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Abstract—In this paper, we present a novel transfer learning framework for network node classification. Our objective is to accurately

predict the labels of nodes in a target network by leveraging information from an auxiliary source network. Such a transfer learning

framework is potentially useful for broader areas of network classification, where emerging new networks might not have sufficient

labeled information because node labels are either costly to obtain or simply not available, whereas many established networks from

related domains are available to benefit the learning. In reality, the source and the target networks may not share common nodes or

connections, so the major challenge of cross-network transfer learning is to identify knowledge/patterns transferable between networks

and potentially useful to support cross-network learning. In this work, we propose to learn common signature subgraphs between

networks, and use them to construct new structure features for the target network. By combining the original node content features and

the new structure features, we develop an iterative classification algorithm, TrGraph, that utilizes label dependency to jointly classify

nodes in the target network. Experiments on real-world networks demonstrate that TrGraph achieves the superior performance

compared to the state-of-the-art baseline methods, and transferring generalizable structure information can indeed improve the node

classification accuracy.

Index Terms—Transfer learning, node classification, networked data

Ç

1 INTRODUCTION

RECENT advances in communications and network tech-
nologies have witnessed the booming of social and

networking oriented applications, such as social net-
works, human disease networks, and citation networks
and so on. For these applications, a unique feature is that
their data are represented by a network structure, in
which nodes denote entities or instances (e.g., users in a
social network or scientific publications in a citation
network) and links denote relationships between nodes
(e.g., friendship, co-authorship, or citation relationship).
Such networks are very dynamic in nature and may be
updated frequently over time. For example, new users
introduced to a friendship network or new publications
published in each year will result in new nodes or links
being created in the network. To analyze these networks,
node classification is one of the most important problems
that often arise in many advanced applications, ranging
from advertisement, question answering, to recommenda-
tion systems [1], [2], [3], [4], [5], [6], [7]. The success of

these applications all requires nodes to be accurately
classified in a network.

Given a small set of labeled nodes in a network, node
classification aims to make use of labeled nodes to predict
the labels of unlabeled nodes [1], [2]. This type of classifica-
tion problems typically arise in the context of various social
networking scenarios [3], [6], [7], where nodes are not only
associated with content features, but also share dependency
structure features with other nodes in the network. In the
node classification problem setting, it is assumed that a
small set of nodes are required to be labeled through a man-
ual annotation process. For example, publications in citation
networks can be categorized into specific topics, and users
in friendship networks can also being labeled in regards to
their interests, hobbies, or group characteristics (such as col-
leagues or relatives etc.). However, these labels may not be
available to the majority of nodes in the network, either
because there lacks available resources for a human-
centered labeling process, or because new nodes with
unknown labels are constantly be created over time. There-
fore, the classification problem that we address in this work
is to use labeled nodes in conjunction with their content and
structure features to predict the labels of unlabeled nodes in
an automated way.

The node classification problem is inherently more com-
plicated than generic supervised learning tasks, where
instances are considered to be independent of each other, so
learning and classification are purely based on vector-based
instance features. In a network context, nodes not only
contain content features but also share dependency struc-
tures with other nodes in the neighborhood [8]. Both the
content features of nodes and the structure of the network
are useful for learning and classification. For example,
authors who frequently co-author papers are often from

� M. Fang is with the Centre for Quantum Computation & Intelligent
Systems, Faculty of Engineering and Information Technology, University
of Technology, Sydney, Australia.
E-mail: Meng.Fang@student.uts.edu.au.

� J. Yin is with the Commonwealth Scientific and Industrial Research
Organization, Australia. E-mail: Jie.Yin@csiro.au.

� X. Zhu is with the Department of Computer and Electrical Engineering &
Computer Science, Florida Atlantic University. E-mail: xzhu3@fau.edu.

� C. Zhang is with the Centre for Quantum Computation & Intelligent
Systems, Faculty of Engineering and Information Technology, University
of Technology, Sydney, Australia. E-mail: chengqi.zhang@uts.edu.au.

Manuscript received 15 Jan. 2014; revised 10 Aug. 2014; accepted 27 Feb.
2015. Date of publication 15 Mar. 2015; date of current version 3 Aug. 2015.
Recommended for acceptance by J. Wang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2015.2413789

2536 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 9, SEPTEMBER 2015

1041-4347� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



similar research fields, and members of friendship tend to
share similar interests or hobbies. To build accurate predic-
tion models for node classification, a sufficient number of
labeled nodes are essential to achieve the desired classifica-
tion accuracy.

In reality, although networked data are easy to collect,
the node labels are, however, either expensive to obtain or
simply not available. This is particularly true for newly
formed networks or for emerging entities of an existing net-
work. The lack of sufficient labeled nodes makes it difficult
to train a good classifier to classify unlabeled nodes. Fortu-
nately, it is often the case that abundant labeled data may
exist in many established networks from different yet rele-
vant domains. To address this issue, transfer learning has
emerged as a new machine learning framework, which
aims at exploring external knowledge from auxiliary source
domains to facilitate a new learning task in a target domain
[9]. The basic idea is to uncover common factors shared
between involved domains and use them as the bridge for
knowledge transfer. To date, most existing studies on trans-
fer learning have been mainly focused on traditional vector-
based data, such as transactional data [10], image [11] and
text [12], in which instances are assumed to be independent
and identically distributed (i.i.d.). Little research work has
been done to address effective and reliable cross-network
transfer learning for node classification.

1.1 Key Challenges and Motivations

Cross-network transfer learning for node classification is a
very challenging task, because there is no obvious indicator
to identify the correspondence or relatedness between the
source and target networks, and determine knowledge/pat-
terns transferable across networks. In the following, we
examine key challenges in cross-network transfer learning
and seek opportunities to address them.

Network correspondence. Because the source and target net-
works may be formed for different purposes, the two net-
works can be largely distinct in that their nodes represent
totally different types of entities, and the associated links
indicate different relationships between nodes. Even in the
case that two networks share similar relationships (such as
citation relationship), each network may reveal different
content features for its own nodes, making the feature
spaces of the nodes from two networks have very little over-
lap, or no overlap at all. Therefore, performing transfer
learning using the overlap of node content features would
fail to achieve the desirable classification accuracy.

Transferable knowledge. Although the knowledge on node
features is not necessarily transferable, two networks often
share some common structure features. To illustrate this, let
us examine two citation networks as one case study exam-
ple; one is the CiteSeer network containing 3,327 nodes, and
the other is the Cora network containing 2,708 nodes. The
two networks are from relevant domains but have no
overlapped nodes or edges. For each network, we extract its
top frequent subgraphs using the method in [13], [14], as
shown in Figs. 1a and 1b. It is clear that, the two networks
share some frequent subgraphs, indicating that the
networks have some common structure patterns with strik-
ing similarity although they may not have any nodes in

common. Previous research [2], [4] has shown that, the struc-
ture information is a powerful source for the purpose of
node classification, so that the nodes sharing the same local
structures are likely to have the same label. Thus, discover-
ing common structure patterns are the key to enable cross-
network transfer learning.

