- | Weight Adjusting - |
[- —— Dsu(V1,V2) i B [
|y, a7 i i i
! e i i i
(@ ‘ (b) ‘ © oA (e)
Fig. 4. Networked graph clustering framework: A super-graph (a) contains a number of inter-connected
super-nodes V1, Vg, ... To calculate similarities between super-nodes, we first find similarity between linked

super-nodes by taking node attributes and internal structures into consideration (b). The similarities between
unlinked super-nodes are based on weighted random walk among super-nodes, calculated using matrix
multiplication (c). To balance node content and structure similarity, some weighted sub-structures (lowest
row in (c)) are selected to bring super-nodes with shared sub-structure to have a tighter connection. The
iterative adjustment between similarity matrix and spectral clustering (d) results in final clustering results
in (e).

Definition 2.2 (Networked Graphs). Given a set of single-attribute graphs
{g1, 89, ...,8u}, if there exists some interconnected relationships (or edges) between
some graph pairs g; and g; where {7, j} € [1, M] and i # j, we refer to {g1, 82.8m} as
networked graphs. For simplicity, we assume that the connection between two graphs
(g; and g;) exists at the graph level but not at the node level (i.e., an edge connects g;
and g; but does not connect particular nodes between g; and g;).

Definition 2.3 (Super-Graph and Super-Node). A super-graph is denoted by G =
\V,E,G,F), where V = {Vq, Vs, ..., Vy} is a finite set of graph-structured nodes. £ C
VY x V denotes a finite set of edges, and F : V — § is an function from the vertex set
V to G, where G = {g1, 89, ...,2gu]} is the set of single-attribute graphs. A node in the
super-graph, which is a single-attribute graph, is called a Super-node.

In this article, super-graph and networked graphs are equivalent terms, so a super-
graph represents a set of networked graphs. Figure 4(a) shows an example of a super-
graph where V1, Vj, ... each denotes a super-node.

Similar to the adjacency matrix of a single-attribute graph, the adjacency matrix ®
of asuper-graph G = (V, £, G, F)is defined by ©;; =1 & (V;, V;) € £, otherwise ©;; = 0.
In this article, two super-nodes are called linked super-nodes or linked graphs if they
are connected by one edge, or unlinked super-nodes otherwise.

Definition 2.4 (Networked Graph Clustering). Networked graph clustering (also
referred to as super-graph clustering) aims to partition a super-graph G into £ disjoint
sub-graphs G; = (V,, &;, G, F), where V = Ule V; and V;(V; = @ for all i # j. Ideal
clustering results should achieve a good balance between the following properties:
(1) super-nodes in the same cluster are close to each other in terms of their structure
dependency, while super-nodes between clusters are distant from each other; and (2)
super-nodes within one cluster have high similarity in both node-structure and node
content, and have low similarity between super-nodes of different clusters.

2.2. Overall Framework

Figure 4 lists the major steps of our networked graph clustering framework. The es-
sential challenge is twofold: (1) super-node similarity measurement; and (2) clustering

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

Combining Structured Node Content and Topology Information 29:7

algorithm. This is achieved through four major steps: combining node attribute and
node structure similarity to find linked super-node similarity, as shown in panel (b);
calculating similarity between unlinked super-node pairs in panel (c); iterative updat-
ing super-graph similarity matrix in panel (d), and final clustering in panel (e). In the
next section, we first introduce the super-node similarity measurement. The clustering
algorithm is reported in Section 4.

3. NETWORKED GRAPH SIMILARITY ASSESSMENT

The main challenge of networked graph clustering (or super-graph clustering) is to
accurately and efficiently calculate the similarity between super-nodes. Currently,
graph similarity is mainly calculated through three types of approaches: graph isomor-
phism [Toran 2004], sub-graph matching [Kuramochi and Karypis 2001], and graph
kernel [Costa and Grave 2010; Seeland et al. 2012]. Graph isomorphism is to discover
the global equivalence of two graphs and therefore can be used to assess the graph
similarity. Nevertheless, graph isomorphism is NP-complete and comparing graphs
via isomorphism checking is thus prohibitively expensive. Sub-graph mining intends
to discover a set of frequent sub-graph patterns as features to represent each graph
in as feature-vector [Guo and Zhu 2013], through which the graph similarity can be
assessed. Sub-graph matching methods consider the local-structure relationship be-
tween two graphs and are robust to noise or minor changes in edges and nodes to find
graph similarity. In reality, this type of methods require sub-graph pattern mining and
isomorphism check as intermediate steps, and therefore can be computationally expen-
sive. A graph kernel is a kernel function which computes the inner product between
graphs, which is often used to assess the graph similarity. Graph kernels compare
substructures of graphs that are computable in polynomial time and are applicable to
a wide range of graphs, and have been proved to offer a faster yet principle alternative
for graph similarity assessment.

Random walk [Kang et al. 2012] is one of the most popular graph kernels for mea-
suring graph similarities. Given two graphs, a random walk graph kernel computes
the number of common walks in two graphs. Two walks are common if their lengths
(i.e., number of edges of the walk) are equal and the label sequences are the same
(for nodes/edges labeled graphs). The computed number of common walks is used to
measure the similarity of two graphs. In reality, random walk cannot be directly used
to capture the similarity between super-nodes, due to the complex internal structure
of each super-node. Meanwhile, given a super-graph, it is computationally inefficient
to directly calculate the similarity between every pair of (linked and unlinked) super-
nodes to find a similarity matrix for the super-graph. In addition, in a large super-graph
G, super-nodes may have overlapped internal structures and they are also subject to
linked relationships at the super-graph level. In extreme cases, two super-nodes may
be linked through an edge, but do not share any overlapped attributes (i.e., no con-
tent similarity). On the other hand, two super-nodes may have a significant portion
of overlapped internal structures, but not have an edge in between. Only considering
super-node content or linked structures among super-nodes is inaccurate to calculate
the similarity for clustering.

Accordingly, we propose a novel Attributed Random Walk Kernel (ARWK) to first
calculate the similarity between linked super-nodes, and then extend the similarity to
unlinked super-nodes by counting the weighted random walk among them. To balance
the content and structure similarities, some frequent small sub-structures (frequent
edges in the super-nodes) are selected to bring super-nodes with shared internal struc-
tures to be closer to each other in their similarity assessment.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

29:8 T. Guo et al.

3.1. Similarity between Linked Super-nodes

We divide the similarity between two linked super-nodes into two parts: (1) node at-
tribute similarity, and (2) node structure similarity.

3.1.1. Node Attribute Similarity. For a super-graph, each super-node is a single-attribute
graph and contains a set of attributes (Definition 2.1). Meanwhile, for super-graph
clustering, we expect super-nodes in one cluster to have similar attributes, and vertices
between clusters to have different attribute similarities. Accordingly, we employ cosine
distance to measure the super-node attribute similarity.

Definition 3.1. Node attribute similarity between two super-nodes V; and V; is
defined as follows:

Att(V;) - Att(V)

Dpu(V;, Vj) =
[| ALt (V)| At (V)]
Zak(Vi) x ap(V;) (1)
_ k=1
D@V x| D @V
k=1 k=1
where Att = {ai, ag, ..., ay} denotes the whole attribute set (which includes m unique

oY
attributes). A#t(V;) is the attribute vector of super-node V; as defined in Definition 2.1,
and an example is shown in Figure 4(b).

—
Because all elements in A¢#(V;) are non-negative, we have 0 < D, (V;, V;) < 1.

3.1.2. Node Structure Similarity. To measure structure similarity between super-nodes,
we propose to use a random walk-based distance measure. Because each super-node is
a single-attribute graph, we first introduce ARWK on single-attribute graphs.

Graph kernel is a kernel function that computes an inner product (i.e., a similarity
function) between graphs, which is equivalent to counting shared patterns (e.g., walks,
paths, subtree, or cycles) between two graphs to measure their similarity. An inherent
advantage of graph kernel is that it directly measures the similarity (or distance) be-
tween two graphs without transforming graphs into a feature space, with the similarity
between any two graphs being calculated by counting shared sub-structures between
them.

ARWK is based on a simple idea: Given a pair of single-attribute graphs (g; and g»),
we compare any two nodes between them and use intersected nodes to build a new
graph (i.e., a product graph) to assess their structure similarity. Because intersected
nodes appear in both g; and go, we can perform random walks through these nodes on
both graphs to measure similarity between g; and go by counting number of matching
walks (the walks through nodes containing the same attributes). The larger the number
is, the more similar the two graphs are.