Learning framework. After useful structure patterns are
identified, a transfer learning framework needs to properly
incorporate such knowledge to fulfill the underlying learn-
ing objective for node classification. In the network settings,
the labels of connected nodes are correlated in a local neigh-
borhood. This indicates that, closely connected nodes are
likely to share the same label, and nodes on the same sub-
structure tend to share the same label. Such label correla-
tions should be considered together with transferred
knowledge in the learning framework to achieve optimal
performance for node classification.

Taking into account the three challenges in cross-network
transfer learning, we aim to identify common structure pat-
terns that are transferable from the source network and use-
ful for the node classification in the target network.

Intuitively, although the source and target networks may
not share common nodes or edges, as long as they are from
relevant domains and built for relevant tasks, there poten-
tially exist some interesting patterns with striking similarity
between the networks. For example, in a citation network
where nodes represent publications and edges denote cita-
tion relationships, a paper which addresses “sequential pat-
tern mining” often cites papers related to Apriori-based
pattern mining, pattern-growth based methods (such as
FP-tree), and then other existing sequential pattern mining
methods. This citation relationship, in fact, reveals the evo-
lution of a research field, which is very common among sci-
entific publications. It is very likely that we can find similar
patterns across different citation networks, say one network
is CiteSeer and the other network is Cora. Therefore, a key
question is, what common structure patterns can be trans-
ferred effectively for boosting the node classification task in
the target network?

In order to explore patterns transferable across networks,
we report our case study example from two citation net-
works in Fig. 1. The two networks do not have any common
nodes/edges at the node/edge level, and our objective is to
check patterns discovered from two networks and investi-
gate whether the two networks have any correspondence at
the pattern level. As we can see, top frequent subgraphs
found in CiteSeer (Fig. 1a) are not identical to those in
Cora (Fig. 1b). So if we simply transfer top frequent
subgraphs from the source network (CiteSeer), they
may not be significant enough for representing the underly-
ing structure of the target network (Cora), resulting in

Fig. 1. A case study example: the target network is Cora and the source
network is CiteSeer. The two networks are from relevant domains, but
have no overlapped nodes or edges. (a) and (b) show top frequent
subgraphs extracted from CiteSeer and Cora, respectively. (c) shows
common signature subgraphs discovered using our TrGraph algorithm.
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grossly incorrect results for node classification in the target
network. Therefore, it is desirable to transfer common struc-
ture patterns that occur frequently but also capture struc-
tural similarity between the networks. This motivates us
to discover common signature subgraphs as transferable
knowledge for cross-network node classification. Common
signature subgraphs, as shown in Fig. 1c, are generalized
subgraph representatives for transferring similar structure
features across networks and thus have the potential to
enhance node classification in the target network.

1.2 Our Contributions

We propose a novel approach to address cross-network
transfer learning for node classification. Our key idea is to
discover common signature subgraph patterns between the
source and target networks and use them to boost the node
classification accuracy in the target network.

For this purpose, we introduce a notation of
t-neighborhood structure, which captures a node’s local net-
work structure within a maximum t-step distance centered
at each single node. Based on this, we can extract a set of sig-
nificant subgraphs respectively from the source and target
networks, by aggregating t-neighborhood structures of all
nodes in the network. After that, we devise an optimization
problem to discover common signature subgraphs shared
by the source and target networks. As domain-independent
structure features, these common signature subgraphs are
transferred from the source network so as to form new struc-
ture features for the nodes in the target network. Together
with domain-dependent node features, we develop an itera-
tive classification algorithm (ICA), TrGraph, that leverages
label correlations to jointly classify the nodes in the target
network. Experiments on real-world networks show that
our proposed algorithm can successfully achieve knowledge
transfer across networks and thus significantly improve the
node classification accuracy in the target network.

2 RELATED WORK

In this section, we review existing literature on node classifi-
cation, state-of-the-art transfer learning, as well as frequent
subgraph mining and influence pattern discovery.

2.1 Node Classification in Networks

The problem of node classification is an important learning
task in social network analysis and data mining areas. Given
a subset of labeled nodes in a network, node classification
aims to use labeled nodes in conjunction with their content
and structure features to classify the remaining unlabeled
nodes [1], [2]. Previous research [4], [15], [16] has shown
that, by jointly classifying the nodes, collective classification
can achieve higher classification accuracies than traditional
methods that classify each node separately. Eldardiry and
Neville [17] proposed an ensemble method to reduce learn-
ing and inference variances in collective classification
within domains where a same set of nodes are connected by
multiple networks.

Collective classification approaches can be roughly cate-
gorized into global formulation-based methods and local
classifier-based methods [16]. Global formulation-based
methods aim to train a classifier that seeks to optimize a

global objective function over the network, often based on a
Markov random field (MRF) [18]. The extensions to MRF
that take into account the observed attributes of data (i.e.,
nodes) are conditional random fields and relational Markov
networks [19]. Global methods are usually computationally
expensive in large-scale networks. On the other hand, local
classifier-based methods have gained much attention
recently for node classification for networked data [20], [21].
This group of methods employ an iterative process whereby
a local classifier predicts the label of each node by using
node content features and relational features derived from
the current label predictions. After that, a collective infer-
ence algorithm recomputes the class labels, which will be
used in the next iteration. This process continues until the
predictions for all node labels are stabilized in the network.

Iterative classification algorithm is a local classifier-based
method that is widely used in many studies [20], [21]. The
basic assumption of ICA is that, for each node in the net-
work, given the labels of its neighbors, the label of the node
is independent of the features of its neighbors and non-
neighbors, and the labels of all non-neighbors. In ICA, each
node is represented by combining the node features and
relational features constructed by using the labels of all the
neighbors of the node. The relational features can be com-
puted by using an aggregation function over the neighbors,
such as count, mode, proportion and so on. Using both
node content features and relational features, ICA trains a
local classifier and recomputes the class labels of all nodes.
This process continues until the algorithm converges. Local
classifiers that have been used include naive Bayes [15],
k-nearest neighbor [22], and logistic regression [23]. In this
work, we adopt an ICA-like algorithm to jointly classify the
nodes in the target network, which considers three types of
features for each node, including node content features,
structure features, and relational features.

2.2 Transfer Learning

Transfer learning is a machine learning paradigm which
aims at borrowing knowledge from a related domain to
help build an accurate classifier in the target domain, where
the labeled data in the target domain is very limited [9].

2.2.1 Categories of Transfer Learning

According to the type of information that can be transferred,
transfer learning approaches can be roughly grouped into
three categories. The first category of transfer learning
methods are based on instance transfer [24], [25], in which
certain parts of the instances in the source domain are
reused for learning in the target domain via instance
weighting. TrAdaBoost [24] is one typical example of such
methods, which assigns larger weights to the instances
from the source domain that are more similar to the target
instances. The second category is the parameter transfer
approach [26], which assumes that the source and target
learning tasks share similar parameters or prior distribu-
tions of the models, and thus transferring these parameters
or priors can facilitate the target learning task. The third
family of transfer learning aims to learn a good latent fea-
ture representation shared by two domains [27], [28], [29],
[30]. In this case, the transferable knowledge is encoded in
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the newly learned feature representation, which expects to
improve the learning task in the target domain. In [28], Xue
et al. proposed a cross-domain transfer learning algorithm
that integrates labeled and unlabeled data from related
domains for text classification. Wang et al. [30] presented a
dual knowledge transfer approach for cross-language Web
page classification. A commonality of most transfer learning
methods is that they all assume the source and target data
to be in the same feature space. However, in practice, it is
common that the labeled data are scarce in their own feature
space, whereas there may be a large amount of data in
another feature space. Thus, our work relaxes this assump-
tion and allows the nodes across networks to have different
feature spaces.

There is also a body of research work on transfer learning
from streaming data [31], [32], which aims to transfer
knowledge from auxiliary source domains to aid an online
target learning task. For example, Roy et al. [32] proposed a
transfer learning algorithm that builds a transfer graph to
capture the relation between the auxiliary social streams
and the target video data. In this work, we also adopt the
idea of graph transfer but focus on non-streaming scenarios
for cross-network node classification.

2.2.2 Heterogeneous Transfer Learning

While most transfer learning methods assume that the data
from different domains have the same feature space, hetero-
geneous transfer learning has been introduced as a new
learning scenario, where the source and target data can be
in different feature spaces and there may be no correspon-
dence between data in these spaces.

Recently, researchers have attempted to solve heteroge-
neous transfer learning problems across image and text
domains. Yang et al. [33] investigated exploring socially-
annotated image data available on the Web to improve
image clustering. They utilized the correlation between tex-
tual tags and image features in the annotated images to help
estimate a good latent feature representation, through which
better clustering results can be obtained. Hu et al. [34] lever-
aged auxiliary text documents to improve the tag recommen-
dation performance for images. They proposed a factor
alignment model which discovers the connection between
image features and text features via the latent space of image
tags. Zhu et al. [35] explored knowledge transfer from both
unlabeled images and text data to enhance image classifica-
tion performance. They attempted to enrich the representa-
tion of the target images with semantic concepts extracted
from the auxiliary source data through a matrix factorization
method. Similar to these methods, our work falls into the
third category of transfer learning approaches, which
focuses on learning a new and improved latent feature repre-
sentation to improve the target learning task.

For existing heterogeneous transfer learning problem set-
tings, they all require at least one primary key to link hetero-
geneous data sources, such as images sharing the same
textual tag, or words occurring in both image tags and text
documents. However, such an explicit correspondence does
not exist in our problem. Instead, we resort to identifying
common structure patterns transferable from source net-
work and useful to generalize in the target network.

2.2.3 Transfer Learning on Relational Data

and Networked Data

Although a significant amount of research has been done on
transfer learning,most studies are limited to dealingwith vec-
tor-based data, in which each instance is represented by a
multi-dimensional feature vector, and all instances are
assumed to be independent and identically distributed (i.i.d.).
Several studies have been proposed to transfer knowledge on
relational data (i.e., [36], [37]), where instances are non-i.i.d.
and are represented by multiple relations. Mihalkova et al.
[36] proposed a TAMAR algorithm to transfer relational
knowledge with Markov logic networks (MLNs) across rela-
tional domains. Davis and Domingos [37] presented an
approach to transferring relational knowledge based on a
form of second-order logic. The basic idea of these algorithms
is to discover structural regularities in the source domain in
the form of Markov logic formulas and then instantiate these
formulas with predicates from the target domain. These algo-
rithms are based on the expressiveness of logics to establish
semantic mappings to connect entities and their relationships
from a source domain to a target domain. However, most
real-world social networks have complex structures but lack
explicit semantic mappings across two domains. In this con-
text, how to perform effective transfer learning across general
networks has remained a challenging task.

Only in recent years, attempts have been made to tackle
transfer learning problems across networks. Ye et al. [38]
presented a transfer learning algorithm to address the edge
sign prediction problem in signed social networks. Because
edge instances are not associated with a pre-defined feature
vector, this work proposed to learn common latent topologi-
cal features shared by the target and source networks, and
then adopt an AdaBoost-like transfer learning algorithm
with instance weighting to train a classifier. This differs
from our work in that the edge prediction problems in two
networks are assumed to share the same feature space and
label space, so that the source edge instances can be reused
via instance weighting. Fang et al. [39] proposed a transfer
learning method that discovers common latent structure
features as useful knowledge to facilitate collective classifi-
cation in the target network. The proposed method discov-
ers these latent features by constructing label propagation
matrices in the source and target networks and mapping
them into a shared latent feature space. Both of these meth-
ods have relied on the global graph similarities of both net-
works to construct implicit, latent structure features via
nonnegative matrix factorization. The resulting latent fea-
tures can be difficult to interpret. In contrast, our transfer
learning framework focuses on finding explicit, local sub-
graph features that are more meaningful to capture local-
ized structure information for node classification. Our
solution also provides an explicit way to measure the relat-
edness of two networks by estimating the degree that they
share on their subgraphs, which can be useful to avoid
transferring from unrelated sources (i.e., negative transfer).

2.3 Frequent Subgraph Mining and Influence
Pattern Discovery

To enable knowledge transfer across networks, we propose
to find common signature subgraphs between the source
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and target networks. This part of work is related to frequent
subgraph mining [40], [41], [42] and influence pattern dis-
covery in large networks [6], [8].

Frequent subgraph mining aims to discover subgraph
structures whose frequency in a graph data set is above a
minimum support threshold. Such high-frequency patterns
are useful for many tasks, such as being used as features for
graph classification [43] or for efficient graph database
indexing [44], [45]. Many methods have been proposed for
identifying frequent subgraphs within graph data sets,
where the main challenge is to tackle the graph isomor-
phism. Early methods, such as AGM [40], used an adjacency
matrix to represent graphs and employed a level-wise
search, similar to the Apriori principle, for finding frequent
subgraph patterns in an efficient way. Other methods made
improvements by employing new coding mechanisms to
avoid graph isomorphism. For example, gSpan [41] adopted
a new lexicographic order to map each graph to a unique
minimum depth-first search (DFS) code so as to mine fre-
quently connected subgraphs efficiently. In summary, our
proposed method is built upon existing research on fre-
quent subgraph mining but further advances this field to
identify common subgraphs shared by multiple networks
as signature patterns to support transfer learning.

By using substructure patterns as tokens to study net-
works, existing research on influence pattern discovery [6],
[8] has shown that typical patterns of influence exist in dif-
ferent networks, such as frequent cascade subgraphs. In
other words, patterns that users pass their influence to
friends or neighbors are largely similar. This is, in fact, the
root of our research, because only if such patterns exist, we
are able to use them to link different networks to achieve
knowledge transfer for learning. In comparison, our work
goes far beyond existing influence pattern mining and
modeling (which normally focus on a single network) to
link multiple networks for effective transfer learning.