Definition 3.2 (Single-Attribute Product Graph). Given two single-attribute graphs
g1 = (U, Eq, Att, f) and gy = (Us, Es, Att, f), their single-attribute product graph is
denoted by g1g2 = (U*, E*, Att*, f*) (gg for short), where

—U* = {ulu = <uq, ug>, u1 € U, ug € Us};
={ele =W, v),u cU* v cU* f*W) # ¢, (V) # ¢, U = <uy, uz>,
v = <y, v2>, (U1, v1) € Eq, (ug, v2) € Eg};

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

Combining Structured Node Content and Topology Information 29:9

— At = Att;
— =W\ f*w) = fu) N f(ug), u = <uy, us>,uy € Uy, ug € Us}.

In other words, gy is a single-attribute graph whose vertex v is the intersection
between a pair of nodes in g; and go. There is an edge between a pair of vertices in gg,
if and only if an edge exists in corresponding vertices in g; and gq. In the following, we
show that an inherent property of the product graph is that performing a random walk
on the product graph is equivalent to performing simultaneous random walks on g,
and go, respectively. So, the single-attribute product graph provides an effective way to
count the number of walks on nodes of both graphs without expensive graph matching.

To generate gg’s adjacency matrix 6y from g, and go by using matrix operations, we
define the Attributed Product as follows.

Deﬁr/Liti/on 3.3 (Attributed Product). Given matrices B € R™", C € R™"™, and
A e R¥>m™, the; gittributed product B X C € R™" and the column-stacking opera-
tor vec(A) € R™™ are defined as

BXC = [vec(B,1C1.) vec(B,1Css) --- vec(By,Coms)l,

where vec(4) = [A]; A, --- AT, A, and A, denote i"* column and j row of A,
respectively.

Based on Definition 3.3, the adjacency matrix 05 of the single-attribute product graph
Ze can be directly derived from g1(61, ¢1) and g2(02, ¢2) as follows:

0g = (01 X 03) 7 vec(prp]), (2)
where
X1 Bll ANXL -+ Bln/\xl
| X2 BQl/\xQ B2n/\x2
Bnr| . | = :) : ; 3)
Xn Bnl/\xn Bnn/\xn

“©,»

A” is a conjunction operation (e Ab=1iff a=1and b=1).

As a result of the above process, we can use matrix operation to count random walk.
More specifically, for the adjacency matrix 6, of a graph g,, each element [07];; of this
nth power matrix provides the number of length-z walks from u; to u; in g,.

According to Equation (2), performing a random walk on the single-attribute product
graph gg is equivalent to performing simultaneous random walks on the graphs g; and
go. After gg is generated, ARWK, which computes the similarity between g; and go,
can be defined with a sequence of weights § = 8y, 81, ... (§; € Rand §; > 0 for all i € N):

K(g1.g)=p) [Z . 9;} : (4)

ij=1Lz=1 ij

where n; and ngy are the node sizes of g; and go, respectively. p is the control parameter
used to ensure the kernel function convergence. As a result, kernel values are upper
bounded (the proof is given later).

To compute the ARWK for single-attribute graphs, as defined in Equation (4), a
diagonalization decomposition method [Gértner et al. 2003] can be used. Because 05
is a symmetric matrix, the diagonalization decomposition of 6y exists: g = THT 1,
where the columns of 7 are its eigenvectors, and H is a diagonal matrix of corresponding

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

29:10 T. Guo et al.

eigenvalues. The kernel defined in Equation (4) can then be rewritten as:

K(gi.82)=p f |:Z5 (TH*T™ 1):|
ij

i,j=1 Lz=1

ning o0 (5)
=p Yy [T (Zaz HZ> T‘l} :
1,j=1 z=1 ij
By setting §, = 1?/z! in Equation (5), and use e* = > ° x?/z!, we have
ning
Keg)=p)y [T -1)T"] ®)
ij

ij=1
where I is an identity matrix with the same size as 6. The diagonalization decompo-
sition can greatly expedite ARWK kernel computation.
Here, we set
1

e @

where

np ng

c= ZZ [‘Pl(PzT]ij' (®)
i

Then, we have the following theorems.
TuEOREM 3.4. The ARWK function is non-negative definite.

Proor. As the random walk-based kernel is closed under products [Géartner et al.
2003] and the ARWK can be written as the limit of a polynomial series with non-
negative coefficients (as Equation (6)), the ARWK function is non-negative definite. O

THEOREM 3.5. Given any two single-attribute graphs g1 and go, the ARWK of these
two graphs is bounded by 0 < K(g1,g2) < 1.

Proor. Because K(gi,g2) is a non-negative definite kernel by Theorem 3.4, so
K(g1, g2) > 0. Then, we only need to show that the upper bound of K(gy, g2) is 1.

Based on the definition of ARWK, assume the node sizes of two single-attribute
graphs g1 and g, are n; and ng, respectively. The number of random walks on g1 ® g
(gg) must be not greater than that of the complete connect graph g. which has ¢ nodes
(as Equation (8)) because based on the definition of random walk kernel, only the nodes
shared same attribute can have edges in product graph. So, the upper bound of edges
in product graph is the edges in graph g. whose size is equal to the total number of the
nodes shared same attributes in g; and gs. Then, we have

ning

> [Za 921 < Z [Zs 921 ,

i,j=1 ij i,j=1 J
where
01.-.-1
10 ---1
0, =
11---0

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

Combining Structured Node Content and Topology Information 29:11

Because
c o0 o0 c
> S| =3 {e 2,
ij=1 Lz=1 i 2=l ij=1
and
c
o6 =cle—1r, 221,
ij=1
then,

£5e]
1 [2

ij=1Lz= ij

o0 A‘Z
=c Z Z(c — 17,
z=1

Because e* =) 7, x?/z!, we have

ning o0 c o0
> [5 eg] <> [Z 5, 95] =c(e’V 1)
i,j=1 Lz=1 ij i,j=1 Lz=1 ij
So,
mme e —1) 771]..
K(g1, 85) = Zijal Js <1 o

C(e,\(c71> -1

It is worth noting that the proposed ARWK is different from the traditional ran-
dom walk kernel, which simply calculates the total number of shared random walks
between two graphs, but the number of shared walks can increase as the number of
nodes/edges increase. As a result, the similarity based on traditional random walk
kernel is unbounded. In comparison, ARWK first finds all shared nodes between two
graphs (where a shared node means a node with the same attribute in both graphs), and
then calculates the ratio between the number of random walks among shared nodes of
two graphs and the number of random walks on the complete graph formed by using
all shared nodes (the number of random walks on the complete graph is calculated by
o~ ! as Equation (7) which is proved in Theorem 3.5). We call this ratio the Structure
Integrity Ratio, which is proved to be bounded. This not only provides a bounded mea-
sure for similarity assessment, but also provides an effective way to combine attribute
and structure information to assess similarity between two graphs under the shared
node information.

Because each super-node is a single-attribute graph, the structure similarity between
two super-nodes V7 and Vj is equal to the ARWK of two single-attribute graphs g; and
8o, where F(V1) = g1 and F(Vy) = go:

Dsi(V1, Vo) = K(g1. 82)
e [T -1 T
- cleMe=D _ 1)
3.1.3. Linked Super-Node Similarity. Because the similarity of linked super-nodes is di-
vided into two parts (node attribute similarity and node structure similarity), it is
necessary to combine them as one similarity measure. According to Theorem 3.5, the
ARWK reveals the structure similarity by measuring the structure integrity ratio of

two linked super-nodes. To calculate combined similarity between super-nodes, we use
three weights (wy, ws, and wy,) to control the degree of contributions of each part, where

9

i

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

29:12 T. Guo et al.

w4 is the node attribute similarity weight, wg is the weight of node structure similarity,
wy, is the weight of the edge between linked super-nodes, and wa + ws + wz = 1.

Definition 3.6 (Linked Node Similarity). The similarity of two linked super-nodes
V7 and Vs in a super-graph G is

Dyinp(V1, Vo) = waDax(V1, Vo) + wgDgs(V1, Vo) + wr. (10)

In Equation (10), wy, is a scalar variable characterizing minimum similarity between
two linked super-nodes. By using wr, if two super-nodes V; and V; are linked but do not
share similar attributes (D4, (V;, V;) = 0 and Dg,-(V;, V;) = 0), there is still a similarity
score for the linked super-node Dj;n(V;, V) = wr.

3.2. Similarity Between Unlinked Super-Nodes

In the above section, the similarity was calculated for each pair of linked super-nodes.
For clustering purposes, we need to find similarity between all super-node pairs. Intu-
itively, if multiple walks connect two super-nodes V; and V}, it indicates that V; and
V; have a high structure similarity. On the other hand, two super-nodes with a high
structure similarity but without any edge connection between them should also have
a certain degree of similarity. Motivated by this observation and the description in
Section 3, we propose to use an L-length weighted random walk distance to measure
the similarity between unlinked super-nodes.