3 PROBLEM FORMULATION

We consider one source network Gs and one target network
Gt for our node classification task. We focus on an inductive
transfer learning setting, in which nodes in the source net-
work Gs are fully labeled, while the target network Gt only
has a small number of labeled nodes. The target network is

represented as a graph Gt ¼ fVut ;Vlt; Etg, where Vlt denotes a
small set of labeled nodes in the network, and Vut denotes
the set of nodes whose class labels are unknown and need
to be predicted. Et denotes the set of undirected edges con-

necting the nodes. Each node vit 2 Vut [ Vlt is described by a

feature vector xi
t. A mapping function F t maps a node vit to

a class label yit 2 Yt, where Yt denotes a set of class labels in

the target domain. We treat the labeled nodes Vlt as the

training data and assume that Vlt has the same distribution
as the unlabeled node set Vut . However, the quantity of the

labeled nodes Vlt is inadequate to train an accurate classifier
for predicting the labels of unlabeled nodes Vut in Gt.

We also have a fully labeled source network Gs ¼
ðV ls; EsÞ, where Vls denotes the set of labeled nodes and
Es denotes the set of undirected edges connecting the nodes.

Each node vis 2 Vls is associated with a feature vector xi
s, and

there exists a mapping function F s that maps each node

vis 2 Vls to its corresponding class label yis 2 Ys, where
Ys denotes a set of class labels in the source domain.

We consider the most general cases of cross-network
transfer learning, in which nodes in the source network
Gs and the target network Gt can have different feature
space and label space. In other words, nodes in source and
target networks can denote different entities, or even if the
same type of entities are represented, the nodes can have
different content features. The classification problem of Gt

can also differ from that of Gs, leading their respective label
spaces Yt and Ys to be different. Thus, the mapping function
F s in Gs can be different from F t in Gt. Although the
knowledge on node features is not necessarily transferable,
there may still exist some common properties between Gt

and Gs. Given insufficient labeled nodes Vlt from Gt, it is

beneficial to leverage labeled nodes Vls from Gs to help clas-
sify unlabeled nodes Vut in Gt.

Formally, given the source network Gs ¼ ðVls; EsÞ and the

target networkGt ¼ fVut ;Vlt; Etg, the objective of our transfer
learning task is to learn a classifier to predict the labels of

unlabeled nodes vit 2 Vut in the target network Gt that maxi-
mizes the classification accuracy.

4 METHODOLOGY

The key issue of our transfer learning task is to identify
knowledge/patterns which are transferable from the
source network to the target network and then use them
to facilitate the target learning task. Unlike traditional
vector data that are independent and identically distrib-
uted, for networked data, the nodes are connected by
links/edges to form a network. Closely connected nodes
tend to have similar labels, and nodes sharing the same
structure patterns are likely to have the same label [2],
[4]. Therefore, we propose to discover common structure
patterns shared by the source and target networks, and
leverage these patterns to help the node classification
task in the target network.

In Fig. 2, we outline our proposed transfer learning
framework for cross-network node classification, which
consists of three steps: (1) constructing structure features
from the source and target networks; (2) discovering com-
mon signature subgraphs shared by the networks and using
them to reconstruct structure features of the target network;
and (3) combining reconstructed structure features and
node content features to learn a classifier for jointly classify-
ing nodes in the target network.

Fig. 2. Our proposed transfer learning framework for cross-network node
classification.
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The technical details of the three steps are explained in
the following sections.

4.1 Feature Construction

In this section, we discuss how to construct useful features
for node classification. Because a network consists of a set of
nodes and edges that connect the nodes, we would like to
construct two types of features for each node: (1) content
features, which represent the attributes that describe the
characteristics of the node; and (2) structure features, which
represent the structure information of the node with respect
to its neighborhood in the network.

4.1.1 Content Features

For a given network, each node is usually associated with a
set of pre-defined attributes that represent the node content.
Therefore, we use the attribute values of each node to repre-
sent its content features as a feature vector. As noted before,
because networks may be formed for different purposes,
their node content features may not be generalizable from
the source network to the target network.

4.1.2 Structure Features

Different from content features, a network has no value
immediately available to represent its structure information,
so there is no obvious vector form showing a node’s struc-
ture features. In this work, we propose to use a subgraph-
based approach to represent a node’s structure information.

For this aim, we first explore the local neighborhood of a
node to find its significant structure patterns. Assuming that
the label of a node is only dependent on its local neighbor-
hood structure within depth t, for any node v, we consider
its t-neighborhood structure as its structure features. For-
mally, we define the t-neighborhood structure as follows.

Definition 1 (t-neighborhood structure). Given a graph
G ¼ ðV; EÞ and a node v 2 V, the t-neighborhood structure
gv of node v is a subtree, rooted from v and recursively travers-
ing all of v’s neighbors. For each neighbor, the traversal collects
all the nodes until the shortest path from root v to the current
node reaches a depth of t. The t-neighborhood structure consists
of all the visited nodes and the original links between them.

In other words, for a node v in the network, considering
v as the root node, we can crawl its t-neighborhood struc-
ture gv using a breadth-first search (BFS) [46] originated
from the node with depth t. The final results of t-step
BFS rooted from node v are regarded as the structure fea-
tures for node v. This procedure has the complexity of
OðjVvj þ jEvjÞ, where jVvj indicates the number of nodes in
gv and jEvj indicates the number of edges in gv.

For the two examples of CiteSeer and Cora networks
shown in Fig. 3, we illustrate t-neighborhood structures

built for node “A” in the Citeseer network and node “B” in
the Cora network, respectively, in Fig. 4. We can see that,
node “A” and node “B” have the same one-neighborhood
structures, but different t-neighborhood structures for
t ¼ 2; 3; and 4.

In reality, nodes in the networks can have different
neighborhood structures, while some of them might be suf-
ficiently similar to each other. Thus, we propose a uniform
way to represent a node’s neighborhood structures by con-
sidering the similarity or distance between two subgraphs.
Formally, given a node v, we define a mapping function
N : ðv; tÞ ! n, which generates a vector form n for describ-
ing the structure information of node v within depth t. As a
result, we can map the node’s t-neighborhood structures to
the same feature space.

If we consider that the t-neighborhood structure is con-
stituted by subgraphs, we can construct a set of subgraph
bases to represent the neighborhood structure. Let B ¼ fb1;
b2; . . . ; bkg denote the entire space of subgraph bases. The
mapping function N can be built based on these subgraph
bases. Given a t-neighborhood structure of node v, the map-
ping function N uses these subgraph bases as input and
outputs a feature value for each corresponding subgraph
base. The generated values form a feature vector, named
subgraph-based vector A ¼ fa1; a2; . . . ; akg, where ai is the
corresponding feature value for subgraph base bi. Based on
the above idea, we formally define related notations as
follows.