Definition 3.7 (Weighted Adjacency Matrix). Let © be the N x N adjacency matrix
of a super-graph G, then G’s weighted adjacency matrix ® is defined as follows:

O — {Dzink(Vi, V;), Vi, V; are linked nodes
] —

0, otherwise. (11)

Definition 3.8 (L-Length Weighted Random Walk Distance). Assume L denotes the
length limit of a random walk, the weighted random walk distance D(V7, V5) from V;
to V5 is defined as

DV, Vo)=Y [T DV vy
©:Vi~Vy <V;,V;>ecEdge(t) (12)
length(t)<L

where 7 is a walk from V; to V3 whose length is length(r) and < V;,V; >€ Edge(r)
means V; and V; are linked nodes on walk .

Adding weight value to the random walk is meaningful. The L-length weighted
random walk distances not only consider the total number of walks between two super-
nodes, but also take the similarity between linked super-nodes on each walk into
account. The node similarities represent the relationship between two super-nodes in
a more precise way, which, in turn, helps improve the clustering accuracy. Because
each element in the weighted adjacency matrix denotes the weight of an edge appears
in G, we can measure the similarity by counting the number of weighted walks and
combining weights of the edges. A larger value indicates a higher similarity between
two super-nodes.

As a result, the matrix form of the L-length weighted random walk distance on the
whole super-graph G is

RF =) "6 (13)

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

Combining Structured Node Content and Topology Information 29:13

o) (@@ |
I
=2 | B
|
|
|

Va2

NN
A
oo &) @
L

7

\ -\ 7

~ s /

- -~ -~ -~ 1

wy A "'2/>\\u.':i / w3
L

g

er{ ar-az | el arar esf aras |

Fig. 5. An example of inaccurate similarity assessment (left panel) using weighted random walk distance.
The proposed adjustment solution is shown in the right panel. The similarity between unlinked super-nodes
V7 and V3 is denoted by D(V7, V3). Because V7 and V, have no shared attribute, and Vy and V3 also share no
attribute, Dyin(V1, Vo) = wr,, Diine(Ve, V3) = wr,. So, D(Vq, V3) = w%, which is very small. However, V7 and
V3 indeed have similar attributes, which means they should have high attribute similarity. By using frequent
sub-structures as additional nodes (right panel), the similarity between V; and V3 is adjusted accordingly.
In this article, we use simple edge, such as a; — ag as a sub-structure. w; is a weight on the edge.

The super-node similarity between super-node V; and V; (including linked and un-
linked super-nodes) is

D(V;, V;) = [RY);;.

3.3. Similarity Adjustment

The above similarity assessment may result in inaccurate similarity measure, as shown
in Figure 5 (left panel). This is mainly because graph structure may mislead the simi-
larity assessment. To solve this problem, we use a frequent sub-structure relationship
matrix to build attribute—structure relationships between super-nodes. The purpose is
to bring super-nodes, which do not have edge connection but share significant internal
structures, closer in the similarity assessment. In Figure 5 (right panel), we visually
demonstrate the solution to solve the problem as demonstrated in the left panel of
Figure 5.

Because finding frequent sub-structures from graphs is a time-consuming process,
we simply select top K frequent inter-edges as sub-structures from all super-nodes to
generate inter-edge and super-node relationship matrix, denoted by @ € RV*X where
Qj=w,ife; € E;, g = (V;, E;, Att, f), and @;; = 0, otherwise. §;; means whether
a super-node V; contains inter-edge e; or not. By using matrix €, which explicitly
captures the relationship between super-nodes and selected inter-edges, we can follow
the random walk principle to assess super-node similarity with respect to the given
inter-edges. More specifically, we can form a length-2 (i.e., L = 2) weighted random
walk distance by using matrix @ as follows:

o | O Qz_ Iy Iy
o[ST-[R 5]

In the above equation, Z denotes the relationship between super-nodes and selected
inter-edges with different weights. Z? means all walks with length-2 between all super-
nodes (considering each inter-edge as a special super-node). If we rearrange Z2 as a
block matrix as shown in Equation (14), N x N matrix I'y means the weighted walks
with length-2 between any two super-nodes. We call I'y Adding Edge Matrix, which

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

29:14 T. Guo et al.

helps establish the relationship between super-nodes based on the inter-edges. If two
super-nodes share an inter-edge e}, there is a weight value @JZ between them.

In order to make the similarity matrix more accurate, we add I'; to R as the final
similarity matrix:

S= RL+F1. (15)

The matrix S is called the Super-graph Similarity Matrix, which is needed in the
succeeding clustering process. The process of generating S is shown in Figure 4(c).

4. NETWORKED GRAPH CLUSTERING ALGORITHM

Graph clustering aims to partition nodes into densely connected sub-graphs so that
nodes in the same cluster have more dense connections and higher similarities than
nodes between different clusters. Accordingly, our clustering framework is to parti-
tion a super-graph G based on the similarity matrix S obtained in the above section.
In this section, we propose an iterative spectral clustering-based super-graph cluster-
ing method to partition a super-graph G into densely connected sub-graphs, by using
similarity matrix S obtained in the above section.

4.1. Spectral Super-Graph Clustering

In Algorithm 1, we list the proposed spectral super-graph clustering algorithm. Given a
super-graph G = (V, £, G, F) with N super-nodes, and the similarity matrix S obtained
in the above process, Laplacian matrix L is defined as £L = D — S, where D is a diagonal
matrix whose entries are column (or row) sums of S. Based on this Laplacian matrix,
spectral super-graph clustering aims to find % orthogonal column vectors X7, Xo, ..., A
with the objective function:

mXin TrX™D V20D 12x)st. XTX = L.

In the above objective function, X € RV** is a matrix consisting of column vectors
and % is the number of clusters. These vectors are, in fact, the eigenvectors corre-
sponding to the £ smallest eigenvalues obtained from the eigen-decomposition (EVD)
on D~Y2L£D~1/2, After row normalization of these eigenvectors, we can apply k-means
clustering to partition these low-dimensional embeddings into respective clusters. For
each super-node, its cluster membership is the membership of the corresponding em-
beddings to which the super-node belongs to.

4.2. Clustering Iteration and Weighted Self-Adjustment

Instead of relying on simple one-time clustering, it is necessary to employ an adaptive
weight adjustment mechanism to iteratively assign higher/lower weights to impor-
tant/unimportant inter-edges, so the clustering can converge to optimized results. This
is achieved by combining clustering and weight adjustment in an iterative process.
For the frequent inter-edge relationship matrix @ of a super-graph G, we initially
set allw; =1,i =1,2,..., K, which are the weights of all K selected inter-edges. Let
W = (!, wh, ..., wh} be the edge weights in the ¢th iteration. We iteratively adjust w!
with an increment Aw!, which denotes the weight update of edge e; between the ¢th
and the (¢ 4+ 1)th iteration. The weight of ¢; in the (¢ 4+ 1)th iteration is computed as

B = 2 (9 + Af). (16)

The weight w; should be decreased. To determine whether an edge e; is a good edge for
clustering, we can use entropy measure in Equation (17), where k& denotes the number

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

Combining Structured Node Content and Topology Information 29:15

ALGORITHM 1: Networked Graph Clustering

Input: Super-graph G; Length limit L of random Wa}}{ paths; Parameters (A, wa, wg, and wrz);
Frequent inter-edge number K; Edge weight set W = {w, s, . .., Wk}; Clustering iteration
times a; and cluster number k.

Output: % clusters Cq,Co,...,C,

1: Initialize the weighted adjacency matrix ® as an N x N zero matrix;
2: fort=1:ado
3: if¢=1then

4: for any two linked super-nodes V; and V; in G do
5: 0 < waDa(V;, V;) + wsDgy(V;, V) + wy;
6: end for
T REe Yyl &
8: Wl =Wy = =Wy < 1
9: Initialize the frequent inter-edges relationship matrix @ with W;
10: Generate 'y using Equation (14);
11: else
12: forj=1: Kdo
13: ot < L@t ¢),
ST T SE HG)
14: end for R
15: Updating inter-edges relationship matrix @ using changed W and generate I';;
16: end if

17: S <« R! +T'; Update similarity matrix using Equation (15);
18: [Cq,..., C:] < Apply spectral clustering to S for super-graph clustering on G;
19: end for

of clusters and P;(j) means the probability of e; in the jth cluster:

k
H(e) = —) P(jlogy P.(j). (17)

j=1
Then, AW can be defined as
- Hi(e;)
& 2y-1Hley)

Equation (18) ensures that the constraint ZK 1@?*1 = K is still satisfied after

1=

weight adjustment. Then, the adjusted weight is calculated as
K x H(e;)
25:1 Hiey) .

Using Equation (19), we can iterate clustering and edge weight adjustment several
times to obtain good clustering results.

(18)

(19)

~ 1 N 1/
o = @+ a0t) = 5 (ot 4

5. EXPERIMENTAL STUDY

5.1. Benchmark Data

We carry out experimental studies on five real-world networks, including Protein In-
teraction Network, DBLP Computer Science Bibliography network, CiteSeer scientific
and academic publication network, Pubmed scientific publication networks, and So-
cial networks for Blogger categorization (BlogCatalog). The data statistics of these
networks are summarized in Table I.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

29:16 T. Guo et al.

Table |. Statistics of Four Benchmark Super-graphs

Super-graph Protein | DBLP | CiteSeer | Pubmed | BlogCatalog
super-nodes 3,390 2,019 3,312 19,717 18,617
edges 9,946 4,222 4,732 44,338 52,376
attributes 53 2,914 3,703 500 18,417
edge-cutting threshold - 0.001 0.0005 0.0001 -
edges in super-node (average) 46.77 11.45 8.27 4.23 5.21
classes 4 2 6 3 197

Protein interaction network! is built based on the content of Protein Data Bank (PDB)
officially released on January 1, 2013. All proteins form a network with each super-node
representing a protein. For each protein, its molecular structures keep the original
coordinates from PDB, and each node of protein denotes an amino acid. The edge
between two proteins is built by the interaction between them. The labeling information
is collected from SCOP.2 The clustering goal is to separate proteins into four different
protein superfamilies (o, 8, « + 8, and a/p).

BlogCatalog network? is a rich ingredient social media dataset consisting of Bloggers,
their friend circle, and blogs. Each blogger may write one or more blogs, and each
blog has multiple tags and categories which could be deemed as user interests or class
labels. In order to build a super-graph, we regard each blogger as a super-node, and two
bloggers with established friendship are connected through an edge. For each blogger
(i.e., super-node), each blog written by the blogger is represented by a set of tags. To
generate a graph for each blogger, we use a complete graph to connect all tags in each
blog written by the bloggers. If a blogger has multiple blogs, each blog will form a graph,
and two blog graph may be connected if they share the same tags. In summary, each
blogger/user corresponds to one super-node which consists of connected tags of all blogs
of the user. Because each blog has one or two labels (such as video, game, education,
etc., each user has multiple labels (categories). In our experiments, we calculate the
accuracy on this network by checking whether the predicted label of one user belongs
to the set of the user’s multiple labels.

DBLP network* consists of bibliography data in computer science. Each record in DBLP
is a scientific publication with a number of attributes such as title, abstract, authors,
year, venue, and references. Our experiments build one large super-graph from DBLP
by using paper content and citation relationships. More specifically, we select papers
published in major Artificial Intelligence & Computer Vision conferences (Al: IJCAI,
AAAI, NIPS, UAI, COLT, ACL, KR, ICML, ECML and IJCNN; CV: ICCV, CVPR, ECCV,
ICPR, ICIP, ACM Multimedia and ICME) and Database and data mining conferences
(DB: ICDE, SIGMOD, VLDB, EDBT, PODS, ICDT, DASFAA, SSDBM, CIKM, KDD,
ICDM, SDM, PKDD, and PAKDD) to form a super-graph clustering task, where the
ground truth is the research field (AI&CV or DB) that a paper (i.e., a super-node)
belonging to. The clustering goal is to separate papers into groups with each group
only containing papers from one single field (AI&CV or DB).

CiteSeer network® consists of scientific publications from six research fields, includ-
ing Agents, IR (information retrieval), DB (database), Al (artificial intelligence),

Thttp://www.pdbbind.org.cn/download.asp.
2http://scop.mrc-lmb.cam.ac.uk/scop/parse/index.html.
3http://dmml.asu.edu/users/xufei/datasets.html.
4http:/arnetminer.org/citation/.
Shttp://csxstatic.ist.psu.edu/about/data.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

http://www.pdbbind.org.cn/download.asp
http://scop.mrc-lmb.cam.ac.uk/scop/parse/index.html
http://dmml.asu.edu/users/xufei/datasets.html
http://csxstatic.ist.psu.edu/about/data

Combining Structured Node Content and Topology Information 29:17

0.012 !

Fig. 6. A graph representation of a paper by using abstract. Each node denotes a keyword in the abstract.
(a) The weight values between nodes indicate correlations between keywords. (b) By using a threshold, we
can convert each abstract as an undirected unweighted graph.

HCI (human computer interaction), and ML (machine learning). The publications are
collected from the CiteSeer database, which includes scientific and academic papers
primarily in the fields of computer and information science.

Pubmed diabetes network® consists of scientific publications from the PubMed database
pertaining to diabetes classified into one of three classes (“Diabetes Mellitus, Experi-
mental,” “Diabetes Mellitus Type 1,” and “Diabetes Mellitus Type 2”).

For DBLP, CiteSeer, and Pubmed networks, we use the abstract of each paper to
denote a super-node, by constructing a fuzzy cognitive map (E-FCM) [Luo et al. 2011]
that consists of keywords and their correlations. The linked keyword relationships
form a graph representation for each paper (this graph representation has shown
better performance than simple bag-of-words representation [Angelova and Weikum
2006]), as shown in Figure 6.

5.2. Experimental Settings

Baseline methods: Because no existing method exists for networked graph clustering,
for comparison purposes, we use three baseline approaches to compare the efficiency
and effectiveness of the proposed method (denoted by SG-Cluster).

—SA-Cluster is an existing graph clustering method considering both node attribute
similarity and graph topological structure similarity [Zhou et al. 2009]. It uses each
attribute that appeared in the graph as a new node and adds it into the graph with
a changing weight value, which is adjusted during the clustering process. In the
experiment, if we discard the edge information inside each super-node (i.e., each
super-node contains a set of attributes), then the super-graph clustering problem is
degenerated into the graph representation as shown in Figure 7(b). Then, we can use
SA-Cluster for clustering (but subject to information loss inside each super-node).
We choose 20 frequent attributes as new nodes and the clustering iteration time is
set to 5.

—NMF, as a relaxation technique for clustering, has shown remarkable progress in
the past decade [Lee and Seung 2001; Ding and Li 2010; Cai et al. 2011]. NMF finds
a low-rank approximating matrix to the input non-negative data matrix. The most
popular approximation criterion or divergence in NMF is the Least Square Error
(LSE).

—GNMF is a graph-based approach for parts-based data representation in order to
overcome the limitation that NMF fails to consider the geometric structure in the

Shttp://www.ncbi.nlm.nih.gov/pmc/tools/ftp/#Source_files.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/#Source_files

29:18 T. Guo et al.

‘ Subgraph H Matching H Kernels‘
Attributed H Graphs

‘ Graph ‘ ‘KernelsH Results ‘

Efficient H Alternatives

‘ Subgraph ‘ ‘ Matching ‘ ‘Kernels‘

‘ Graph ‘ ‘Kernels‘ ‘ Results ‘

Alternatives

Kernels
‘ Convolutional }—{ Slruc\ure‘

O Convolutional ‘ ‘ Kernels ‘ ‘StructureD

() (b)

‘ Abstract/Text: Subgraphs have been popularly used ... ‘

‘ Abstract /Text: An attributed graph is a special type ... ‘

‘ Abstract /Text: Graph stream classification concerns ... ‘

() (d)

Fig. 7. Different approaches to convert a super-graph (a) to simplified representations (so existing graph
clustering methods can be applied for super-graph clustering). A super-graph (a) can be represented as an
attributed graph by discarding edges in each super-node as shown in panel (b). To evaluate the impact of
the super-node content to the clustering performance, we also discard all super-node contents as shown in
panel (c). So, clustering is only based on topological structure of a super-graph. In panel (d), each paper is
represented as one instance (using all keywords) for clustering without involving any structure or citation
information.

data. It constructs an affinity graph to encode the geometrical information and seek
a matrix factorization which respects the graph structure [Cai et al. 2008].

—LP-NMTF is a Locality Preserved Fast Non-negative Matrix Tri-Factorization ap-
proach to constrain the factor matrices of NMF to be cluster indicator matrices. As
a result, the optimization problem can be decoupled, resulting in much smaller size
subproblems requiring much less matrix multiplications. The authors claim that this
approach works well for large-scale input data [Wang et al. 2011].

—S-Cluster is a baseline clustering algorithm only considering topological structures
of a super-graph. We simply set the weight of each edge between two linked super-
nodes to 1 (this means we do not care about the node similarity between them), and
use weighted random walk distance to generate the similarity matrix for spectral
clustering according to Definition 13 as shown in Figure 7(c).

—A-Cluster only considers super-node attribute similarity in the super-graph G.e.,
using whole abstract text as one instance to represent the text/document), as shown
in Figure 7(d). We use classical k-means clustering in the experiments. 2-means is
one of the most popular clustering methods that aims to partition n observations into
k clusters in which each observation belongs to the cluster with the nearest mean,
which serves as the prototype of the cluster [MacQueen 1967].

Because existing clustering methods for protein interaction networks are always
based on protein sequence information. For comparison purposes, we represent content
of the super-node as sequence and then apply SA-Cluster and A-Cluster accordingly.