Definition 2 (Subgraph). Given a graph G ¼ ðV; EÞ and a
graph g ¼ ðVg; EgÞ, g is a subgraph ofG if there exists an injec-
tive function f : Vg ! V such that

� 8v 2 Vg; fðvÞ 2 G;
� 8ðu; vÞ 2 Eg; ðfðuÞ; fðvÞÞ 2 E.

Definition 3 (Subgraph bases). Given a graph G ¼ ðV; EÞ, the
subgraph bases B is a collection of subgraphs fb1; b2; . . . ; bkg,
which is composed of subgraphs of G, and bi indicates a sub-
graph base of B.

Definition 4 (Subgraph activations). Given a graph G ¼
ðV; EÞ and its subgraph bases B ¼ fb1; b2; . . . ; bkg, the sub-
graph activations A is a collection of values fa1; . . . ; akg,
where each activation value aj corresponds to one base bj of
subgraph bases B ¼ fb1; b2; . . . ; bkg. A graph G and its sub-
graph bases B uniquely determine G’s subgraph activations A.

Definition 5 (Subgraph-based representation). Given a
graph G ¼ ðV; EÞ, the subgraph bases B, and subgraph activa-
tions A, for any node v 2 V, the v’s subgraph-based representa-
tion is a vector form, which is composed of the values of

Fig. 3. Two examples of CiteSeer and Cora networks, where node “A” in
CiteSeer and node “B” in Cora have similar neighborhood structures.

Fig. 4. The t-neighborhood structures for node “A” and node “B” in Fig. 3
when t ¼ 1; 2; 3; 4.
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subgraph activations A ¼ fa1; a2; . . . ; akg, each ai corre-
sponding to a subgraph base bi in B ¼ fb1; b2; . . . ; bkg.
Now let us focus on how to find subgraph bases B from a

graph G and calculate the corresponding values of sub-
graph activations A. One straightforward approach is to
use t-neighborhood structures discovered from a graph
as subgraph bases. This can be done by filtering the
same t-neighborhood structures, and aggregating unique
t-neighborhood structures as subgraph bases. That is,

B ¼ fb1; b2; . . . ; bkg ¼ uniquefg1; g2; . . . ; gng: (1)

Given a t-neighborhood structure g, we can establish its
relationship to subgraph bases B ¼ fb1; b2; . . . ; bkg. For each
subgraph base bi, we calculate the probability PrðgjbiÞwhich
indicates the causal probability of the ith cause bi triggering
the event g [47]. If the structure of g is likely to be the sub-
graph base bi, the value of PrðgjbiÞ would be large. Other-
wise, if no structure in g is likely to be bi, the value of
PrðgjbiÞ would be close to zero. The calculation of probabil-
ity PrðgjbiÞ depends on the similarity between graph g and
subgraph base bi. The formal definition of PrðgjbiÞ is given
later in this section.

Based on subgraph bases B, given any node and its
t-neighborhood structure g, we obtain a new vector-based
representation to capture its structure features, which is
defined as follow:

n ¼ fa1; a2; . . . ; akg ¼ fPrðgjb1Þ;Prðgjb2Þ; . . . ;PrðgjbkÞg; (2)

where PrðgjbiÞ indicates the activation value ai of g with
respect to subgraph base bi 2 B.

We now discuss how to calculate the probability PrðgjbiÞ.
To this end, we first introduce several definitions as follows.

Definition 6 (Graph isomorphism). Given two graphs G and
G0, G is a graph isomorphism of G0 if there exists a bijective
function f such that

� 8ðu; vÞ 2 E0; ðfðuÞ; fðvÞÞ 2 E,
� 8ðu; vÞ 2 E; ðfðuÞ; fðvÞÞ 2 E0.

Definition 7 (Subgraph isomorphism). Given two graphs
G and G0, G is a graph isomorphism from G to G0 if there
exists a subgraph S � G such that f is a graph isomorphism
from S to G.

Definition 8 (Common structure). Given a graph Gc and two
other graphs G1 and G2, Gc is a common subgraph of G1 and
G2 if there exist subgraph isomorphisms both from Gc to G1

and from Gc to G2.

Definition 9 (Maximal common subgraph). Given a graph
Gm and two other graphs G1 and G2, Gm is a maximal com-
mon subgraph of G1 and G2 if there do not exist other common
subgraphs Gc of G1 and G2 that contain more nodes than Gm.

It is worth noting that computing maximal common
subgraph (MCS) between two graphs is known to be NP-
complete. Optimal algorithms that follow different princi-
ples have been proposed to solve this problem; the first
principle finds all common subgraphs of the two given
graphs and chooses the largest, and the second builds the

association graph between the two given graphs and then
searches for the maximum clique of the latter graph. As
they both involve a space state search process, the worst
case time complexity is exponential with respect to the
number of nodes in the graphs [48]. Alternatively, subopti-
mal algorithms have been developed to speed-up the effi-
ciency, which typically adopt some heuristics to prune
unfruitful search paths in the search space [49]. In our prob-
lem, since the sizes of two input graphs, t-neighborhood
structure g and subgraph base bi 2 B, are very small, the
time complexity of computing MCS between two small
graphs is well acceptable.

We define the maximal common subgraph between
two graphs G1 and G2 as mcomðG1; G2Þ. For a graph
G ¼ ðV; EÞ, suppose that jVj and jEj denote the number of
nodes and edges, respectively. For notational conve-
nience, we let jGj denote the number of nodes and edges
of G, where jGj ¼ jVj þ jEj. The probability PrðgjbiÞ is cal-
culated as follows:

PrðgjbiÞ ¼ jmcomðg; biÞj
maxðjgj; jbijÞ : (3)

If g has more common structures with bi, PrðgjbiÞ would be
larger, and if there is fewer common structures between
g and bi, PrðgjbiÞwould be closer to zero.

Formally, the probability PrðgjbiÞ for any given graph
g and subgraph bi has the following properties.

Property 1. For any graph g and subgraph base bi, the following
conditions hold true:

1) 0 < PrðgjbiÞ � 1;
2) PrðgjbiÞ ¼ 1$ g and bi are isomorphic to each other;
3) If g1 and g2 are isomorphic to each other, then

Prðg1jbiÞ ¼ Prðg2jbiÞ.
Proof. According to the definition of Eq. (3), Properties

(1)-(3) can be easily validated. tu
Fig. 5 shows an example of computing the values of sub-

graph activations of graph g with respect to subgraph bases
fb1; b2; . . . ; b5g. The decimals indicate the value of subgraph
activation ai, computed as PrðgjbiÞ, for the corresponding
subgraph base bi. Clearly, the larger the value of subgraph
activation ai, the more similar graph g and subgraph base bi.

Algorithm 1 lists the procedure of constructing sub-
graph-based structure features for all nodes in network G.