In our experiments, the clustering results are evaluated by comparing the label of
each super-node obtained from the clustering algorithms with the ground truth label

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

Combining Structured Node Content and Topology Information 29:19

80 U AT S S 8o B i o
PPE: SN B NG PO

P

) M
boo . NGRS
4

6oL

P e

Accuracy %
1]
]
|
I
I
[
\
\
\
|
L}
I
I
i
]
|
I
|
]
]
i
I
|

Accuracy %
\
Accuracy %
|
'
|
[}
I
|
I

3

-® DBLP —® pubmed Diabetes —4@ BlogCatalog -® DBLP —~® pubmed Diabetes —4 BlogCatalog

- CiteCeer # protein Interaction

B s o - 20r B * - - 4
S - b * - ¢ e

1 2 3 4 5 6 1 2 3 4 0 20 40 60 80 100 120
L K K

(a) (b) (c)

Fig. 8. Clustering accuracies on DBLP, CiterSeer, Pubmed, Protein, and BlogCatalog networks with respect
to different parameter settings. (a) Accuracies w.r.t. length limit L of random walk (with 80 inter-edges and
5 clustering iteration times); (b) accuracies w.r.t. clustering iteration times (with 80 inter-edges and L = 3);
(c) accuracies w.r.t. number of inter-edges (L = 3 and 5 clustering iteration times).

Table II. Clustering Results (using NMI) with Respect to Length Limit of Random
Walk as Given in Figure 8

Length limit of random walk (L)
Datasets 1 2 3 4 5 6 7
DBLP 0.408 0.630 0.702 0.661 0.648 0.651 0.610
CiteSeer 0.189 0.302 0.310 0.322 0.271 0.261 0.243
Pubmed 0.363 0.532 0.501 0.421 0.432 0.381 0.351
Protein 0.320 0.470 0.477 0.476 0.483 0.496 0.443
BlogCatalog 0.065 0.069 0.072 0.072 0.069 0.070 0.071

provided in the network. In order to assess the performance of different algorithms, we
employ two commonly used clustering performance metrics: clustering accuracy [Chen
and Cai 2011] and normalized mutual information (NMI) [Strehl and Ghosh 2002].
More specifically, each super-node of our benchmark datasets (super-graphs) has a
ground truth label (because they are built for classification purposes). For each super-
node cluster, we will find majority class label of super-nodes in this cluster, and divide
the number of super-nodes with the majority class label by the cluster size, which
will result in a clustering accuracy. The total clustering accuracy is based on the aver-
age clustering accuracy across all clusters. Meanwhile, NMI = MI(C, P)/~H(C)H(P),
where the random variables C and P denote the cluster and class sizes, respectively.
The value of NMI is in the interval [0, 1], and a larger value indicates a better
clustering result. Unless specified otherwise, we default the parameter settings to
A=1wpg =04 wsg =04, and wy =0.2.

5.3. Algorithm Performance w.r.t. Similarity Metrics and Adjustment

The proposed super-graph clustering algorithm (SG-Cluster) relies on several parame-
ter settings: (1) the length limit of weighted random walk L, (2) the clustering iteration
times, (3) the number of selected frequent inter-edges K, and (4) the weight values
combining attribute and structure similarities as defined in Equation (10). Because
different parameter settings result in different similarity metrics, in order to study the
impact of the parameter settings to the algorithm performance, in this subsection, we
vary parameter values within a range and report the algorithm performance.

5.3.1. Random Walk Length Limit, L. In Figure 8(a) and Table II, we report the perfor-
mance of SG-Cluster by varying the random walk length limit (L) from 1 to 7, where
Figure 8(a) reports the clustering accuracy and Table II reports the NMI values. The
results show that using length-2 or length-3 walks (i.e., L = 2 or L = 3) is better
than other settings for text-based data and using L = 5 or L = 6 is better for protein

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

29:20 T. Guo et al.

Table Ill. Clustering Results (using NMI) with Respect to Iteration Number as Given in Figure 8

Iteration number
Datasets 1 2 3 4 5
DBLP 0.431 0.616 0.691 0.700 0.702
CiteSeer 0.193 0.247 0.274 0.319 0.310
Pubmed 0.405 0.440 0.527 0.532 0.501
Protein 0.355 0.401 0.449 0.462 0.477
BlogCatalog 0.060 0.064 0.071 0.072 0.072

Table IV. Clustering Results (using NMI) with Respect to Selected-Edges as Given in Figure 8

Number of selected inter-edges (K)
Datasets 0 20 40 60 80 100 120
DBLP 0.358 0.360 0.382 0.481 0.702 0.661 0.680
CiteSeer 0.109 0.252 0.230 0.322 0.261 0.281 0.253
Pubmed 0.333 0.342 0411 0.421 0.462 0.531 0.501
Protein 0.503 0.522 0471 0.432 0.419 0.401 0.451
BlogCatalog 0.055 0.058 0.061 0.065 0.072 0.070 0.071

interaction network. Longer walks (L = 3 or more for text-based data and L = 6
for protein) may deteriorate the similarity assessment. This is mainly because with
a long walk length (such as L = 7 or higher), there are more possibilities for two
super-nodes to be linked through different paths. But such paths may not reveal the
genuine connection of two nodes in the network, and introduce noise to the similarity
assessment. Protein interaction data need longer walks than text-based data because
the sub-structures may require longer walks to traverse.

5.3.2. Clustering Convergence. In Figure 8(b) and Table III, we report the algorithm
performance with respect to number of clustering iterations (Figure 8 corresponds
to clustering accuracy, and Table III shows NMI values). The results demonstrate
that within several clustering iterations, SG-Cluster achieves convergence on all three
super-graphs, especially on DBLP and Pubmed, which only take three iterations to
obtain stable clustering results. This demonstrates that SG-Cluster has a good conver-
gence speed.

5.3.3. Frequent Inter-Edge K for Similarity Adjustment. Figure 8(c) and Table IV further re-
port the impact of the number of inter-edges on the clustering accuracy (Figure 8(c))
and NMI values (Table II). For DBLP and Pubmed, the accuracy increases with an in-
creasing number of inter-edges. For CiteSeer and BlogCatalog, SG-Cluster shows rela-
tively stable results with different inter-edge numbers. This demonstrates the number
of inter-edges are not vital for SG-Cluster, partially because the weight adjustment
mechanism will adaptively fine tune the contribution of each inter-edge, depending on
the actual number of inter-edges involved in the clustering process. For protein interac-
tion network, the trend is different. This is mainly because the attribute set for protein
is very small (as shown in table I). An edge may always appear repeatedly in different
types of proteins. So, one single edge may not contain discriminative information for
clustering.

5.3.4. Attribute vs. Structure Similarity. In Figure 9, we exploit the relationships among
different similarity metrics (i.e., node attribute similarity, node structure similarity,
and link information) in our SG-Cluster method through adjusting weight parameters
wr,, ws, and wy as defined in Equation (10). Under the constraint of wa + wg +wg, = 1,
ternary contours show the clustering accuracy changes with respect to different weight

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

Combining Structured Node Content and Topology Information 29:21

SoS55335338

(b) CiteSeer

NWWRRODDN
QO RRBNRPANS
SHONBADAONS
383533333533
BBBRITRBBARGR
SOBIPHERDNS
Stetste)

©coooo000000

(d) Protein (e) BlogCatalog

Fig. 9. The ternary contours of clustering accuracies w.r.t. different weight parameters wr, wg, and wy
as defined in Equation (10). The clustering accuracy values are color coded as shown in the right panels,
respectively.

parameter settings. If wg and wy, were both set as 0, and wa = 1, this would lead to a
simple content similarity metrics-based spectral clustering.

The results show that each of the three parts plays unique and important roles for
clustering on the five networks. Meanwhile, Figure 9 also shows that simply relying on
either structure or node attribute similarity, respectively (i.e., results corresponding
to the corners of each triangle), without similarity adjustment, often result in dete-
riorated clustering performance. This is understandable because structure and node
content each has its own contribution for similarity assessment in different domains.
For protein super family data, the node structure and link between nodes are more im-
portant than attribute similarity, because protein attribute sets, which corresponds to
amino acids, are almost the same in different protein superfamilies. On the other hand,
for citation network, the node attribute and link information are most useful, because
keywords and related citations better illustrate the topics of articles. Therefore, for
real-world applications, the adjustment strategies of weight parameters highly depend
on the data domain themselves.

5.4. Performance Comparisons Between Different Methods

In order to validate the impact of each respective factor, including super-graph struc-
ture, super-node structure, and super-node attribute, on the clustering performance, we
apply different baseline methods to the super-graphs. During this process, super-graphs
are converted into different representations, in order to suit for the input requirement
of each baseline method. In Figure 10 and Table V, we report the clustering results by
using accuracy as the performance measure.

The text-based clustering results in Figure 10 and Table V show that super-graph
structures (S-Cluster) provide very limited knowledge for clustering. This is mainly
because S-Cluster does not consider structured content information inside each super-
node but only relies on super-graph topological structures for clustering. Comparing
with node content and topological structures, we find that node content plays a more

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

29:22 T. Guo et al.

Wil

CitaCaar Pubmad Diabetes Pratein Inferaction BogCatalog

SG-Cluster
SA-Cluster
S-Cluster
A-Cluster
NMF
GNMF
LP-NMTF

Accuracy %
2 8 4 & g B 3 8 8

Fig. 10. Clustering accuracies of different clustering methods (SG-Cluster, SA-Cluster, S-Cluster, A-Cluster,
NMF, GNMF, and LP-NMTF) on five benchmark super-graphs (DBLP, CiterSeer, Pubmed, Protein, and
BlogCatalog).

Table V. Clustering Results (using NMI) with Respect to Different Clustering Methods as Given in Figure 10

NMI
Datasets SG-Cluster | SA-Cluster | S-Cluster | A-Cluster | NMF | GNMF | LP-NMTF
DBLP 0.702 0.413 0.281 0.631 0.407 0.410 0.534
CiteSeer 0.412 0.287 0.071 0.202 0.214 0.231 0.233
Pubmed 0.600 0.382 0.317 0.402 0.359 0.376 0.393
Protein 0.581 0.306 0.384 0.326 0.362 0.537 0.501
BlogCatalog 0.072 0.063 0.021 0.035 0.042 0.051 0.069

The best performance on each dataset is bold-faced.

important role in node similarities. Only on data with strong structural dependency,
such as Protein network, S-Cluster can achieve good performances.

SA-Cluster considers both node content (by converting each super-node as a set of at-
tributes) and super-graph structure information for clustering, but it discards structure
information inside each super-node (so each super-node contains a set of independent
attributes). This has shown to be ineffective for super-graphs whose nodes also contain
rich structured information. By using ARWK to compare super-node content, and in-
tegrating inter-edges to balance the node content and structure similarity, SG-Cluster
demonstrates much better performance than SA-Cluster.

Interestingly, by using text information of each paper for clustering, the results
in Figure 10 show that A-Cluster obtains surprisingly good results. This is mainly
because A-Cluster uses all keywords in the abstract for clustering, whereas other three
methods employ a graph representation where the selected threshold will remove some
keywords from the abstract and result in a much smaller node space (compared to the
original keyword space). Despite noticeable information loss in the graph converting
process, SG-Cluster obtains the best performance on three super-graphs. This is mainly
because SG-Cluster combines super-graph topological structure, super-node structure,
and super-node attribute information for node similarity assessment, which essentially
helps improve the clustering quality.

NMF/NMTF-based co-clustering methods (NMF, GNMF, and LP-NMTF) try to build
instance—instance nearest neighbors graph and enforce the 2-NN graph in the objective
function to discover cluster structures with respect to low dimensional feature space
(i.e., manifold). However, similar to SA-clustering method, they do not take structure
information inside super-nodes into consideration.

The results from protein clustering show that sequence is not a good representation
for protein superfamily clustering. It is well known that protein interaction relation-
ships (edges) provide useful information for protein categorization. Our results show
that SG-Cluster achieves better performance than other three methods because it uses

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

Combining Structured Node Content and Topology Information 29:23

Table VI. Runtime Performance Comparisons

Clustering methods DBLP CiteSeer | Protein interaction | BlogCatalog
SG-Cluster 5694.27s | 5979.32s 9327.65s 25145.55s
SA-Cluster 1765.57s | 1931.65s 2364.90s 5263.17s

S-Cluster 72.86s 84.34s 93.44s 361.34s
A-Cluster 776.95s 821.67s 1357.27s 1254.43s
NMF 1644.23s | 1941.77s 2367.75s 3963.81s
GNMF 5712.19s | 6024.28s 10527.79s 28342.75s
LP-NMTF 4100.95s | 3971.54s 6810.02s 9216.43s

Table VII. One Cluster by using SG-Cluster Method with k= 100

Ground
D Paper title Conference |truth class
502386 Hlerarchlca‘l ﬁlter.mg me?thod for Foptent- AF]M . AI&CY
based music retrieval via acoustic input | Multimedia
600022 Warping indexes with envelope SIGMOD DB
transforms for query by humming
502465 A practical query—by—bummlng system AQM | Al&Cv
for a large music database Multimedia
Manipulation of music for ACM
4 AI&CV
503040 melody matching Multimedia &C
502387 Super MBox: an e.:fﬁc1e1.1t/effect1ve AQM . AI&CV
content-based music retrieval system |Multimedia
Music scale modeling for ACM
503227 melody matching Multimedia AI&CV
Scalable music recommendation ACM
2 AI&CV
50363 by search Multimedia &C
1250100 Quer)./ expans1.on for h.ash-based AQM | Al&CV
image object retrieval Multimedia

molecular structure as protein representation and takes both the internal and external
structures of super-nodes into consideration.

5.5. Runtime Comparison and Analysis

In Table VI, we report the runtime performance of different methods. The results show
that S-Cluster is the most efficient method, mainly because S-Cluster does not consider
node content similarity (between super-nodes) for clustering. A-Cluster needs to trans-
fer each text into feature space and only carries out the clustering once. SA-Cluster
requires a significant amount of time on the added new nodes, including establish-
ing relationships between new nodes and original nodes, and the iteration for weight
adjustment, which add significant runtime overhead. SG-Cluster is mostly time con-
suming comparing to other methods. This is mainly because SG-Cluster intends to
achieve accuracy gain by using kernel between linked super-nodes, which is time con-
suming. As shown in Figure 10, the runtime overhead of SG-Cluster is paid off through
the clustering quality improvement. The runtime on Protein network is much longer
than other networks because protein super-nodes have a much bigger size on average.

5.6. DBLP Case Study

To further study the detailed cluster results, we examine some clusters on DBLP super-
graph by setting the number of clusters as £ = 100. We report detailed cluster members
of one cluster in Table VII. The cluster has eight members (i.e., papers), and most of the
papers in this cluster are from the same class (AI&CV), as well as the same conference

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

29:24 T. Guo et al.

Table VIII. The Linked Papers of Paper 600022

Belonging

D Paper name Conference | class

502386 Hlerarchlca_l ﬁltEIjlng m(?thod for Foytent- A_CM | Argcv
based music retrieval via acoustic input | Multimedia
A practical query-by-humming system ACM

24 Al&CV

502465 for a large music database Multimedia &C

599512 Slmllaljlty—bas.ed queries for SIGMOD DB

time series data
Manipulation of music for ACM
4 Al

503040 melody matching Multimedia &CV

599619 Optimal llnultl-step k-nearest SIGMOD DB

neighbor search
649592 Sf:ah.ng and .1;1me Warplng VLDB DB
in time series querying
L o hutaia TS G L - “-W‘
" ::==:==t:::::::::::::'_t:::::zi a2
,:: [; ; s < -+
‘h‘“'-.._ —# LP-NMTF

20% 40 60% B0% 100% o 20% 0% 60% B 100%
Random stnucture Percantage Random inler-edpe Percentage

(a) (b)

Fig. 11. Clustering accuracies on DBLP with different structure/inter-edge settings for different method.
(a) Accuracies w.r.t. random structure percentages (replacing edges with a given percentage in super-graph
randomly) and (b) accuracies w.r.t. random inter-edge percentages (replacing inter-edges with a given per-
centage in super-nodes randomly).

ACM Multimedia. From the titles of the papers, it is clear that paper topics are highly
correlated to each other (most of them are related to the Music retrieval). It means
that the proposed SG-Cluster method can merge super-nodes (i.e., papers) with similar
content into respective clusters. There is one exception (ID = 600022 as highlighted in
italic format). The paper actually belongs to another class (DB) and different conference
(SIGMOD). We further checked the citation information as shown in Table VIII. The
linked papers of this article belong to different conferences (three AI&CV papers and
three DB papers). It means Paper 600022 is close to different topics. Its references or
cited papers belong to different topics. So, the paper is itself cross multiple fields. This
maybe the main reason resulting in the wrong clustering result.

In Figure 11, we report our case study results in investigating the importance of
super-graph’s topology structures vs. super-node’s internal structures. To study super-
graph’s topology structure, we first randomly remove a given percentage of the edges
(which connect super-nodes) from the original super-graph. After that we randomly
generate edges between super-nodes in the super-graph with the number of added edges
equal to the number of removed edges, and the results are reported in Figure 11(a).
Our purpose is to randomly change the super-graph topology structures (but keep the
edge density remain the unchanged) and observe the algorithm performances. Because

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

Combining Structured Node Content and Topology Information 29:25

not all baseline methods take topology structure of super-graph into consideration,
in Figure 11(a), we only report the changing clustering results by using SG-Cluster,
SA-Cluster, S-Cluster, GNMF, and LP-NMTF.