4.2 Discovering Common Signature Subgraph
Bases Between Networks

After useful features are extracted from the source network
Gs and the target network Gt, our next step aims to discover
patterns that are generalizable from Gs to Gt. As noted
before, although the networks in relevant domains may
have different content features for their nodes, they do share

Fig. 5. Computing the values of subgraph activations given subgraph
bases. fb1; b2; . . . ; b5g are subgraph bases and the decimals are the
values of subgraph activations.
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similar structure patterns. Therefore, we propose to find an
optimal set of common signature subgraph bases B�ðkÞ that
capture common structure patterns between Gs and Gt.

Algorithm 1. Constructing Subgraph-based Structure
Features

Input: A network G ¼ ðV; EÞ,
Output: Subgraph bases B, Subgraph-based representation

nv of each node v 2 V.
1: Collect all t-neighborhood structures from network G;
2: Construct subgraph bases B by using unique

t-neighborhood structures;
3: for each node v 2 V do
4: Collect t-neighborhood structure g of node v;
5: Compute PrðgjbiÞ, for each bi 2 B using Eq. (3);
6: Obtain a subgraph-based representation nv ¼ fPrðgj

b1Þ; . . . ;PrðgjbkÞg.
7: end for

Let Bs and Bt denote the subgraph bases of the source
network Gs and the target network Gt, respectively. The
whole set of Bs [Bt can be considered as candidates for
finding an optimal set of common signature subgraph
bases B�ðkÞ. In other words, we want to find a “good” sub-

set B�ðkÞ from all the subgraph base candidates Bs [Bt to

best represent both the target and source networks.
Therefore, the common signature subgraph bases B�ðkÞ can
be discovered by solving a likelihood-form optimization
problem as:

B�ðkÞ ¼ argmax
BðkÞ

Y

v2Gt

PrðgvjBðkÞÞ
Y

v2Gs

PrðgvjBðkÞÞ: (4)

Since we have BðkÞ ¼ fb1; b2; . . . ; bkg, we then rewrite the
above equation as follows:

B�ðkÞ ¼ argmax
BðkÞ

Y

v2Gt

Y

bi2BðkÞ
PrðgvjbiÞ

Y

v2Gs

Y

bi2BðkÞ
PrðgvjbiÞ: (5)

Here, the source network Gs and the target network Gt are
represented in the same space and the common signature
subgraph bases can capture the common factors of the origi-
nal neighborhood structures in both Gt and Gs.

To solve this optimization problem, we define

L ¼
Y

v2Gt

Y

bi2BðkÞ
PrðgvjbiÞ

Y

v2Gs

Y

bi2BðkÞ
PrðgvjbiÞ: (6)

Then we have

L ¼
Y

bi2BðkÞ

Y

v2Gt

PrðgvjbiÞ
Y

v2Gs

PrðgvjbiÞ
( )

: (7)

We rewrite the above equation using a log form:

log L ¼
X

bi2BðkÞ
log

Y

v2Gt

PrðgvjbiÞ
Y

v2Gs

PrðgvjbiÞ
( )

; (8)

and the optimal problem in Eq. (5) can be rewritten as:

B�ðkÞ ¼ argmax
BðkÞ

log L: (9)

Our optimization problem is then transferred to selecting an
optimal set of bi’s that can maximize the sum of logfQv2Gt

PrðgvjbiÞ
Q

v2Gs
PrðgvjbiÞg.

Considering 0 < PrðgvjbiÞ � 1, we have

log
Y

v2Gt

PrðgvjbiÞ
Y

v2Gs

PrðgvjbiÞ
( )

< 0: (10)

Thus, we can rewrite the optimal function as:

B�ðkÞ ¼ argmin
BðkÞ

X

bi2BðkÞ
�log

Y

v2Gt

PrðgvjbiÞ
Y

v2Gs

PrðgvjbiÞ
( )!( )

:

(11)

For each bi from the candidate set Bs [Bt, we can
compute PrðgjbiÞ for each node in both Gs and Gt. The time
complexity is OðncðjVsj þ jVtjÞÞ, where nc is the number of
subgraph base candidates. Using all the unique subgraph
bases as candidates, we then select a set of B�ðkÞ with the low-

est k values of �logfQv2Gt
PrðgvjbiÞ

Q
v2Gs

PrðgvjbiÞg using

the quicksort method which has the time complexity of
OððjVsj þ jVtjÞlogðjVsj þ jVtjÞÞ.

4.3 Transferring Common Signature Subgraph
Bases for Node Classification

After discovering common signature subgraph bases as
generalizable features, our ultimate aim is to transfer these
common structure features to help build an accurate classi-
fier in the target network for node classification.

For our node classification task, because the nodes are not
independent but are connected by links between each other
as a network, the labels of connected nodes are dependent in
a local neighborhood, and closely connected nodes are likely
to share the same label. Previous research [4], [15] has demon-
strated that collective classification can significantly improve
the node classification accuracy by jointly classifying the
nodes, as opposed to traditional classification methods that
take vector inputs to classify the nodes separately. Therefore,
we adopt an iterative classification algorithm as our underly-
ing learning framework thatmakes use of label correlations to
jointly classify the nodes in the target network.

To train an ICA classifier, for each node v in Gt, we take
into consideration three types of features, including:

1) Content features: we use attribute values associated
with node v as its content features xv.

2) Structure features: for a given node v, we first collect
v’s t-neighborhood structure gv, and then compute
v’s new feature representation nv based on common
signature subgraph bases B�ðkÞ ¼ fb1; b2; . . . ; bkg:

nv ¼ fa1; a2; . . . ; akg;
¼ fPrðgvjb1Þ;Prðgvjb2Þ; . . . ;PrðgvjbkÞg:

The new feature representation nv is used as struc-
ture features of node v. Together with node content
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features, each node in the target network has a new
feature representation xnew ¼ ðx;nÞ.

3) Relational features: for each node v, we also compute
relational features by using an aggregation function,
such as count, mode, and proportion, to collect the
statistics information of the labels from the neighbors
of node v. Note that, relational features may continu-
ously change if any of node labels changes.

By combining node content features, structure features,
and relational features derived from the current label predi-
cations, the ICA classifier iteratively trains a local classifier
and updates the class labels of all nodes, which in turn gen-
erates new values of relational features, until the algorithm
converges. The complexity of ICA is OðBTfðjVjÞÞ, where
B indicates the total number of iterations and TfðnÞ indi-
cates the time required to train the local classifier, with jVj
denoting the number of nodes in the network.

Algorithm 2 lists the detailed procedure of our transfer
learning algorithm for cross-network node classification.

Algorithm 2. Transfer Learning for Cross-Network Node
Classification

Input: The source network Gs ¼ ðVls; EsÞ, the target network

Gt ¼ ðVlt;Vut ; EtÞ, and a base classifier f ,
Output: Labels of unlabeled nodes in Vut 2 Gt.
1: Collect t-neighborhood structures from Gs and Gt;
2: Construct the subgraph bases for Gs and Gt;
3: Learn common signature subgraph bases betweenGs andGt;
4: Reconstruct structure features of Gt using common signa-

ture subgraphs;
5: For each node v, the new features are xnew ¼ ðx;nÞ;
6: for each node vit in Gt do
7: Compute relational features using only observed nodes

in its neighborhood;
8: Predict the label for an unlabeled node: yit  fðvitÞ;
9: end for
10: while all yit’s are not stabilized or number of iterations does

not exceed a threshold do
11: Generate an ordering O over nodes in Gt;
12: for each node vit 2 O do
13: Compute relational features using the current label

predictions of its neighborhood;
14: Predict the label for an unlabeled node: yit  fðvitÞ;
15: end for
16: end while
17: Assign the predicted labels to Vut .

5 EXPERIMENTS

To validate the performance of our proposed transfer learn-
ing algorithm, we carry out extensive experiments on four
real-world networks.

5.1 Data Sets

We use four real-world networks in our experiments,
including CiteSeer, Cora, WebKB and Terrorist Attacks.1

For benchmark networks, their node features are different
and node label spaces are also different indicating different

classification problems. Table 1 summarizes the statistics of
the four networks with detailed descriptions as follows.

CiteSeer is a citation network which consists of 3,312 pub-
lications and 4,732 citation links. Each node is represented
by a 0/1-valued word vector indicating absence/presence
of the corresponding word from a dictionary of 3,703 words,
and is labeled as one of six classes: Databases, Machine Learn-
ing, Information Retrieval, Artificial Intelligence, Human Com-
puter Interaction, and Agents.

Cora contains 2,708 publications labeled as one of seven
classes: Probabilistic Methods, Neural Networks, Case Based,
Rule Learning, Reinforcement Learning, Genetic Algorithms and
Theory. It contains 5,429 citation links.

WebKB contains information about Web pages and their
hyperlinks collected from computer science departments of
various universities. We use the Wisconsin data which con-
tains 265 Web pages and 479 hyperlink relationships. Each
Web page is classified into one of five classes: student, course,
faculty, project and staff.

Attack consists of 645 terrorist attacks each assigned one
of six labels, indicating the type of the attack, including
Bombing, Weapon Attack, Kidnapping, Arson, NBCR Attach,
and Other Attack. Each node represents a terrorist attack
and the link is created between the co-located attacks.

We can observe that CiteSeer and Cora have a larger
number of nodes and links, while Attack has the largest
average degree and average clustering coefficient and
WebKB has the largest average closeness. The statistics
show that there exists discrepancy in data distribution and
network properties among the four networks. For each net-
work, we consider a binary classification problem which
takes the largest class as positive and the rest as negative.

5.2 Baselines

For evaluation, we compare our proposed TrGraph algo-
rithm with the following four baseline methods.

ICA. This method simply uses the content features of the
labeled nodes in the target network to train an ICA classifier
for predicting unlabeled nodes [23].

Subgraph-based ICA (SICA). This method also relies only
on the target network to perform collective classification. In
addition to node content features, it also uses top-k frequent
subgraphs in the target network as subgraph bases to con-
struct structure features for training an ICA classifier.

Frequent subgraph-based transfer learning (FrGraph). This
method is a variant of TrGraph, in which top-k frequent
subgraphs, rather than common signature subgraphs,

TABLE 1
Statistics of the Four Benchmark Networks

Data Set CiteSeer Cora WebKB Attack

# of nodes 3,312 2,708 265 645
# of links 4,732 5,429 479 3,172
# of classes 6 7 5 6
# in largest Class 701 818 122 312
# in smallest Class 249 180 22 4
Avg. degree 0.00085 0.0014 0.013 0.015
Avg. closeness 0.0452 0.137 0.288 0.0155
Avg. clustering coeff. 0.14 0.24 0.21 0.76

1. http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html
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shared by the source and target networks are considered as
subgraph bases to be transferred.

TrAdaBoost. This is a state-of-the-art transfer learning
algorithm that reuses training data from the source domain
via instance weighting [24]. To tailor it for networked data,
we aggregate the feature spaces of the two networks and
combine them with common signature subgraphs, and then
build TrAdaBoost on the two networks for node classifica-
tion. TrAdaBoost inherently ignores the linkages between
nodes and directly uses labeled nodes as training instances
for transfer learning.

For all the above methods, we use logistic regression as
the base classifier and compute the node classification accu-
racy only on unlabeled target nodes. All ICA-style methods
use proportion as the aggregation function to compute
relational features in the target network.

To provide comprehensive validations for transfer learn-
ing, we take turns to consider each data set as the target net-
work and the other three as the source network, respectively.
In each setting, we randomly select a fixed percentage p of
nodes from the target network as the labeled data according
to their node indexes, and the rest of unlabeled nodes are
used for testing. For evaluation, we repeat each algorithm
three times and report the average classification results.

5.3 Classification Performance

In the first set of experiments, we compare the classification
accuracy of different methods with respect to different
numbers of the labeled nodes in the target network. We set
k ¼ 60 indicating the number of the common signature sub-
graph bases that are transferred between the source and
target networks. We vary the percentage p of the labeled
nodes in the target network from 2 to 60 percent, and report
the classification accuracy in Fig. 6.

We can observe that the proposed algorithm, TrGraph,
consistently outperforms other baselines over all transfer
learning settings. This confirms that, transferring common
signature subgraphs across networks can significantly
improve the node classification accuracy in the target net-
work. Meanwhile, FrGraph is inferior to TrGraph, indicat-
ing that shared frequent subgraphs are not necessarily good
candidates for effective knowledge transfer across net-
works. For the other two non-transfer-learning methods,
SICA yields better performance than ICA. This indicates
that, structure features, constructed via finding frequent
subgraphs, can indeed help improve the collective classifi-
cation accuracy. Expectedly, TrAdaBoost does not perform
well on the cross-network node classification task. Because
the feature spaces of the source and target networks are
disparate and they only share common structure features,
transfer learning via instance transfer becomes ineffective.
Moreover, as TrAdaBoost does not consider label depen-
dency between the nodes, its classification performance
further degrades in the network settings.

An important observation is that, the classification accu-
racy of our TrGraph algorithm is positively correlated to the
similarity between the source network and target network.
For example, when CiteSeer is used as the target network,
using Cora as the source networks yields a higher accuracy
than using Attack. This is because both CiteSeer and Cora
represent citation relationships between scientific publica-
tions. Thus, the two networks share more significant sub-
graphs in their network structures, which enables transfer
learning to be more effective.