In addition, because our proposed method (SG-Cluster) also takes super-node’s in-
ternal structure into consideration for clustering, compared to other baseline methods,
we also report the changing clustering results by replacing edges inside super-nodes
by using random edges. Similar to super-graph’s topology structure study, we also ran-
domly select a number of edges from super-nodes and using random edges to replace
the same number of selected edges. The results are reported in Figure 11(b).

From this case study, we find that structures inside super-nodes place a more impor-
tant role for clustering task comparing with super-graph’s structure. In the proposed
SG-Cluster, both network topology structures and internal structures are utilized to
achieve better accuracies comparing to other baseline methods.

6. RELATED WORK

While no work currently exists for networked graph clustering, our research is related
to clustering, clustering small graphs, and clustering large networks.

6.1. Clustering

Clustering is an established research topic in data mining. Its applications are com-
monly observed in many domains such as computer vision, biology, etc. In traditional
clustering, the aim is to divide an unlabeled data set into groups of similar data points.
This can be achieved by comparing feature-based similarities/distances between in-
stance pairs, and assigning each instance to the group to which it is mostly similar.
k-means [Bishop 2006] is the classical clustering method which follows the traditional
clustering principle. From a geometrical point of view, a data set can be seen as a set of
nodes connected with structure relationships, and clustering aims at finding intrinsic
groups of the data. Common approaches for clustering can be summarized as follows.

Spectral clustering methods were introduced to the machine learning community
as elegant solutions to solve partition problems, where the objective is to make a
graph cut (a bisection of the graph). This is usually done by (1) defining a graph
Laplacian with a graph cut objective in mind [von Luxburg 2007], (2) finding the
significant eigenvector of the Laplacian (e.g., the second smallest eigenvector for the
normalized cut objective) [Smalter et al. 2010], and (3) thresholding the eigenvector.
Nodes corresponding to elements of the eigenvector above the threshold belong to one
partition, and those below belong to the other [Ng et al. 2001].

Hierarchical clustering is a defined as a hierarchical structure, where each top-
level cluster is composed of sub-clusters and so forth. This is useful in situations
where the graph structure itself is hierarchical, and a single cluster can naturally
be composed further to obtain a more fine-grained clustering or alternatively merged
with another cluster to obtain a coarser division into clusters. Clustering methods
that produce multi-level clusterings are called hierarchical clustering algorithms and
can be further divided into two classes, depending on whether the partition is refined
or coarsened during each iteration: (1) top-down or divisive algorithms that split the
dataset iteratively or recursively into smaller and smaller clusters [Brandes et al. 2003;
Bui et al. 1987; Flake et al. 2004; Fortunato et al. 2004; Girvan and Newman 2002],
and (2) bottom-up or agglomerative algorithms that start with each data element in its
own singleton cluster or another set of small initial clusters, iteratively merging these
clusters into larger ones [Carrasco et al. 2003; Donetti and Mufioz 2004].

Non-negative matrix factorization (NMF) [Saigo et al. 2009] are typical methods
which carry out clustering from the geometrical point of view. Some researches have
also been proposed to combine traditional clustering and geometrical relationships

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

29:26 T. Guo et al.

between instances for better clustering results (commonly referred to as Attributed
Graph Clustering [Cheng et al. 2011; Xu et al. 2014; Zhou et al. 2009]).

6.2. Clustering Small Graphs

Small graph clustering aims to cluster a number of (small) graphs into different groups,
with each group containing graphs sharing similar structure information [Seeland et al.
2011, 2012; Aggarwal et al. 2010]. This type of applications are typical for proteins,
chemical compounds, and many other domains where each object can be represented
as a graph, and the clustering goal is to find objects sharing similar structure prop-
erties/characteristics [Le et al. 2004]. For example, by representing each computer
software as a graph, graph clustering has been used to identify common malware be-
haviors in order to detect malicious software [Park et al. 2013]. Graph clustering has
also been used to trace and capture social data evolution [Giatsoglou and Vakali 2013].

For most methods in this category, the key challenge is to properly assess the similar-
ity between two graphs, such that similar graphs can be merged into groups. To achieve
the goal, two types of approaches are commonly used, including (1) substructure-based
methods, and (2) graph kernel-based approaches. For substructure-based methods
[Seeland et al. 2011; Aggarwal et al. 2010; Park et al. 2013; Le et al. 2004], the objective
is to find a set of substructures (such as sub-graphs, paths [Aggarwal et al. 2010],
or cliques [Chi et al. 2013]) to convert graph into feature vector space to calculate
similarities between graphs [Guo and Zhu 2013]. Alternatively, graph kernel-based
methods [Costa and Grave 2010; Seeland et al. 2012] directly use kernels to find
similarity between graphs without explicitly converting graphs into vector space.

Our networked graph clustering is different from small graph clustering mainly be-
cause that existing works regard each graph as being independent without considering
their structure relationships. Instead, we allow graphs to share dependency relation-
ships, and will take such relationships into consideration for graph clustering.

6.3. Clustering Large Networks

Our research is mostly related to clustering large networks, where existing work main
focus on grouping vertices of a network into clusters, by taking topology structures
of the network into consideration. The expected clustering results typically require
that edges in each cluster are relatively more frequent than edges across the clusters.
This problem is also referred to as graph clustering in the literature [Schaeffer 2007;
Dhillon et al. 2005; Chen et al. 2014]. In biomedical research, clustering node sharing
dense connections has been used to determine colon cancer pathway [Zhu et al. 2013]
and find genes with similar patterns by using their interactions [Amir et al. 1999].
In social network analysis, finding cluster of nodes with similar characteristics can
serve as building blocks for many other tasks, such as finding communities or other
meaningful structures from the networks [Fortunato 2010; Newman and Girvan 2004;
Danon et al. 2005]. Xu et al. proposed a structure clustering algorithm named SCAN,
which clusters vertices based on a structure similarity measure [Xu et al. 2007]. A
recent survey [Malliaros and Vazirgiannis 2013] summarizes the research on cluster-
ing and community detection in directed networks. For most node clustering-based
community detection methods, the similarity measures are mainly based on topology
of the network. In a recent research [Yang et al. 2013], the authors have proposed to
combine edge structure and node attributes for community detection (but they only
consider that each node contains a set of attributes, i.e., an attributed-graph [Cheng
et al. 2011]).

Our networked graph clustering is different from existing works in this category
mainly because we allow each node in the network to be represented as a graph. This

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

Combining Structured Node Content and Topology Information 29:27

relaxation makes our model effective for capturing and representing objects containing
structure information.

7. CONCLUSIONS

This article formulates a new networked graph clustering problem, where graphs are
subject to inter-connected relationships and the clustering goal is to find cluster of
graphs sharing similar content and structures. A noticeable feature of networked
graphs (also referred to as a super-graph in this article) is that we allow each ob-
ject to be represented as a graph, in order to effectively preserve the content and
structure information of the object. In addition, the inter-connected relationships be-
tween graphs also allow our model to capture inter-relationships between objects, such
as interactions between proteins or citation relationships between publications.

Due to the complex structure representation in networked graphs, we proposed to
calculate the similarity between two graphs by assessing (a) node attribute similarity,
and (b) node structure similarity. In addition, some sub-structures are used to balance
the node structure and node content similarities, with graphs sharing similar internal
structures to have a tighter connection, even if they are not directly linked in the super-
graph. By combining structured node content and topology information of networked
graphs, our algorithm demonstrated good performance gain on real-world applications.

The key contribution of this article is threefold: (1) a new networked graph model
for describing real-world objects containing structure information inside the object
and between objects; (2) a mixed-similarity assessment considering structured content
inside graphs and structure dependency between graphs; and (3) a new networked
graph clustering method.

REFERENCES

Charu Aggarwal, Yuchen Zhao, and Philip Yu. 2010. On clustering graph streams. In Proceedings of SIAM
International Conference on Data Mining.

Ben-Dor Amir, Ron Shamir, and Zohar Yakhini. 1999. Clustering gene expression patterns. Journal of
Computational Biology 6, 3—4 (1999), 281-297.

R. Angelova and G. Weikum. 2006. Graph-based text classification: Learn from your neighbors. In Proceedings
of ACM SIGIR Conference. 485—-492.

Christopher M. Bishop (Ed.). 2006. Pattern Recognition and Machine Learning, vol. 1. Springer, New York,
NY.

Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. 2003. Experiments on graph clustering algorithms.
In Proceedings of the 11th European Symposium on Algorithms. 568-579.

T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser. 1987. Graph bisection algorithms with good average
case behavior. Combinatorica 7, 2 (1987), 171-191.

Deng Cai, Xiaofeng He, Jiawei Han, and Thomas S. Huang. 2011. Graph regularized non-negative matrix
factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence
33, 8 (2011), 1548-1560.