5.4 Impact of the Signature Subgraph Number k

In this experiment, we investigate the impact of the number
of common signature subgraphs, k, of TrGraph on the node

Fig. 6. Accuracy comparison of different algorithms on four data sets with respect to different percentages of the labeled nodes in target networks.
“T” indicates target networks and “S” indicates source networks.
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classification accuracy. The size of subgraph base candi-
dates depends on the inherent characteristics of the net-
work, such as the size of the network, and the value of t. For
example, when t ¼ 1, only the immediate neighbors of each
node are considered to build subgraph bases. The sizes of
candidates are 322 for CiteSeer, 267 for Cora, 124 for WebKB
and 165 for Attack. For all transfer learning settings, we use
30 percent of nodes in the target network for training, and
the rest of unlabeled nodes for testing.

Fig. 7 reports the classification accuracy of TrGraph and
FrGraph with respect to different numbers of common sig-
nature subgraphs and frequent subgraphs, respectively. We
can observe that, for both algorithms, their classification
accuracies increase when more subgraphs are selected to be
transferred across the networks, and TrGraph consistently
outperforms FrGraph for any given number of subgraphs.
For TrGraph, we can see that the classification accuracy
becomes saturated when the value of k reaches around 60.
When the value of k continues to increase, that is, k > 80,
some discovered subgraph bases are found to be very com-
plex and only appear once in the source network. Conse-
quently, such subgraph bases cannot generalize well to
classify unlabeled nodes in the target network.

5.5 Impact of the Neighborhood Structure Depth t

We also carry out experiments to study the impact of t, the
depth of the t-neighborhood structure for a node, on the
node classification accuracy. When constructing t-neighbor-
hood structures for a given node, if t ¼ 1, we only consider
a node’s immediate neighbors. If t > 1, we need to recur-
sively crawl the neighbors of a node’s neighbors, so the
number of nodes may quickly increases and the generated
t-neighborhood structures may become more complex. In

this set of experiments, we vary the values of depth t from
1 to 5 and generate t-neighborhood structures for different
networks. This leads to different numbers of distinct sub-
graph bases (usually more than 100), so we set k ¼ 60 to
find common signature subgraph bases between the source
and target networks.

Fig. 8 shows the classification accuracy of the proposed
TrGraph algorithm with respect to different t values. We
can clearly see that, for all the settings, TrGraph achieves
the best classification accuracies when t ¼ 1 or t ¼ 2,
although the accuracies for t ¼ 1 are slightly better than set-
ting t ¼ 2. Also, the accuracies for t ¼ 3 and t ¼ 4 are better
than that of t ¼ 5. This shows that, as the value of t becomes
larger, the generated subgraph structures would become
more specific to the structure of individual networks. Con-
sequently, the subgraph structures that are transferable
from the source network are less potentially useful to be
generalized in the target network, which limits the contribu-
tion of transfer learning to improving the node classification
accuracy. From this set of experiments, we conclude that
our proposed TrGraph algorithm achieves the highest node
classification accuracy when we only consider one or two
hop neighbors of the nodes for constructing and transfer-
ring structure features. This further confirms that local
structure information is not only powerful for jointly classi-
fying the nodes within a network, but also useful for per-
forming cross-network node classification.

5.6 Efficiency Analysis

Lastly, we perform a theoretic and empirical analysis of the
time efficiency of the proposed TrGraph algorithm. The
most computationally expensive component of TrGraph is
the feature transfer process, which consists of two parts:

Fig. 7. Classification accuracy with respect to different numbers of common signature subgraphs (graph bases) k. “T” indicates target networks and
“S” indicates source networks.
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constructing the t-neighborhood structures for the nodes in
the source and target networks and computing common sig-
nature subgraphs between the two networks. For a given
node v, the complexity of finding its t-neighborhood struc-
ture g is OðjVgj þ jEgjÞ, where jVgj and jEgj indicate the num-

ber of nodes and edges in subgraph g. Considering the total
number of nodes in a network is jVj, where jVgj þ jEgj � jVj,
the time complexity will be far less than OðjVj2Þ. On the
other hand, when discovering common signature sub-
graphs, for each subgraph base bi, computing PrðgjbiÞ for all
nodes in both Gs and Gt has the complexity of Oðnc

ðjVsj þ jVtjÞÞ, where nc is the number of subgraph base can-
didates. Using all unique subgraph bases from Gs and Gt as
candidates, selecting an optimal set of common signature
subgraph bases has the time complexity of OððjVsj þ
jVtjÞlogðjVsj þ jVtjÞÞ.

Because the value of t for constructing t-neighborhood
structures largely affects the time efficiency of our TrGraph
algorithm, we empirically study the processing time of the
feature transfer component of TrGraph with respect to dif-
ferent t values, and report the results in Fig. 9. It is evident
that the running time increases accordingly as the value of

t increases. However, because TrGraph achieves the best
classification accuracies when only considering local struc-
tures in the neighborhood, that is, t ¼ 1 or t ¼ 2, the feature
transfer component is still computationally efficient.

6 CONCLUSION AND FUTURE WORK

We presented a novel algorithm to address cross-network
transfer learning for node classification. We argued that in
network settings, a node classification task in a target net-
work can be significantly improved if the knowledge from
other auxiliary networks can be properly leveraged and
transferred for learning. In reality, the node feature space
and the label space of the networks can be largely (or even
completely) different, the generalizable knowledge that can
be transferred across networks is common structure pat-
terns between the networks. Therefore, we proposed to con-
struct t-neighborhood structures to represent each node’s
local structure information. We then solved an optimization
problem to discover common signature subgraphs between
the networks and used them to reconstruct new structure
features of the target network. At last, we proposed an itera-
tive classification algorithm to jointly classify the nodes in

Fig. 8. Classification accuracy with respect to different values of t, which indicates the depth of t-neighborhood structure. “T” indicates target
networks and “S” indicates source networks.

Fig. 9. The processing time of the feature transfer component of our proposed TrGraph algorithm with respect to different values of t, the depth of
t-neighborhood structure. “T” indicates target networks and “S” indicates source networks.
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the target network. Experiments showed that our proposed
algorithm outperforms other baselines and the identified
common signature subgraphs can indeed help improve the
node classification accuracy.

This work can be extended from several directions.
First, we will consider extending our proposed algorithm
to intelligently select the “right” source network. Our
proposed algorithm attempts to find a set of common
significant subgraphs between the source and target
networks and use them as features for transfer learning.
This provides a potential way to measure the relatedness
between two networks by estimating the degree that they
share on their significant subgraphs. If two networks are
related or similar, they would share most of their signifi-
cant subgraphs. Otherwise, they would share few signifi-
cant subgraphs. In this way, negative transfer can be
effectively avoided. Second, our current transfer learning
framework only considers one source network. We
wish to extend it to utilize information from multiple
source networks. One potential solution is to assign dif-
ferent weights to the source networks according to their
relatedness to the target network. By taking weighted
votes from multi-source networks, significant subgraphs
are selectively chosen to be transferred to the target net-
work. Finally, because networks can be represented as
directed and/or weighted graphs in some applications,
we would like to investigate the possibility of identifying
directed subgraph patterns [50] for cross-network node
classification.
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