Deng Cai, Xiaofei He, Xiaoyun Wu, and Jiawei Han. 2008. Non-negative matrix factorization on manifold.
In Proceedings of the 8th IEEE international Conference on Data Mining. 63-72.

Yandong Cai, Nick Cercone, and Jiawei Han. 1990. An attribute-oriented approach for learning classification
rules from relational databases. In Proceedings of IEEE International Conference on Data Engineering
(ICDE’90). 281-288.

dJ. J. M. Carrasco, D. C. Fain, and L. Zhukov K. J. Lang. 2003. Clustering of bipartite advertiser-keyword
graph. In Proceedings of the 3rd IEEE International Conference on Data Mining, Workshop on Clustering
Large Data Sets.

X. Chen and D. Cai. 2011. Large scale spectral clustering with landmark-based representation. In Proceed-
ings of AAAI Conference. 313-318.

Yudong Chen, S. Sanghavi, and Xu Huan. 2014. Improved graph clustering. IEEE Transactions on Informa-
tion Theory 60, 10 (2014), 6440-6455.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

29:28 T. Guo et al.

Hong Cheng, Yang Zhou, and Jeffrey Xu Yu. 2011. Clustering large attributed graphs: A balance between
structural and attribute similarities. ACM TKDD 5, 2 (2011), Article No. 12.

Lianhua Chi, Bin Li, and Xingquan Zhu. 2013. Fast graph stream classification using discriminative
clique hashing. In Proceedings of Pacific Asian Conference on Knowledge Discovery and Data Mining
(PAKDD’13).

F. Costa and K. De Grave. 2010. Fast neighborhood subgraph pairwise distance kernel. In Proceedings of the
26th International Conference on Machine Learning.

Leon Danon, Albert Diaz-Guilera, Jordi Duch, and Alex Arenas. 2005. Comparing community structure
identification. Theory and Experiment 9 (2005), P09008.

Inderjit Dhillon, Yugiang Guan, and Brian Kulis. 2005. A fast kernel-based multilevel algorithm for graph
clustering. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. 629-634.

Chris Ding and Tao Li. 2010. Convex and semi-nonnegative matrix factorizations. IEEE Transactions on
Pattern Analysis and Machine Intelligence 32, 1 (2010), 45-55.

Luca Donetti and Miguel A. Munoz. 2004. Detecting network communities: A new systematic and efficient
algorithm. Journal of Statistical Mechanics 10 (2004), P10012.

Gary William Flake, Robert E. Tarjan, and Kostas Tsioutsiouliklis. 2004. Graph clustering and minimum
cut trees. Internet Mathematics 1, 4 (2004), 385—-408.

Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3 (2010), 75-174.

Santo Fortunato, Vito Latora, and Massimo Marchiori. 2004. A method to find community structures based
on information centrality. Physical Review E 70, 5 (2004), 056104.

Thomas Gértner, Peter A. Flach, and Stefan Wrobel. 2003. On graph kernels: Hardness rand efficient
alternatives. In Proceedings of Conference on Learning Theory (COLT’03). 129-143.

Maria Giatsoglou and Athena Vakali. 2013. Capturing social data evolution using graph clustering. IEEE
Internet Computing 17, 1 (2013), 74-79.

M. Girvan and M. E. J. Newman. 2002. Community structure in social and biological networks. Proceedings
of the National Academy of Sciences 99 (2002) 8271-8276.

Ting Guo and Xingquan Zhu. 2013. Understanding the roles of sub-graph features for graph classification:
An empirical study perspective. In Proceedings of ACM CIKM Conference.

J. MacQueen. 1967. Some methods for classification and analysis of multivariate observations. In Proceedings
of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 281-297.

U. Kang, Hanghang Tong, and Jimeng Sun. 2012. Fast random walk graph kernel. In Proceedings of the 12th
SIAM international Conference on Data Mining. 828-838.

Michihiro Kuramochi and George Karypis. 2001. Frequent subgraph discovery. In Proceedings of the IEEE
International Conference on Data Mining. 313-320.

Si Quang Le, Tu Bo Ho, and T. E Hang Phan. 2004. A novel graph-based similarity measure for 2D chemical
structures. Genome Informatics 15, 2 (2004), 82-91.

Daniel D. Lee and H. Sebastian Seung. 2001. Algorithms for non-negative matrix factorization. Advances in
Neural Information Processing Systems 13 (2001), 556-562.

X. F. Luo, Z. X, J. Yu, and X. Chen. 2011. Building association link network for semantic link on web
resources. IEEE Transactions on Automation Science and Engineering 8, 3 (2011), 482-494.

Fragkiskos Malliaros and Michalis Vazirgiannis. 2013. Clustering and community detection in directed
networks: A survey. Physics Reports 533, 4 (2013), 95-142.

M. E. J. Newman and M. Girvan. 2004. Finding and evaluating community structure in networks. Physical
Review E 69, 2 (2004), 026113.

A.Y. Ng, M. L. Jordan, and Y. Weiss. 2001. On spectral clustering: Analysis and an algorithm. Advances in
Neural Information Processing Systems 2 (2001), 849-856.

Younghee Park, Douglas S. Reeves, and Mark Stamp. 2013. Deriving common malware behavior through
graph clustering. Computers and Security 39, B (2013), 419-430.

M. Rattigan, M. Majer, and D. Jensen. 2007. Graph clustering with network structure indices. In Proceedings
of International Conference on Machine Learning (ICML07). 783-790.

Kaspar Riesen and Horst Bunke. 2010. Graph Classification and Clustering Based on Vector Space Embed-
ding. World Scientific Publishing, Singapore.

Hiroto Saigo, Sebastian Nowozin, Tadashi Kadowaki, Taku Kudo, and Koji Tsuda. 2009. gBoost: A mathe-
matical programming approach to graph classification and regression. Machine Learning 75, 1 (2009),
69-89.

S. E. Schaeffer. 2007. Graph clustering. Computer Science Review 1 (2007), 27-64.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

Combining Structured Node Content and Topology Information 29:29

M. Seeland, S. A. Berger, A. Stamatakis, and S. Kramer. 2011. Parallel structural graph clustering. In
Proceedings of 2011 European Conference on Machine Learning and Knowledge Discovery in Databases
(ECML/PKDD).

M. Seeland, A. Karwath, and S. Kramer. 2012. A structural cluster kernel for learning on graphs. In Pro-
ceedings of ACM SIG KDD Conference.

J. Shi and J. Malik. 2000. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 22, 8 (2000), 888-905.

A. Smalter, J. Huan, Y. Jia, and G. Lushington. 2010. GPD: A graph pattern diffusion kernel for accurate
graph classification with applications in cheminformatics. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 7, 2 (2010), 197-207.

A. Strehl and J. Ghosh. 2002. Cluster ensembles — A knowledge reuse framework for combining multiple
partitions. Machine Learning Research 3 (2002), 583-617.

Y. Tian, R. A. Hankins, and J. M. Patel. 2008. Efficient aggregation for graph summarisation. In Proceedings
of ACM SIGMOD Conference. 567-580.

Jacobo Toran. 2004. On the hardness of graph isomorphism. SIAM Journal of Computing 33, 5 (2004),
1093-1108.

Ulrik von Luxburg. 2007. A tutorial on spectral clustering. Statistics and Computing 17 (2007), 395-416.

Hua Wang, Feiping Nie, Heng Huang, and Fillia Makedon. 2011. Fast nonnegative matrix tri-factorization for
large-scale data co-clustering. In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI'11). 1553-1558.

X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. 2007. Scan: A structural clustering algorithm for networks.
In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’07). 824-833.

Zhigiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. 2014. GBAGC: A general Bayesian
framework for attributed graph clustering. ACM Transactions on Knowledge Discovery from Data 9
(2014), Article No. 5.

Jaewon Yang, Julian McAuley, and Jure Leskovec. 2013. Community detection in networks with node at-
tributes. In Proceedings of the IEEE International Conference on Data Mining.

Eng-Hui Yap, Tyler Rosche, Steve Almo, and Andras Fiser. 2013. Functional clustering of immunoglobu-
lin superfamily proteins with protein-protein interaction information calibrated hidden Markov model
sequence profiles. Journal of Molecular Biology 426, 4 (2013), 945-961.

X. Yin, J. Han, and P. S. Yu. 2005. Cross-relational clustering with user’s guidance. In Proceedings of ACM
SIGKDD Conference. 344-353.

Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. 2009. Graph clustering based on structural/attribute similarities.
In Proceedings of the VLDB Endowment, vol. 2. 718-729.

Xiaoqu Zhu, Meilan Hu, Feng Zhang, Yu Tao, Chuming Wu, Shangzhu Lin, and Fule He. 2013. Expression
profiling based on graph-clustering approach to determine colon cancer pathway. Journal of Cancer
Research and Therapeutics 9, 3 (2013), 467—-470.

Received February 2015; revised August 2016; accepted September 2016

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 29, Publication date: March 2017.

